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Abstract: Before leaving the factory, lithium-ion battery (LIB) cells are screened to exclude voltage-
abnormal cells, which can increase the fault rate, troubleshooting difficulty, and degrade pack
performance. However, the time interval to obtain the detection results through the existing voltage-
abnormal cell method is too long, which can seriously affect production efficiency and delay shipment,
especially in the mass production of LIBs when facing a large number of time-critical orders. In this
paper, we propose a data-driven voltage-abnormal cell detection method, using a fast model with
simple architecture, which can detect voltage-abnormal cells based on the multi-source time series
data of the LIB without a time interval. Firstly, our method transforms the different source data of a
cell into a multi-source time series data representation and utilizes a recurrent-based data embedding
to model the relation within it. Then, a simplified MobileNet is used to extract hidden feature from
the embedded data. Finally, we detect the voltage-abnormal cells according to the hidden feature
with a cell classification head. The experiment results show that the accuracy and average running
time of our model on the voltage-abnormal cell detection task is 95.42% and 0.0509 ms per sample,
which is a considerable improvement over existing methods.

Keywords: lithium-ion battery production; data-driven model; anomaly detection; multi-source time
series data

1. Introduction

As a high-performance energy storage device, the lithium-ion battery has attracted
wide attention and is widely used in many applications, such as electric vehicles, unmanned
system, and portable devices [1–4]. The manufacturing of LIBs is a long-process production
chain, with discrete-continuous mixing and multiple materials involved [5]. The high com-
plexity of LIB production and the variation in raw materials inevitably leads to the presence
of abnormal cells, such as internal-resistance-abnormal cells and discharge-abnormal cells.
At the end of LIB production, the cells are formed, tested, and aged at room temperature
for several days to fully test and verify the function and performance of the LIB.

Before the cells leave the factory, there is an essential detection procedure that needs
to be performed, which is to detect the current open circuit voltage (OCV) of the cell and
compare it with the OCV before aging to estimate whether there are abnormalities, such as
voltage anomalies, etc. However, the time interval between these two OCV detections is
too long and at least five days are needed to wait for the cell voltage to change, and then,
obtain the detection results in our case. This problem can seriously affect the efficiency of
production and delay shipment. Especially in the mass production of LIBs, the traditional
detection methods cannot quickly, accurately, and efficiently detect voltage-abnormal cells,
which leads to a reduction in the overall production efficiency of LIBs and delays shipments.
This problem is particularly prominent as a large number of orders are time-critical.
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In recent years, data-driven methods have achieved significant success in different
engineering areas [6], such as medical data analysis [7], traffic prediction [8], state diagno-
sis [9], and so on. These methods can learn hidden features from data with multiple levels
of abstraction and are better than other methods based on hand-crafted features [10]. On
the other hand, the management and manufacturing of LIBs have become more and more
intelligent with the development of technology. Many sensors are deployed to monitor
the environment and variation in LIBs during production and usage, making it no longer
difficult to obtain the process data of cells. These process data of LIBs have been used by
various data-driven methods to improve productivity, manageability, and feasibility. For
battery production, Li et al. [11] proposed a new battery management method based on
a deep learning model for feature extraction to enhance the reliability of electric vehicle
batteries. Haider et al. [12] use battery operating data and a clustering algorithm to detect
anomalies in batteries, which can improve the maintenance efficiency and lower the risks
of battery operation. Duquesnoy et al. [13] used a data-driven assessment on experimental
results for the electrode calendaring process to optimize the production parameters for
safer, high-performing, and cheap LIB production. Jin et al. [14] proposed a fault diagnosis
method for a single LIB and battery pack based on a combined model and data-driven
method. Ma et al. [15] utilize statistical analysis to detect connecting faults in lithium-ion
power batteries for electric vehicles, which can reduce the risk of LIB fire or explosion
accidents. Wu et al. [16] combine a deep belief network and ensemble empirical mode
decomposition to predict the remaining useful life of LIBs. For abnormal-battery detec-
tion, Wang et al. [17] proposed a new diagnosis method for networked battery systems
based on a data-driven statistical analysis to estimate reliability and diagnose accuracy.
Li et al. [18] focused on the diagnosis of electric vehicle battery faults, and proposed an
abnormal detection method based on the long short-term memory neural network LSTM
to improve the robustness and reliability of electric vehicle batteries. Li et al. [19] use an
unscented Kalman filter algorithm to predict changes in the LIB core temperature and
design an adaptive threshold method for rapid fault diagnosis that considers the change
rates of the voltage and temperature for four different fault conditions. Wang et al. [20]
proposed a model-based insulation fault diagnosis method for the LIB pack to ensure the
safety of electric vehicles. Sun et al. [21] study a transfer-learning-optimized residual
network to diagnose internal short circuit faults of LIBs with unknown parameters to
ensure battery safety. Tian et al. [22] try to detect and localize thermal faults in LIBs based
on Mask R–CNN [23] to protect LIBs and avoid thermal failure. Zhang et al. [24] combine
Gaussian process regression with electrochemical impedance spectroscopy to forecast the
remaining useful life of LIBs. He et al. [25] proposed a Dempster–Shafer theory and a
Bayesian Monte Carlo-based method to estimate the state of health of LIBs. Zhang et al. [26]
fuse a deep learning model and feature analysis methods to predict the remaining useful
life and state of health of LIBs. Currently, these data-driven methods are mainly applied
to manufacturing optimization and fault diagnosis in the use of LIBs, and only a few
data-driven methods have been directly used for anomaly detection in the manufacturing
process of LIBs. However, these applications of data-driven methods in the field of LIBs
demonstrate their effectiveness, capability, and huge potential for the voltage-abnormal
cell detection task.

To detect voltage-abnormal cells without a time interval based on a data-driven model,
we can utilize the process data of cells during formation and testing, which are charge
and discharge curves of cells with different profiles, and these curves are usually formed
as time series data. These time series data of LIBs contain the variation and performance
information of the cell, and can be used to predict cell quality and detect cell state [27,28].
To better utilize these process data to detect voltage-abnormal cells in a timely fashion,
a high-performance and accurate data-driven model for time series data is important.
There are many time series-based data-driven models for different applications, such as
classification, forecasting, etc., and they can be divided into two categories: traditional
machine learning-based methods and deep learning-based methods. For the traditional
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machine learning-based methods, Hu et al. [29] refine support vector machine for short-
term wind speed forecasting. Davis et al. [30] study random forest for nonlinear time
series modeling. Shiraishi et al. [31] applied the generalized random forest for the quan-
tile regression for time series data. Silva et al. [32] extend the traditional C4.5 decision
tree method for regression and forecasting of multivariate time series. Qiu et al. [33]
study the oblique random forest for time series forecasting. Ilic et al. [34] proposed an
explainable boosted linear regression for time series forecasting, which enabled the incor-
poration of nonlinear features by explanation of the residuals. The traditional machine
learning-based methods are simple and have good performance on many time series prob-
lems, but their performance depends on manual feature extraction and selection to some
extent [35]. For deep learning-based methods, Wang et al. [36] proposed a lightweight
multi-layer perceptron (MLP) neural network for high-performance time series forecast-
ing. Zhang et al. [37] extend localized stochastic sensitivity to robust recurrent neural
networks (RNNs) for time series forecasting. Sak et al. [38] study a novel LSTM which
makes more effective use of model parameters for large-vocabulary speech recognition.
Bai et al. [39] proposed a temporal convolutional network to emphasize the regression
capacity of a convolutional neural network (CNN) used for time series forecasting with
arbitrary length. Phandoidaen et al. [40] investigate the capacity of Transformer [41] to
forecast high-dimensional time series. Zhou et al. [42] proposed the Informer for long-
sequence time series forecasting with high efficiency. Bloemheuvel et al. [43] investigate
sequential information of time series data with graph neural networks and apply it to
seismic data. The deep learning-based methods can extract data features without manual
feature selection and achieve better performance. Chen et al. [44] proposed an aircraft
engine remaining useful life prediction model based on Transformer with position-sensitive
attention and a gated hierarchical LSTM. Li et al. [45] study generative adversarial networks
for multivariate anomaly detection based on time series data. Kieu et al. [46] present a time
series outlier detection method based on recurrent autoencoder ensembles to reduce the
effects of the model being overfitted to outliers.

Nevertheless, there are several challenges that limit the application of data-driven
models in voltage-abnormal cell detection for the mass production of LIBs. First, it is hard
to obtain satisfactory detection performance using only a single time series of cells, such as
a charge–voltage curve, because the voltage abnormality may be caused by multiple factors
during production. Thus, the data-driven models for voltage-abnormal cell detection
should be able to efficiently extract features from time series of different sources, i.e., multi-
source time series data, to find the abnormal cells. Second, the sequential order information
in the time series of a cell is important for the voltage-abnormal cell detection task and
we need to model the relations of various sources in the multi-source time series data to
improve the quality of the extracted features. Finally, the voltage-abnormal cell detection
model needs to have a simple structure, fast speed, and high computational efficiency to
meet the needs of mass production of LIBs.

In this paper, we propose a data-driven voltage-abnormal cell detection method with
multi-source time series data for mass production of LIBs. The proposed method can obtain
voltage-abnormal cell detection results immediately after the processes of cell formation
and testing without waiting for the cell’s voltage variation, which is time-consuming and
inefficient. Firstly, the different source data of a cell during production are transformed into
a unified multi-source time series data representation and we use a recurrent-based data
embedding to model the relationship within the multi-source time series data. Then, we
use the simplified MobileNet to extract hidden features of the embedded data, which is a
convolutional-based lightweight neural network that is modified from MobileNetV2 [47].
Finally, a cell classification head is designed to detect the voltage-abnormal cell according to
the hidden features of the multi-source time series data. The experimental results show that
the accuracy of our model on the voltage-abnormal cell detection task can reach 95.42%,
which is better than other data-driven models, and the average running time can reach
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0.0509 ms per sample, which is a considerable improvement. The main contributions of
this paper are as follows:

• A data-driven voltage-abnormal cell detection method is proposed which utilizes the
multi-source time series data of the cell to detect voltage-abnormal cells quickly and
accurately without a long time wait before detection.

• The abnormal detection model takes the order of different source data into account
and adopts a recurrent-based data embedding method to utilize order information for
better detection performance.

• We modified and simplified the structure of MobileNet to improve the computational
efficiency and reduce the model redundancy to adapt it to the mass production of LIBs.

The organization of the paper is as follows. In Section 2, we introduce the data
representation, model architecture, component detail, and implementation. In Section 3, the
details of the experiments are discussed including the data preparation, dataset allocation,
experimental setting, and discussion of the results. Finally, we conclude this paper and
discuss some future directions in Section 4.

2. Proposed Method

This paper proposed a data-driven abnormal detection model with multi-source time
series data to detect voltage-abnormal cells for mass production of LIBs. The proposed
model contains several components: recurrent data embedding, simplified MobileNet,
and a cell classification head. The architecture of our model is shown in Figure 1. In the
following sections, we demonstrate the data representation of multi-source time series data
used in our method. We also describe the details of the model architecture and components.
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Figure 1. The architecture of the proposed method.

2.1. Data Representation

For each cell, its different types and sources of time series data are collected during
manufacturing. These data are obtained to monitor the variation in production, verify
battery function, and model the quality of a cell. However, these time series data are
not always aligned, i.e., the time series data are different lengths and the scale of each
data source varies. To utilize different data sources, we integrate these data to obtain a
multi-source time series data representation for better detection performance.

The process to form the multi-source time series data representation is shown in
Figure 2. For a cell with N different data source, each data source xi, 1 ≤ i ≤ N, is first
normalized to [0, 1]. This can reduce the influence of the scales of different sources on the
model performance. Then, the data sources with length less than T are padded with zeros
for alignment, where T is the length of the longest source data. Finally, we concatenate
these source data along the vertical direction to form the input multi-source time series
data X ∈ RN×T for the voltage-abnormal cell detection task.
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Normalization Concatenation

…

Different Source 
Data of Cell

Multi-source Time 
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2x
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1N−x
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Time(min)

Figure 2. The details of the multi-source time series data representation.

2.2. Model Architecture

The overall structure of our abnormal detection model is shown in Figure 1; it contains
recurrent data embedding, simplified MobileNet, and a cell classification head. The details
of each component are demonstrated in the following section.

2.2.1. Recurrent Data Embedding

The relative acquisition order of various source data during LIB production in the
multi-source time series data is important for the model to obtain data dependency and
achieve better detection performance [48]. To utilize and avoid the loss of this information
in subsequent processing, we use a recurrent-based data embedding to model the data
relationships within X. Specifically, we input each xi = {x1, x2, ..., xT} ∈ RT , where xp ∈ R,
and 1 ≤ p ≤ T, into the recurrent data embedding module, which models the data
relationship as the hidden state, sequentially, and fuse it with the input data.

The recurrent data embedding module in our method is stacked with L LSTM [38,49,50]
cells, as shown in Figure 1. The LSTM is a recurrent-based neural network which can
handle long-term dependency in the sequence and is more efficient than RNN for time
series data. There are many variants of LSTM for different applications. In this paper, we
adopted the model structure from [38] for the voltage-abnormal cell detection task, which
is easy to train and less complex. The details of the LSTM cell are shown in Figure 3. The
calculation of the LSTM cell is as follows:

bt
ι = σ

(
wiιxt

i + whιb
t−1
h + wcιst−1

c

)
(1)

bt
ϕ = σ

(
wiϕxt

i + whϕbt−1
h + wcϕst−1

c

)
(2)

at
c = wicxt

i + whcbt−1
h (3)

st
c = bt

ϕ ⊙ st−1
c + bt

ι ⊙ σ
(
at

c
)

(4)

bt
ω = σ

(
wiωxt

i + whωbt−1
h + wcωst

c

)
(5)

bt
c = bt

ω ⊙ tanh
(
st

c
)

(6)

where xt
i is the input data of the LSTM at time step t. bt−1

h and bt
c are the hidden state at

time steps t − 1 and t. st−1
c and st

c are the cell states at time steps t − 1 and t. The subscripts
ι, ϕ, and ω refer to the input gate, forget gate, and output gate of the LSTM cell, respectively.
bt

ι , bt
ϕ, and bt

ω are the output of the input gate, forget gate, and output gate, respectively.
σ(.) is the sigmoid activation function. tanh(.) is the hyperbolic tangent activation function.
⊙ is the Hadamard product. The w terms are the learnable weight matrices for each gate.
After all the xi are processed by the recurrent data embedding module, we concatenate the
output of each xi as the embedded data Xembed ∈ RN×dr , where dr is the number of hidden
units in the LSTM cell.
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Figure 3. The structure of LSTM cell.

2.2.2. Simplified MobileNet

In the context of the mass production of LIBs, the voltage-abnormal cell detection
method should be fast, efficient, and accurate to meet the needs of cell production. The
number of cells to be tested is huge while the detection time and efficiency are strictly limited.

In general, tens of thousands of cells need to be tested to meet the requirements of
the production quality with the time limitation. However, the model complexity and
computational efficiency of traditional neural network architectures, such as naïve CNN
and MLP neural network, are highly correlated with the scale and dimension of the data. It
is hard to balance accuracy performance and time cost when dealing with large-scale and
high-dimension data, such as a large batch of multi-source time series data.

In this paper, we utilize the advantage of the depthwise separable convolution [51]
on computational efficiency and simplify the architecture of MobileNetV2, removing re-
dundant structures for the voltage-abnormal cell detection task to achieve high efficiency
and accurate feature extraction performance. Our simplified MobileNet is stacked with H
depthwise separable convolutions with bottleneck, as shown in Figure 1. The embedded
data Xembed are input into the simplified MobileNet which extracts the data dependency
between different sources in Xembed with high-efficiency convolution kernels and trans-
forms it into high-dimension hidden features Xhid. The details of the depthwise separable
convolution with bottleneck (DSCB) are shown in Figure 4; it contains multiple convolution
layers with different parameters to acquire the relations within the multi-source time series
data at different scales.
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Figure 4. The structure of the depthwise separable convolution with bottleneck.

As shown in Figure 4, ReLU6 and batch norm are the activation function and batch
normalization layer [52]. There is also a residual connection [53] in the DSCB to improve
the learning efficiency. Several parameters control the structure of the DSCB: the expansion
factor q, number of output channels c, number of repeats n, and stride s. The config-
uration of the simplified MobileNet is shown in Table 1. Compared with the original
MobileNetV2, the structure of the simplified MobileNet has been optimized with only
a few DSCBs, our model can obtain considerable anomaly detection performance and
computational efficiency.
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Table 1. The configuration details of the simplified MobileNet.

Block Index 1 q c n s

1 1 16 1 1
2 6 64 2 2
3 6 256 1 1

1 The sequence number of H DSCBs in the simplified MobileNet.

2.2.3. Cell Classification Head

To obtain the detection result from the hidden feature Xhid, we design a cell classifica-
tion head (CCH) to compress and transform the input hidden feature Xhid into the decision
space, i.e., normal or abnormal cell. The details of the cell classification head are shown in
Figure 5. The cell classification head first utilizes the convolution layer with m channels
to spread the information in Xhid along the channel dimension. Then, the global average
pooling [54] is utilized to compress the information of each channel and reduce redundancy.
Finally, an MLP with softmax layer, where the number of hidden units is dCCH , is used to
map the feature into the detection result for the voltage-abnormal cell detection task, as
shown in Figure 1.
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Figure 5. The structure of the cell classification head.

2.3. Voltage-Abnormal Cell Detection

The voltage-abnormal cell detection model is trained with backpropagation. The loss
function in this task is the cross-entropy loss function. The gradient of loss passes through
the model from output to input and updates the model parameters. After the model is well
trained, we deploy it to detect voltage-abnormal cells.

The cells are detected after being formed and tested. We integrate the different source
data of a cell into a holistic data representation, i.e., multi-source time series data. Then, the
multi-source time series data are embedded by the LSTM-based recurrent neural network
to fuse the relationship information into the data. Next, the simplified MobileNet extracts
different-scale features and relationships in the multi-source time series data with high
computational efficiency and a simple architecture. Finally, the cell classification head
compresses and transforms the hidden features to obtain the detection results. Our method
can achieve considerable abnormal detection performance while maintaining a simple
model structure and high computational efficiency to meet the needs of mass production
of LIBs.

3. Experiments

Several experiments were conducted to compare the capacity of our method with
other data-driven models and to investigate the influence of parameters on our model’s
performance. In addition, ablation experiments were conducted to validate the effectiveness
of the model components.

3.1. Data Preparation

The cell data for the experiments were collected from the formation and test processes
of the real-world production of the type 18650 LIB. These charge and discharge stages are
performed after the cells have been assembled to activate the electrochemical properties
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and test the function of the battery. Specifically, the assembled cells are placed in a specific
charging cabinet with hundreds of channels and each channel contains several sensors,
such as a current sensor, voltage sensor, and temperature sensor, to monitor and collect the
status of cells during formation and testing periodically. The collected data of each cell are
transferred to the data platform for storage via the network and organized as time series
data for different applications.

For the voltage-abnormal cell detection task, we obtain three types of charging voltage
curves from the process of constant current charge and constant current constant voltage
charge, one type of discharge voltage curve from the process of constant current discharge,
one type of charge current curve from the process of constant current constant voltage
charge, and the corresponding voltage-abnormal label for 42,687 cells as the raw dataset.
These data curves are obtained during the formation and test process, and can be used to
indicate the electrochemical performance of cells [27]. First, the raw dataset is screened,
aligned, and resampled to reduce the impact of the imbalanced dataset on model perfor-
mance [27,55]. Then, we divide the resampled data into three datasets, which are train,
validation, and test datasets. The details of the data allocation are shown in Table 2. Finally,
we standardize all the data according to the train dataset.

Table 2. The details of the dataset allocation.

Dataset Ratio of Normal Cell Ratio of Abnormal Cell Number of Samples

Train 50% 50% 2400
Validation 50% 50% 240

Test 50% 50% 240
Total 50% 50% 2880

3.2. Experimental Details

Several data-driven models are adopted as baseline models to compare with the
proposed method on the voltage-abnormal cell detection task; these are recurrent neural
network (RNN), LSTM [38], gated recurrent unit network (GRU) [56], MLP, fully convo-
lutional network (FCN), ResNet, and Transformer. The number of layers in RNN, LSTM,
and GRU is one. The model structures of MLP, FCN, and ResNet are adopted from [57].
The model structure of Transformer is adopted from [41]. Due to the voltage-abnormal cell
detection task being a binary classification rather than a sequence-to-sequence problem, we
use a Transformer with three encoder layers and a simple classification head as the decoder,
which consists of a linear layer and a softmax layer.

Due to the voltage-abnormal cell detection task being a binary classification task, we
adopt the accuracy, G-mean [58], F1 value, precision, recall [59], and average running time to
evaluate the model performance. The details of the evaluation indices are shown in Table 3,
where P is the number of positive samples, N is the number of negative samples, TP is the
number of true positive predictions, TN is the number of true negative predictions, FP is the
number of false positive predictions, and FN is the number of false negative predictions.

Table 3. The details of the evaluation indices.

Evaluation Index Formulation Range Best Value

Accuracy TP+TN
P+N [0, 1] 1.0

Precision TP
TP+FP [0, 1] 1.0

Recall TP
TP+FN [0, 1] 1.0

F1 2 × Precision×Recall
Precision+Recall [0, 1] 1.0

G-mean
√

Precision × Recall [0, 1] 1.0

The default version of our model uses the number of LSTM layers L = 1, the number of
LSTM hidden units dr = 64, the number of DSCB blocks H = 3, the number of channels in
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the CCH m = 512, and the number of CCH hidden units dCCH = 256. All the experiments
are performed on a desktop platform with Intel Core i7-7920HQ, 32 GB RAM, and GTX 1060
6 GB version. The Adam [60] optimizer with default batch size 128 was used to optimize
and train the model. The parameters of Adam were β1 = 0.9, β2 = 0.98, and ε = 10−9.

3.3. Results and Discussion

In this section, the results of several experiments, which compare the different data-
driven models and the influence of parameters on model performance for voltage-abnormal
cell detection, are analyzed and discussed to demonstrate the capacity and efficiency of the
proposed method.

3.3.1. Comparison of Different Models for Voltage-Abnormal Cell Detection

In this section, our method is compared with several data-driven baseline models for
the voltage-abnormal cell detection task. The experimental result is shown in Table 4. The
best result of each evaluation index is bold. As shown in Table 4, our method achieved the
best result on most of the evaluation indicators except for precision, which was 1.49% lower
than ResNet. Among RNN, LSTM, and GRU, GRU achieves the best result, where the
accuracy index is 2.92% lower than our method. For the precision index, the performance
of RNN, LSTM, and GRU are close, which means these models can detect the voltage-
abnormal cell accurately. For the recall index, there are gaps between RNN, LSTM, and GRU,
which means the ability of these models to deal with hard samples is varied. Although the
performance of ResNet is better than LSTM, the overall performance of the recurrent-based
models is better than MLP, FCN, and ResNet. The performance of Transformer is close to
our method and its accuracy is only 1.23% lower than our method, which is considerable.
For the average running time, the fastest model is MLP, for which the running time is 0.0034
ms per sample. However, the accuracy of MLP is not satisfactory. Although our method is
slower than Transformer, the average running time of our method can reach 0.0509 ms per
sample, which is 95.68% and 91.75% lower than the average running times of ResNet and
FCN, while achieving the best accuracy. Overall, our method can detect voltage-abnormal
cells accurately and effectively, which can meet the needs of the mass production of LIBs.

Table 4. The experimental result of different data-driven models for voltage-abnormal cell detection.

Model Evaluation Index
Accuracy F1 G-Mean Precision Recall Time (ms)

MLP 0.8458 0.8275 0.8342 0.9465 0.7355 0.0034
RNN 0.8792 0.8682 0.8711 0.9413 0.8067 0.0036
LSTM 0.9042 0.8971 0.8982 0.9424 0.8560 0.0056
GRU 0.9250 0.9227 0.9232 0.9557 0.8902 0.0038
FCN 0.8875 0.8820 0.8844 0.9287 0.8450 0.6171

ResNet 0.9125 0.9023 0.9035 0.9722 0.8418 1.1777
Transformer 0.9417 0.9403 0.9403 0.9572 0.9246 0.0207

Ours 0.9542 0.9535 0.9536 0.9573 0.9500 0.0509

3.3.2. Influence of the Different Parameters on Voltage-Abnormal Cell Detection

In this section, we investigate the impact of different parameters of our method on the
voltage-abnormal cell detection task: the batch size, the number of CCH hidden units, the
number of LSTM hidden units, and the number of channels in the CCH. For each parameter
experiment, we fixed the other parameters as default while changing a certain parameter
and observing its impact on model capacity. The experimental results are shown in Figure 6.
For the batch size, the influence of it on our model for the voltage-abnormal cell detection
task is shown in Figure 6a, where the optimal result is achieved when the batch size is 128.
The results of batch size 256 have a similar performance to the optimal batch size. The
model performance declines as the batch size increases from 512 to 2048. For the number
of LSTM hidden units dr, the influence of it on our model for the voltage-abnormal cell
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detection task is shown in Figure 6b, where the optimal result is achieved when dr = 64.
The model with small dr is unable to capture the data dependency in the multi-source
time series data, while a large dr can cause overfitting and lead to model degradation. For
the number of CCH hidden units dCCH , the influence of it on our model for the voltage-
abnormal cell detection task is shown in Figure 6c, where the optimal result is achieved
when dCCH = 256. The model performance is undesirable when dCCH changes from 16
to 128, and there is an obvious performance variation at dCCH = 64. This means a small
dCCH can cause model underfitting and cannot obtain model convergence for the voltage-
abnormal cell detection task. For the number of channels in the CCH m, the influence of it
on our model for the voltage-abnormal cell detection task is shown in Figure 6d, where the
optimal result is achieved when m = 512. The performance at m = 1024 and 2048 is not
significantly different from m = 512. The model performance of m from 64 to 256 advances
gradually, indicating that an increase in the number of channels in the CCH improves the
capability of the CCH to classify abnormal cells and achieves better performance.

(a) (b)

(c) (d)

Figure 6. The influence of the parameters on the voltage-abnormal cell detection task. (a) The
influence of the batch size; (b) the influence of the number of LSTM hidden units; (c) the influence of
the number of CCH hidden units; (d) the influence of the number of channels in the CCH.

3.4. Ablation

In this section, we perform an ablation study on the proposed method to survey the
influence of the model components for the voltage-abnormal cell detection task. Specifically,
we replace or disable a certain component while keeping the other setup of our model as
default to investigate the impact of different model components. The ablation results are
shown in Table 5, where ‘Ours’ means our model with default setup, ‘w/o RDE’ means
that we replaced the recurrent data embedding in our model with a simple MLP, ‘w/o
MobileNet’ means that we replaced the simplified MobileNet in our model with a simple
MLP. The experimental result of ‘w/o RDE’ demonstrates the effectiveness of recurrent
data embedding for the voltage-abnormal cell detection task, where all of the accuracy, F1,
and G-mean are significantly reduced compared to ‘Ours’. The result of ‘w/o MobileNet’
dropping a lot means the model capacity cannot handle hard samples with a simple MLP,
which illustrates the validity of the simplified MobileNet in our model.
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Table 5. The experimental results of ablation study.

Model w/o RDE w/o
MobileNet Ours

Component
Recurrent Data Embedding ×

Simplified MobileNet ×

Evaluation Index

Accuracy 0.9125 0.8958 0.9542
F1 0.9095 0.8879 0.9535

G-mean 0.9102 0.8907 0.9536
Precision 0.9466 0.9617 0.9573

Recall 0.8751 0.8254 0.9500

4. Conclusions

This paper proposed a voltage-abnormal cell detection method for mass production
of LIBs based on a data-driven model with multi-source time series data. The proposed
method can obtain voltage-abnormal cell detection results immediately after the cell is
formed and tested without long waiting. Our method combines the different source data
into a multi-source time series data representation and captures the data dependency
between source data with the recurrent-based data embedding. In addition, we utilize the
simplified MobileNet to extract the hidden features from the embedded multi-source time
series data for better detection accuracy and speed to meet the requirements of LIB mass
production. Experiments based on real-world production data show that the accuracy of
our model on the voltage-abnormal cell detection task can reach 95.42%, which is better
than other data-driven models. The average running time of the proposed method can
reach 0.0509 ms per sample, which is a considerable improvement compared with ResNet
and FCN. Overall, the proposed method can detect voltage-abnormal cells with high
computational efficiency and accuracy without a detection time interval, thus improving
the efficiency of LIB production and avoiding shipment delays.

In future work, we will attempt to further optimize the model structure to reduce the
average running time and approach the average running time of MLP. In addition, we will
study the voltage-abnormal cell detection method based on unsupervised or pre-training
methods for better training performance. We will also consider using more advanced
optimizers, such as Bayesian optimizers, to further optimize the parameters of the model
and improve the model performance.
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