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Abstract: Socioeconomic growth and population increase are driving a constant global demand
for energy. Renewable energy is emerging as a leading solution to minimise the use of fossil fuels.
However, renewable resources are characterised by significant intermittency and unpredictability,
which impact their energy production and integration into the power grid. Forecasting models are
increasingly being developed to address these challenges and have become crucial as renewable
energy sources are integrated in energy systems. In this paper, a comparative analysis of forecasting
methods for renewable energy production is developed, focusing on photovoltaic and wind power.
A review of state-of-the-art techniques is conducted to synthesise and categorise different forecasting
models, taking into account climatic variables, optimisation algorithms, pre-processing techniques,
and various forecasting horizons. By integrating diverse techniques such as optimisation algorithms
and pre-processing methods and carefully selecting the forecast horizon, it is possible to highlight the
accuracy and stability of forecasts. Overall, the ongoing development and refinement of forecasting
methods are crucial to achieve a sustainable and reliable energy future.

Keywords: forecasting; meteorological variables; renewable energy; machine learning; algorithms;
pre-processing

1. Introduction

The constant economic challenges, technological development, and population growth
lead to the permanent demand for energy. In fact, the energy sector is a parameter that
can help determine a country’s economic, social, and political development [1]. According
to the authors of [2,3], energy consumption is increasing by 2% per year, and energy
production remains heavily reliant on fossil fuels.

To decrease fossil dependency, greenhouse gas emissions, and carbon emissions,
measures and policies are needed to mitigate these problems including energy management
through renewable and sustainable energy systems [1,2,4–7].

Between 2021 and 2030, carbon emissions from the energy sector are projected to
decrease by a third, with the power sector contributing to over half of this reduction
according to the International Energy Agency (IEA) [8]. By 2050, electricity generation will
grow by around 3.3% per year, with renewable installed capacity increases by four times,
from 290 GW in 2021 to around 1200 GW in 2030, with photovoltaic and wind generation
accounting for around 690 GW and 400 GW, respectively.

In this context, renewable energy is a solution to replace fossil fuel fonts in energy
systems, making energy transition essential. According to Cantarero [9], energy transi-
tion involves energy efficiency, accessibility, affordability, and energy independence. In
developed nations, shifting from fossil fuels to renewable energy sources is essential for
economic growth, social equity, and environmental well-being.
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Therefore, there are many applications for renewable energy in the context of energy
transition, such as microgrids or hybrid systems. According to Rodríguez et al. [10], a
microgrid is a distributed energy system that combines loads, power generators, and
storage technologies along with control components to connect to the main network, with
the benefits of reducing losses and costs and helping to mitigate reliability issues. In turn,
a hybrid energy system (HES) has as its main objective to meet the electricity demand of
consumers by generating electricity from two or more energy sources to ensure a more
stable and efficient supply [11].

However, renewable energies still have limitations due to the intermittency and
unpredictability of the resources or even problems related to the electrical grid, such as
load balancing or the integration of renewable sources [12]. In this way, forecasting models
emerge as a solution to overcome these problems and have become increasingly important
as renewable energy sources grow.

Nowadays, accurate forecasts can help grid operators better manage the integration of
renewable energy into the grid, minimising carbon emissions, decreasing operation costs,
minimising the difference between electricity demand and supply, and reducing the use of
electricity reserves through improved scheduling of production [13].

In recent years, there have been significant advances in renewable energy forecasting
such as improved weather forecasting, as renewable energy is very dependent on weather
conditions; machine learning and artificial intelligence algorithms have been making
more accurate renewable energy forecasts, because these algorithms are able to learn from
historical data, taking into account factors such as weather conditions, time of day, or energy
demand; the integration of data sources, which can improve the forecast accuracy and the
advances in data analysis, have made it easier to process and analyse large volumes of data;
the growing use of distributed energy resources has made renewable energy forecasting
more challenging, but advances in forecasting technology have made it possible to better
predict energy production, improving the overall accuracy of renewable energy forecasts;
cloud computing has made it easier to process and analyse large volumes of data and can
be used to save and analyse information from different sources, improving the accuracy
and timeliness of forecasts.

1.1. Classification of Forecasting Methods

There are two major types of machine learning algorithms that allow for predictive
models to learn and analyse data: supervised and unsupervised. In supervised learning [14],
algorithms learn from labelled data and provide corresponding values to the machine.
Once the algorithm comprehends the data, it labels new data, resulting in predictions. In
turn, in unsupervised methods, the entire dataset is unidentified, and the learning machine
can identify patterns by classifying the data by itself.

In the current literature, there are also four main types of forecasting models that take
into account various factors such as forecasting errors, the technology applied, and/or
the conditions under study, which may affect the performance of the models, leading to
economic problems or problems related to the proper functioning of the energy system, for
example.

According to [15–17], physical models consider data such as temperature, solar radia-
tion, or wind speed based on numerical weather prediction (NWP). However, they cannot
deal with short-term forecasts and require high computational costs. On the other hand,
statistical models are more appropriate for short-term forecasts. Statistical models rely on
past data to forecast and use the gaps between the observed and predicted values to adjust
the model parameters. However, they are not capable of making forecasts with data that
have high noise, irregular and non-linear fluctuations, and patterns [15–17]. To overcome
these problems, artificial intelligence models have been widely used given their capacity
to predict non-linear data. However, the main disadvantages of these types of methods
are the ease in which the method starts right away at an optimal solution, over-fitting,
and low convergence. Finally, as individual models do not take into consideration the
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pre-processment of data, these methods do not always achieve high accuracy in model
performance. Thus, combined or hybrid models use the main advantages of individual
approaches to achieve higher forecast accuracy. Their efficiency and performance strongly
depend on the historical dataset, so data pre-processing is required.

Table 1 shows distinct types of methods considered in the literature, as well as their
main characteristics, advantages and disadvantages, and the forecast horizon to which
they are applied. The advantages and disadvantages are also categorised according to
calculation efficiency (E) and model structure (S).

Table 1. Types of forecast methods.

Characteristics Advantages Disadvantages
Type: Physical, Forecast horizon: Long-term
Works: [14–29]

• Based on meteorologi-
cal parameters;

• Historical relation be-
tween the input data
and physical informa-
tion is kept in the fu-
ture;

• NWP combines phys-
ical information and
equations from phys-
ical models.

• Simple method; (S)
• No need to be trained;

(S)
• High accuracy; (E)
• Always perform well

in long-term forecast-
ing. (E)

• Difficult application
(high number of me-
teorological parame-
ters); (S)

• High computational
cost; (E)

• Need additional infor-
mation; (S)

• Require considerable
amounts of observ-
able data in a limited
scale of observation;
(S)

• NWP model is not up-
dated; (S)

• Deficient perfor-
mance in short-term
forecasts. (E)

Type: Statistical, Forecast horizon: Short-term
Works: [14–29]

• Uses historical mea-
sured data and does
not consider physical
parameters;

• Based on existing sta-
tistical equations;

• Establishes the map-
ping between input
vectors and their cor-
responding outputs.

• They are simpler and
more economical; (S)

• Minimise training er-
ror; (E)

• Faster calculation
speed. (E)

• Forecast result af-
fected by the quality
of historical data; (E)

• Linear structure is not
applicable to depict
the random and non-
linear characteristics
of time series; (S)

• Rely heavily on exten-
sive historical data; (S)

• Need data pre-
processing; (S)

• Cannot solve spatial
and linear problems.
(S)

Type: Machine learning, Forecast horizon: Short-term
Works: [15–17,20,22,25,27,28]
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Table 1. Cont.

Characteristics Advantages Disadvantages

• Can mitigate the
effects of randomness
and non-stationarity
in temporal and
weather data;

• Capable of learning
a valuable representa-
tion of features from
data to achieve their
objectives;

• Trained using histori-
cal data and can non-
linearly map the given
random input to the
target without assum-
ing any fixed relation-
ship.

• Effective at capturing
the non-linear charac-
teristics of time series
data; (S)

• Capable of achieving
higher prediction ac-
curacy; (E)

• Excellent self-learning
and self-organizing ca-
pabilities. (S)

• Due to inherent prop-
erties, they can easily
fall into a locally opti-
mal solution; (S)

• Over-fitting; (E)
• Low convergence

rates; (E)
• Require larger compu-

tational resources and
time. (E)

Type: Hybrid, Forecast horizon: Short-term
Works: [16,17,19,22,25,26,28]

• Considered advanced
models;

• Use the advantages
and strengths of indi-
vidual methods;

• Learna valuable rep-
resentation of features
from data.

• Higher levels of accu-
racy. (E)

• The efficiency and per-
formance is depen-
dent on the historical
data quality; (E)

• Need data pre-
processment. (S)

In several literature works, three additional types of forecasting methods are dis-
cussed: persistence, probabilistic, and spatial correlation. According to Ahmed et al. [29],
persistence methods are very commonly used for very short- and short-term forecasting
horizons. This technique is based on the concept that today is expected to be similar to
tomorrow, assuming that conditions of the one day ahead will be similar to those of the
previous day. Persistence methods have lower computational and time costs, as well as
acceptable accuracy. On the other hand, spatial relation methods describe the relationship
between different observed locations and the correlation among the locations for a specific
region [15]. These methods use the inherent relationship between the properties of me-
teorological variables and their geographic location, as mentioned in [30]. However, the
application of these models is challenging due to measurement errors and time lags, and
while they can achieve higher accuracy under certain conditions, they have substantial
information requirements [15,20]. Also, in [30], probabilistic models are also presented for
wind speed prediction, where it is represented as a probabilistic density forecast (PDF),
with parameters determined using different approaches.

There are important concepts to be addressed to better analyse and compare different
forecasting methods, as well as the methods themselves, as discussed in the subsections
below.
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1.1.1. Artificial Neural Networks

Machine learning (ML) has widespread applications across various domains, offering a
distinct advantage in tackling complex problems that are difficult to articulate using explicit
models [31]. ML methods analyse the relationships between outputs and inputs, which
allows the application of these methods in several problems such as classification problems,
pattern recognition, or forecast problems. According to [32,33], the main objective of a
ML forecast is reaching higher precision, and with the increasing amount of data, ML
methods can highlight the explanatory and prediction capabilities of regressions. Among
ML techniques, artificial neural network (ANN) models are frequently used for forecasting.

According to Gonzalez and Botto [34], ANN consists of a computational system that
takes inspiration from the animal brain, with the primary purpose of recognising patterns
in a certain set of data. It comprises multiple layers of artificial neurons, with each generally
linked to all the neurons in adjacent layers. The strength of the connections is characterised
with a specific weight or parameter. In fact, this concept provides the fundamental idea
of long-term memory in neural networks. The modulation of an ANN depends on the
number of layers of neurons, as well as the quantity and distribution of neurons in them.
The results in [34] show that the method has a relative error lower than 3% for the long-term
forecast for electricity demand and final energy in Portugal, making it twice as effective as
the linear regression method.

ANNs are advantageous in their capacity to modulate complex non-linear relation-
ships between the data. However, they are prone to over-fitting and easily falling into the
minimum optimal location, as mentioned in [19].

There are four main steps when using ANNs for forecasting. The first is data prepa-
ration, where the historical data are collected and pre-processed, and then the data are
normalised to improve the training process. Finally, they are split into training, validation,
and test sets. The second step is the choice of model design considering the number of
layers and neurons that characterise the network, as well as the activation function. The
third step consists of training, evaluation, and testing the model’s performance. Finally, the
trained ANN is used to forecast future values.

Over the years, several works have been developed for renewable energy production
forecasting using ANNs. Some are described below.

Brodny et al. [1] developed a study for renewable energy production in Poland. For
this purpose, a modern forecasting model involving ANNs was considered to perform
production mapping. Considering the analysis of renewable energy production (in total
and individually), the total amount of renewable production, up to 2025, was predicted.
Overall, it was observed that the mapping of the total renewable and electricity production
was quite accurate.

Albogamy et al. [35] considered consumers and electricity producers in a microgrid.
An ANN forecasting combined with enhanced differential evolution (ANN-mEDE) was
performed to forecast electricity generation for effective management of renewable energy.
In the prediction process, an ANN utilises the training datasets to predict solar radiance
and wind speed for a day. The results are evaluated against the actual values using the
MAPE metric and subsequently refined to further minimise errors.

In [36], a photovoltaic (PV) prediction model utilising dendritic neuron network
(NBDM) was introduced to enhance computational efficiency and forecast precision. This
model was subsequently integrated with a wavelet transform (WT) to more effectively
capture features of varying frequencies from the input data.

Hassan et al. [37] introduced an innovative method that uses a genetically optimised
non-linear auto-regressive recurrent neural network (NARX) system for ultra-short-term PV
production prediction. Their method achieved significant improvements, with performance
gains of up to 58.41%.

In [38], PV short-term forecasting was used for real-time balance operation of the
electricity market, benefiting both power marketers and consumers. Since PV intermit-
tence leads to inconsistencies in forecasting, a new seasonal auto-regressive integrated
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moving average-random vector functional link neural network assisted maximum overlap
discrete wavelet transform (SARIMA-RVFL-MODWT) hybrid time-adaptive model was
proposed [38].

Similarly, accurate wind speed forecasting plays a crucial role in optimising wind
energy utilisation [18]. While numerous studies have concentrated on creating robust wind
speed prediction models that can handle the inherent instability, irregularity, and noise
in wind speed data, some of these works overlook the significance of properly modelling
the samples, potentially leading to subpar forecasting performance. To perform the final
forecasts, a wavelet neural network (WNN) model was considered, established by selecting
a sample with distinctive similarity traits, allowing the generation of short-term wind speed
predictions.

Zhang et al. [19] proposed a combined forecasting model aiming to improve wind
speed accuracy for short-term horizons. Through a deep belief network (DBN), the fluctua-
tion component of the original wind power data series was predicted. In [39], an accurate
model for wind speed and power forecasts was proposed. Considering data aggregation
segments, ANN and WNN are fed to forecast different segments, improving the accuracy
of the predicted data by reducing the error.

In conclusion, ANNs offer significant benefits for short-term solar radiance predic-
tion, including high speed, accuracy, and overall performance. Due to their inherent
non-linearity, ANNs can effectively handle various temporal structures and network lay-
ers, making them adaptable to datasets of varying sizes related to climate and energy
consumption for forecasting analysis [31]. Moreover, ANNs are widely recognised as the
most effective and popular approach for predicting PV power production, leveraging the
non-linear characteristics of meteorological data [40].

1.1.2. Support Vector Machine

According to Li et al. [5], support vector machine (SVM) is a supervised learning algo-
rithm that is based on statistics combined with the theory of structural risk minimisation. It
is useful for predictive pattern recognition and regression to solve different sample sizes
and non-linear problems. Because of the influence of external factors, the PV power output
exhibits significant randomness. In the present study, an SVM optimised by the hybrid im-
proved multi-verse optimiser algorithm (HIMVO) was employed to predict PV production.
The results showed improved accuracy and stability in the predictions, highlighting the
effectiveness of this approach.

The basic SVM defines a hyperplane, i.e., a boundary that separates two classes in
the data space. This hyperplane position and orientation are determined by the support
vectors, corresponding to the data points more closely [41,42]. For classification tasks,
SVMs find the best solution that separates two classes with the same margin on both sides
of the hyperplane. To achieve this, first, it is necessary to prepare the dataset and divide it
into train, validation, and test datasets. Then, the hyperplane equations are determined,
and the new data classification is based on the hyperplane side where the new data fall.

In advanced SVM, some kernel functions are used to map the data points into new
spaces that are then divided by a hyperplane.

In turn, in [40], SVM was extended to regression problems through support vector
regression (SVR), which is a non-linear algorithm where the input data are mapped into a
higher-dimensional feature space.

In [43], the use of storage systems increased the reliability of renewable system inte-
gration. Thus, an SVR model was proposed for the efficient prediction of energy storage.
The proposed method uses kernels to establish a non-linear relation between the input and
output, and the results show that energy operators can rely on the proposed model for
monitoring storage systems as the method is able to predict their efficiency.

In [19], the least squares support vector machine (LSSVM) model was used to forecast
the tendency on the original wind series. This method uses equality instead of inequality
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constraints, transforming SVM into a solving system of linear equations, reducing its
complexity.

Eseye et al. [23] combined WT, SVM, and particle swarm optimisation (PSO) for daily
power production prediction in a microgrid with PV integration. The results show that the
proposed approach performs considerably effectively.

1.1.3. Deep Learning Methods

Deep learning (DL) is one of the most common and interesting field of ML [44], and
DL techniques automatically learn valuable features from data rather than relying on
traditional feature selection methods.

Deep learning models are highly effective for complex tasks like image recognition
and time series forecasting. This is because they can automatically learn features from
data, uncovering increasingly complex patterns layer by layer. A typical DL network has
an input layer that receives the data, followed by some hidden layers that progressively
transform the data, such as fully connected, convolutional, pooling, and recurrent layers,
among others. Finally, in the output layer, the model’s predictions are made.

In [44], two long short-term memory (LSTM) model are employed for temperature
and power forecasting, respectively. The predictions are then smoothed and combined
using a fully connected layer to improve the accuracy of the forecasting process.

In [2], DL models are used with the empirical mode decomposition (EMD) for energy
forecasting to overcome the weakness of statistical models. Gated recurrent unit (GRU) and
LSTM networks consider the characteristic time series of the data. The findings indicate
that the GRU prediction model outperforms other deep learning (DL) and statistical models
in terms of the mean absolute scaled error (MASE). Additionally, it effectively captures and
predicts rapidly fluctuating time-series data.

The deep learning neural network (DLNN) is an improvement over neural networks
and consists of adding hidden layers, for instance, multiple processing layers, to learn data
representations. Through a comparison of LSTM-based forecasts and two classical time
series forecasting methods, it was found that the long-term results of LSTM are better, and
it was possible to demonstrate that a simple DLNN architecture can provide very good
forecasting [45].

Xia et al. [46] emphasise the importance of accurate forecasts for renewable energy
production and electricity consumption in smart grids. However, due to the intermittent
nature of resources and the diverse behaviour of consumers, forecasting remains a chal-
lenging task. To address this, the authors propose an innovative hybrid improved stacked
method for predicting wind energy production and electricity consumption. Notably,
the use of GRU reduces model complexity by employing fewer parameters, minimising
computational costs, and requiring less training data [46].

As per Khan et al. [3], the recent literature focuses on improving forecast accuracy
without considering the temporal complexity of their methodologies. They develop a
lightweight echo state network (ESN)-convolutional neural network (CNN) model for
accurate solar power forecasting. The obtained results show a significant reduction in the
error rate with lower complexity computation. In turn, in [47], an LSTM-CNN model is
proposed and applied to PV prediction.

Jahangir et al. [48] introduce an accurate prediction model based on deep learning
(DL) with micro-clustering (MC). Their results demonstrate that the proposed MCB-LSTM
is a viable tool for various time series forecasting tasks, particularly when dealing with
data exhibiting high stochastic behaviour and abrupt variations, such as wind speed or
load requirements.

In [49], an analysis comparing CNN-L, MICNN-L, and MICNN-L focuses on the
trade-off between model complexity and performance for solar irradiance forecasting as
time series-based, image-based, and hybrid models. The results indicate that MICNN-L
outperforms other models, particularly under cloudy sky conditions.
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Finally, in Sharma et al. [50], a hybrid MODWT-LSTM is presented that can capture the
data in a manner suitable to predict the values with higher accuracy for longer intervals.

1.1.4. Statistical Methods

Statistical methods can be defined as some of the main types of forecasting methods.
At present, there is a vast number of state-of-the-art approaches concerning this type of
methods.

Forecasting using statistical methods involves several key steps, namely data col-
lection and preprocessing, selection of the appropriate statistical model based on data
characteristics, parameter estimation, and model validation. Once the model is validated, it
is used to forecast future values.

The regression method shows the relationship between dependent and independent
variables. Considering the auto-regressive integrated moving average (ARIMA), the rela-
tion between the input and output data as well as the pre-processing of the input data were
discussed [40]. The results obtained show that the accuracy is higher when the inputs have
a strong relation with the output, and the result can be improved by the pre-processing of
the input data.

Aasim et al. [51] mention that statistical methods are used for short-term wind speed
forecasting. The novelty of this work is the use of the forecast error due to different
decomposed time series in the resulting error forecast. WT is used to obtain the low-
and high-frequency characteristics of different time series. The time series are modelled
as an ARIMA model. Thus, the repeated WT-ARIMA (RWT-ARIMA) is able to model
the variation of the high-frequency band of the wind speed more accurately than with
WT-ARIMA, resulting in a lower root mean squared error (RMSE) in the wind speed
forecast.

In [2], a seven-day-ahead forecasting model for electricity demand and renewable
energy production is developed. Multiple linear regression (MLR) predicts a dependent
variable considering two or more independent variables by adjusting linear equations,
while SARIMA enhances forecasting accuracy by accounting for seasonal variation trends
through the differences.

For Wang et al. [52], the MLR generates a linear function between the variables and
the response. Although effectively representing the linear relationship, it cannot represent
any non-linearity relationship. Therefore, a hybrid adaptive learning model (ALHM)
is proposed for accurate short- to long-term solar intensity accuracy. A time-varying
multiple linear model (TMLM) combined with ALHM is developed to capture the linear
and dynamic features of data.

In turn, Alsharif et al. [53] consider a time series implemented through an SARIMA
method for predicting daily and monthly solar radiation, considering the accuracy, suitabil-
ity, quality, and timeliness of the collected data. The results demonstrate that the proposed
model accurately predicts daily and monthly solar energy. This accuracy is attributed to
its convenience, low data input requirements, and efficient computational process. Agoua
et al. [54] refer to the importance of forecasting PV power due to the significant variability
that characterises it. In this regard, a statistical model based on auto-regressive (AR) is
proposed to deal with stationarity data and for short-term PV power forecasting. The
results show that the computational requirements are low and that the model reduces, by
about 28%, the average performance, and the normalised RMSE (nRMSE) can reach an
improvement of 20%.

Pearre and Swan [55] analyse the effect of the predicted wind speed on the power of
a wind energy converter (WEC). Wind speed and direction are corrected by considering
two new forecasting techniques. The first technique consists of a statistical correction to
improve wind speed prediction. Through this correction technique, the errors of wind
speed prediction are reduced by about 20–25% in a 24 h range. The second consists of
interpolating correction topographies and instantaneous forecast errors, and a similar error
reduction is achieved at distances of 10 km from known locations.
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1.1.5. Grey Model

Generally, research methods predominantly employ statistical regression or intelligent
models to investigate factors related to energy consumption [56]. However, considering the
multitude of factors involved, collecting variable data can be time-consuming, potentially
impacting the system’s credibility. To address this, a non-homogeneous grey model (GM)
was introduced for predicting renewable energy consumption in Europe. This model
emphasises the weight relationship between the most recent value and historical data,
following the principle of adjacent accumulation.

According to [56–59], the GM emphasises the study of modelling uncertain systems
with limited samples and sparse information, thereby mitigating error accumulation result-
ing from excessive data perturbation.

In fact, GM builds mathematical models to generate predictions based on incomplete
information, and compared with other methods, requires less historical data it has a
more straightforward modelling process and is more accurate [59]. Thus, the forecast
performance of an GM largely depends on how effectively the information can be measured
from data [57].

In [60], a fractional-order full-order time power seasonal discrete GM deals with non-
linear and periodically long-term renewable production data sequences. The empirical
results demonstrate that the model generally outperforms the GM as it can capture the
non-linear and seasonal characteristics.

Qian and Sui [61] propose a new structural adaptive discrete grey model (SADGM)
which aims to solve the problem of the structural prediction error of the traditional GM
method. Thus, the proposed model is a forecasting model with time-varying parameters.
It enhances adaptability for forecasting features with non-linear trends and periodic fluc-
tuations in time series. The results demonstrate that the model benefits from its adaptive
structure, producing reliable forecasts. Ding et al. [59] emphasise the importance of long-
term PV power forecasts for grid balancing in systems with high PV resource integration.
While ANNs are commonly used for short-term PV power forecasting, they tend to suffer
from over-fitting and generate large forecast deviations over long time intervals. To ad-
dress this, a new discrete grey model (DGM) with time-varying parameters is developed.
The DGM effectively handles power data time series with non-linearity, periodicity, and
volatility. The results demonstrate that the DGM outperforms other reference models due
to its flexible structure, which adapts well to the non-linearity, volatility, and periodicity of
the datasets.

1.1.6. Ensemble Methods

According to Bhardwaj et al. [62], ensemble methods employ a divide-and-conquer
approach to enhance performance. The main principle is that a group of weak learners can
reduce variance and improve model performance. Ahmad et al. [31] categorise ensemble
models into cooperative and competitive models. Cooperative models distribute prediction
assignments across selected predictors and appropriate sub-tasks. In contrast, competitive
models train multiple features separately, using various types of datasets or similar datasets
with numerous variables.

In Wang et al. [21], a hybrid wind power forecasting model is constructed with
Bayesian averaging and ensemble learning model. According to the results, the method
increases the reliability of the predictions and has a low overall error.

To effectively improve the accuracy and stability of PV power forecasting, an ensemble
forecasting model based on singular spectrum analysis (SSA) and MOGWO was devel-
oped [63]. The results indicate that the proposed model outperforms the comparative
hybrid models in terms of accuracy and stability. Additionally, the ensemble strategy
successfully enhances short-term PV power prediction performance.

Elephant herding optimisation (EHO) based on LSSVM is used to ensemble the sample
results to obtain the final prediction value [64]. The conclusion reached is that the method
is considerably effective and highly reliable for predicting wind power data.
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Random forest (RF) is a non-parametric and randomised ensemble ML method used
for regression and classification tasks, composed of less robust algorithms or weak learn-
ers [65]. For predicting renewable production density, a quantile regression forest (QRF)
model is considered as a valid non-parametric model capable of achieving adequate perfor-
mance in terms of reliability and overall predictive ability. The results indicate that the RF
algorithm exhibits superior overall performance across all classes, achieving 98% accuracy
in data classification.

Ahmad et al. [66] note that ensemble-based techniques outperform individual learners
by overcoming their limitations. RF and extra trees (ET) are particularly well-suited for
output prediction of stochastic PV models, as they reduce variance and bias by combining
various ML techniques, thereby enhancing stability.

Liu et al. [24] propose a new ensemble model, combining four new hybrid models
as baseline predictors MOGWO, wavelet packet decomposition (WPD), AdaBoost.MRT,
and outlier-robust extreme learning machine (ORELM) to obtain high prediction accuracy
of multi-stage wind speed. The results demonstrate that the proposed ensemble model
performs effectively in terms of convergence and prediction accuracy.

1.1.7. Probabilistic Methods

Probabilistic forecasting provides intervals or probability distributions as outcomes,
offering power system operators more comprehensive information and tools for managing
the power system [67,68]. In [67], various methods were applied to probabilistic forecasting
in PV energy production. This study considered three different probabilistic methods:
the first was based on Gaussian distribution (GD), which relied on point forecasting and
assumed a specific distribution for the forecast error; the second was a quantile regression
(QR) model, commonly used for PV forecasting; and the third method, quantile regression
averaging (QRA), combined several point forecasts to generate a probabilistic distribution
for the forecast error. The forecasts were compared using various evaluation metrics for
probabilistic forecasts to determine the best-performing method in terms of accuracy and
reliability, with results indicating that the GD assumption performed best.

For example, Xie et al. [69] noted that probabilistic forecasting methods can determine
the upper and lower boundaries of wind energy and/or wind speed within a probability
density or interval, providing additional information about wind fluctuations.

For Pretto et al. [27], grid operators face the challenge of maintaining the stability
and reliability of the power grid due to the significant variability of the PV resource. This
paper proposed a probabilistic ensemble method (PEM) to enhance the quality of ensemble
predictions on cloudy days, where the sample distribution is often non-normal and requires
more precise statistical analysis. The PEM leverages the probability distribution of the trials
to provide a more reliable indicator for planning solar energy production for the next day.
The results obtained show that the proposed method outperformed the reference methods
in almost all metrics.

1.2. Data Pre-Processing

One factor that affects forecasting models is the data. In fact, as seen in [14,70], the
historical and real-time data required during the development of a forecast model must be
as complete and accurate as possible. However, in forecasting processes, numerous inputs
often contain a high number of missing values and noise, among other issues. Consequently,
the quality of the input data directly impacts the performance and accuracy of the forecast
model and can cause defects in the acquisition, transmission, and processing of data.

Thus, data pre-processing is an important step in forecasting methods to guarantee
the quality of data and, therefore, improve forecasting performance. Data processing
techniques include data synchronization, identifying and processing abnormal data, or
replacing missing data. There are several methods for data acquisition pre-processing:
normalization [5,10,44,71], WT [23,29,38], and self-organizing mapping (SOM) [70].
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1.3. Forecast Horizon

One of the key concepts in forecasting methods is the forecast horizon. In [40], the
forecast horizon is defined as the time interval in the future for which the variable under
study is to be forecasted. The purpose and accuracy of the forecasting model depend
significantly on the forecast horizon. Generally, forecasting models used in most research
can be defined as shown in Figure 1. Some literature also considers ultra-short-term
forecasting, which, in this study, refers to the time interval between one minute and one
hour. The forecast horizon impacts both the objective and the accuracy of a forecast, as
accuracy varies with changing forecast horizons, even when using the same model and
identical parameters.

According to [29,38], the forecast accuracy depends of the time interval, and the error
values and variance increase when the forecast horizon increases. An ultra-short-term
forecast, on the other hand, suffers more due to the intermittence of climate variables.

Forecast Horizons

Short-term

Between one
hour -

seven days

Medium-term

Between one
week and
one month

Long-term

More than one
month (normally
up to one year)

Figure 1. Classification of forecast horizon.

1.4. Optimisation Algorithms

Optimisation algorithms are crucial in accurately forecasting renewable energy gener-
ation, enabling efficient integration of renewable energy sources into power grids. Several
optimisation models and algorithms improve the accuracy and reliability of renewable
energy predictions throughout the work mentioned in state-of-the-art approaches. These
models aim to optimise specific goals such as minimising forecast errors, maximising the
utilisation of renewable energy resources, or optimising energy generation and consump-
tion scheduling.

Liu et al. [56] explored the multi-objective grasshopper optimisation algorithm (MOGOA)
as an effective parameter optimisation technique capable of determining the optimal
coefficients for each sub-model. MOGOA utilises an archive to estimate approximate values
of the Pareto optimal front, enhancing prediction accuracy and stability. Additionally, it
helps address complex optimisation problems.

Jiang et al. [15] employed a modified multi-objective dragonfly algorithm (MMODA)
to determine the weight coefficients of combined models, aiming to enhance the prediction
accuracy and stability of the forecasting system. In [5], the HIMVO algorithm was used to
optimise the SVM model parameters. The results demonstrated that the HIMVO algorithm
possesses superior optimisation capabilities and can effectively avoid local optima.

The genetic algorithm (GA) is a popular algorithm for search and optimisation based
on the evolution and adaptation of the fittest beings. In particular, it is inspired by the
selection, crossover, and mutation operations. In prediction methods, GA is used to
optimise parameters and other features.

In [37], GA was employed for gradient-free training of NARX models. The coupling of
NARX with GA enhances optimisation of weights and biases, particularly beneficial when
using a reduced number of indicators. In turn, in [25], GA optimised both the window size
and the number of neurons within the layers of the LSTM model.

In the adaptive time-varying discrete grey model, the two coefficients not only impact
estimation accuracy, but also decisively influence the temporal variation trend of estimated
values. To optimise these coefficients which minimise the mean absolute percentage error
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(MAPE) between predicted and actual values, the GA algorithm, known for its exceptional
performance, is employed [59].

1.5. Performance Evaluation Metrics

Evaluation metrics are employed to gauge the precision and dependability of forecast
models and to contrast various forecasting methods. In the context of renewable energy
production, evaluation metrics are used to measure the accuracy of forecasts for energy
production from renewable sources. The selection of an evaluation metric hinges on the
particular forecasting problem and the nature of the data employed. Different metrics may
be suitable for varying types of forecasts, and utilising a combination of metrics can provide
a more thorough evaluation of forecast accuracy.

In [17,20], it is noted that while there exist numerous performance metrics to evaluate
the forecasting effectiveness of various models, there is a lack of a universal standard for
assessing forecasting model errors. Therefore, the selection of performance evaluation
criteria should aim to highlight the disparities between actual observations and estimated
values [59]. Generally, the lower the criteria values, the closer the predicted values are to
the actual values. The quality of the input data is another crucial factor influencing the
performance of a forecasting model [14].

Thus, some of the most commonly used metrics for assessing the performance of
forecasting models are mean absolute error (MAE), which calculates the mean absolute
difference between predicted and observed values and is a commonly used metric to
verify the accuracy of time series in forecasting models; RMSE, which takes into account
the squared difference between predicted and actual values, makes larger error penalties
compared to MAE, and is used to compare the performance of different forecasting models;
coefficient of determination, R2, which measures the proportion of the variation in actual
values that is explained by the predicted values; MAPE, which calculates the percentage
difference between predicted and actual values and is commonly used to assess the accuracy
of energy demand forecasts.

There is a vast number of state-of-the-art works where these and other metrics are
highlighted, which allow different forecasting models to be assessed and compared. For
example, in [66], the RMSE, MAE, and R2 were determined to evaluate the performance
of the developed models in predicting PV power. De Guia et al. [72] also introduced the
explained variance score (EVS), which quantifies the dispersion within specific datasets, the
maximum residual error (MRE) that captures discrepancies between predicted and actual
values, and the mean squared error (MSE) that calculates the average squared difference
between predicted and actual values. According to He et al. [18], the MSE penalizes larger
errors more severely than multiple smaller errors.

1.6. Forecast Variables

In general, forecast variables refer to the specific parameters considered to generate
forecasts about future events or outcomes. For renewable energy production, forecast
variables can include parameters that can have a significant impact on the renewable
energy produced, like weather variables (solar radiance or wind speed, for example), as
well as factors like energy demand and storage capacity.

Accuracy and reliability are two of the most important criteria to take into considera-
tion when analysing a forecast model. They are critical to effective energy management
and the integration of renewable sources in power systems.

According to [73], the performance of wind power forecasts is impacted by historical
wind power values and NWP variables. The paper also notes that while additional input
features theoretically provide more information, an excess of information can actually
diminish forecast accuracy. Therefore, it is crucial to carefully select the appropriate input
variables.
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1.7. Objectives of the Work

This paper aims to develop a comparative analysis of forecasting methods for re-
newable energy production, particularly PV and wind power. To this end, a review of
state-of-the-art research was developed to synthesise and frame different forecast mod-
els, taking into consideration climatic variables, optimisation algorithms, pre-processing
techniques, and different forecast horizons. Compared with other works, the main contribu-
tions of this research are (1) a systematic review of the applications of forecasting methods
in a renewable context; (2) due to the variety of climatic variables and the intermittent
behaviour that characterises them, an analysis of different techniques that allow minimising
these effects on the forecast, permitting the increase in the efficiency and accuracy of the
forecasts; (3) analysis of the different methods proposed over the last years in order to
determine the best forecasting methods for renewable energy in a short- to medium-term
forecast.

The rest of the paper is organised as follows: Section 2 shows the research methodology
considered for the selection of different manuscripts that are relevant to this paper; Section 3
presents one of the main forecasting support tools developed; and Section 4 contains the
results and their discussion, considering the relevant points of previous research in order
to analyse the efficiency and relevance of the predictions. Finally, in Section 5, the main
conclusions and future considerations are drawn.

2. Methodology

The literature on forecasting methods and renewable energy is extremely extensive [74].
Therefore, the review method used in this research consists of a structured selection using
the academic search engine Google Scholar, which already indexes the main journals in
the field. The selected manuscripts are written in English and include publications in
well-known journals, papers presented at conferences, and theses. The papers are related
to “forecasting” or “renewable energy” topics and published from 2018. Figure 2 illustrates
the manuscript selection criteria.

Manuscripts selection
criteria

Papers

Related to
“forecasting” or

“renewable energy”

Database

Google
Scholar

Publication
date

Since
2018

Language

English

Type of works

– journals papers,
– conferences papers,

– thesis

Figure 2. Methodology applied in the selection of papers.

Figure 3 shows the percentage distribution of the manuscripts considered in this paper.
The total number of considered manuscripts is 101, classified into five categories: journal
paper, conference paper, thesis, review, and research paper.

As can be seen, articles published in well-known newspapers have the highest percent-
age of articles collected (73%), followed by reviews with 13%, and conference and research
papers, with 10% and 3%, respectively. Only a small percentage (1%) is related to thesis
developed.

Figure 4 shows the number of selected manuscripts by publication year from 2018 to
2023, reflecting the interest in the topic. The number of publications is quite similar for all
years except 2023. This is because the date of this work is mid-2023.
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Figure 3. Type of work distribution.

2018 2019 2020 2021 2022 2023
0

10

20

30

17

22
19

25

11

7

N
um

be
r

of
pu

bl
ic

at
io

ns

Figure 4. Selected manuscripts, by year, from 2018 to 2023.

3. Forecasting Support Tools

Forecasting softwares are specialised tools designed to help businesses and organisa-
tions predict future trends, patterns, and outcomes based on historical data and statistical
analysis. These tools use advanced algorithms and statistical models to generate accurate
forecasts that can help businesses make informed decisions, optimise resource allocation,
manage inventory, and improve overall operational efficiency.

Waikato Environment for Knowledge Analysis (Weka) [75] is a popular and widely
used open-source data mining and machine learning software tool. It offers an extensive
array of algorithms and tools for data pre-processing, classification, regression, clustering,
association rules, feature selection, and visualisation. It can be utilised for renewable energy
production forecasting by applying its machine learning and data mining capabilities to
relevant datasets. It allows for the collection of historical data related to renewable energy
production, the cleaning of the data, the handling of missing values, and normalisation or
scaling of the variables as required. It can also identify the most relevant features that affect
renewable energy production, select appropriate forecasting models, split the historical
data into training and validation sets, and evaluate the model performance.

In short, by utilising forecast software, businesses can benefit from more accurate
predictions, improved planning, reduced costs, and better alignment between demand and
supply. These tools offer organisations a competitive edge by enabling them to anticipate
market trends, adapt to changing customer demands, optimise inventory levels, and make
data-driven decisions for sustainable growth.
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4. Results and Discussion

To analyse and compare the works developed, this section presents the main points
and the main characteristics considered, such as forecasting variables. The forecasting
horizon and the evaluation metrics, among others, are also analysed in order to evaluate
the performance of the methods and compare their efficiency and accuracy. Finally, the
results obtained are discussed in order to find the best forecasting methods for renewable
energy production.

Table 2 shows the main highlights for the considered manuscripts and their key
characteristics of the forecast. The first column, “Ref.,” indicates the manuscript. The
next column, “Method,” enumerates the used methods. Column 3, “Opt.,” indicates the
associated optimisation techniques used in the method to find its best parameters, and
Columns 4 and 5 show the forecast variable and horizon. Column “Pre-processing” lists
the input data pre-processing technique, and the last column presents the best metric. The
main objective proposed is comparison of the different forecasting methods and analysis of
these characteristics taking into consideration the lowest metric and their efficiency. The
main contributions of each manuscript are also highlighted in the table.

Table 2. Description of forecast methods.

Ref. Method Opt. Forecast Variable Forecast Horizon Pre-
Processing Lowest Metric

[1] ANN − Renewable energy and
biofuel production Long term − MAE−0.47

Research novelties/Contributions: ANN models the complex relationships between input and output data; analyses
the structure and amount of renewable energy produced.

[2] DNN, LSTM,
GRU − Wind and PV power 7 days ahead EMD MASE-0.19

Research novelties/Contributions: Development of a forecasting model based on deep learning in order to surpass
the performance limitations of conventional forecasting models and enhance model effectiveness.

[3] ESN-CNN − Energy production Long term − MBE-1.2%

Research novelties/Contributions: Selects the optimal model for renewable energy prediction with the primary
objective of analysing the performance of various techniques.

[4] LSTM-EFG Clustering Wind power 30 min − MSE-5.5451

Research novelties/Contributions: Improved LSTM network that enhances the effect of forget-gate, optimises
convergence speed, and increases accuracy of wind power forecast in 18.3%.

[5] HIMVO-
SVM HIMVO PV power Short term Normalisation MSE-0.0025

Research novelties/Contributions: The model exhibits superior convergence speed and accuracy, which helps
enhance the quality of PV grid connections and reduce PV output volatility.

[6] Seasonal
ARMA MILP Wind speed and day-

ahead price
Long term, Short
term − profit increase-

12%

Research novelties/Contributions: Integrates CVPP optimisation and uncertainty modelling with multiple scenario
analyses for various renewable plants, considering separation distances for both aggregated plants and individual
operations.

[7] ANN, SVR,
GPR GA Wind and Solar Power,

Electricity Demand
Long term, Short
term Normalisation MSE-

0.00079575

Research novelties/Contributions: Establishes datasets and develops data-driven models using ML techniques,
aiming to calculate uncertainties within the grid and analyse the predictability of actions.

[10] ANN − Radiation 10 min Normalisation RMSE-5.16

Research novelties/Contributions: ANN predicts solar energy with a high standard accuracy for short-term horizons
and increases the capabilities of computers by replicating the human biological information processing system.

[12] Tucker-Clus − PV and Wind power 24 h − MAE-0.0529

Research novelties/Contributions: Tucker tensor extracts a new feature space for the learning task, minimising the
running time, and allows for capturing spatial auto-correlation.

[13] HSA-ANN HSA Solar radiation, Wind
speed Short term Standard scalar MSE-0.04754;

0.30944

Research novelties/Contributions: Development of an HSA-optimised ANN model for reliable and accurate predic-
tion of solar and wind energy, utilising HSA to assign optimised weights to the edges of the ANN. This enables the
proposed forecasting algorithm to achieve high precision, faster convergence speed, and reduced complexity.
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Table 2. Cont.

Ref. Method Opt. Forecast Variable Forecast Horizon Pre-
Processing Lowest Metric

[70]
ARIMA,
ANN, SVR,
RT

− Solar radiation Ultra short term Normalization,
WT, SOM −

Research novelties/Contributions: Review of different types of methods.

[14] − − Solar power − − −

Research novelties/Contributions: Review of different types of methods.

[15]

ARIMA,
BPNN,
GRNN,
DBN, ELM,
ENN, LSTM

MMODA Wind speed Short-term SSA MAE-0.1260

Research novelties/Contributions: The developed combined system combining PF and IP to provide accurate point
and interval forecasting performance.

[16] MWDO-
CEEMD-BP MWDO Wind speed 10, 30 min CEEMD MAE-0.2856

Research novelties/Contributions: CEEMD de-noises and plays an important role in removing noise from raw data.
When the convergence criterion is increased, MWDO improves optimisation speed and optimisation accuracy, and it
has good non-linear forecasting ability.

[17]
BP, ENN,
WNN,
GRNN

GWO Wind speed Short term ICEEMDAN MAE-0.1931

Research novelties/Contributions: Using a decomposition and ensemble strategy, a data preprocessing technique is
applied to remove the adverse effects of high-frequency noise and to extract the primary characteristics of the data,
enhancing the accuracy of short-term wind speed forecasts.

[18] WNN − Wind speed Short-term EEMD MAPE-1.24%

Research novelties/Contributions: EEMD decomposes wind speed series and removes high frequency signals to
obtain a smoother series; KFCM extracts data characteristics with similarities before the training, and the data
clustering module obtains samples with highly similar fluctuation patterns.

[19]
LSSVM-
DBN-SSA-
LSH

LSSVM Wind power Short term SSA nMAE-1.64%

Research novelties/Contributions: SSA-based models choose the suitable method for the trend component and
the fluctuation; the LSSVM evaluates their own performance; the LSH search algorithm optimally selects training
samples modelled by LSSVM.

[20] MOGWO-
ENN MOGWO Wind speed Short-term VMD MAPE-

14.4656%

Research novelties/Contributions: An optimised ANN combines the original time series prediction with the error
sequence prediction non-linearity to obtain higher accuracy; VMD captures and integrates the characteristics of data;
MOGWO optimises the parameters of the ANN to improve the accuracy and stability of the prediction, resulting in
the average reduction in MAPE in 14.4656%.

[65] Conv-
LSTM1D XGBoost PV power 15, 30 min, 1 h EDA MAE-0.0125

Research novelties/Contributions: A ConvLSTM1D model captures both seasonality trends and high variability
during sudden power production changes.

[76] Auto-LSTM − Solar power Day ahead − RMSE-
2.566087

Research novelties/Contributions: Auto-LSTM can optimise the accuracy of time series prediction, and it improves
short-term solar power forecast using more frequent updated of meteorological parameter prediction.

[71] CLSTM − PV power − Normalization MRE-0.38%

Research novelties/Contributions: DL has good results in the prediction of PV power, guaranteeing that the stability
and robustness of the model are high.

[77] DL tech-
niques − PV power − − −

Research novelties/Contributions: Review of deep leaning methods.

[78] Conv-LSTM Bayesian PV power 30 min, day,
month − nRMSE-0.03

Research novelties/Contributions: Conv-LSTM networks have the best performance when predicting region-level
PV generation regarding the time horizons.

[79] − − Wind energy − − −

Research novelties/Contributions: A review regarding the use of big data and AI in wind energy forecasting research,
analysing the data characteristics and analysis techniques.
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Table 2. Cont.

Ref. Method Opt. Forecast Variable Forecast Horizon Pre-
Processing Lowest Metric

[80] 24 ML mod-
els

Analysis
of opti-
misation
methods

PV power Day ahead − RMSE-13.1%

Research novelties/Contributions: By incorporating angles derived from the sun’s position, along with time-shifted
and averaged versions of the global horizontal radiance, the RMSE is reduced by 13.1% compared to NWP outputs
alone.

[81] ARIMA
ACF and
PACF
plots

Solar energy Daily Filling up the
missing data MAPE-17.70%

Research novelties/Contributions: ARIMA forecasts daily solar energy production and transforms the seasonal and
non-stationary time series into stationary.

[82] LSTM-NN − PV power Hourly, daily Min–max nor-
malisation MAE-0.69

Research novelties/Contributions: A synthetic weather forecast is employed to select PV plant locations, integrating
statistical insights from historical solar radiance data with publicly available sky forecast data.

[83] DSE-XGB Grid
search Solar energy 15 min, 1 h, day

ahead
Linear interpo-
lation R2-0.96

Research novelties/Contributions: A deep ensemble stacking model forecasts solar PV energy on different locations
and time steps.

[84] CNN-LSTM Adam Solar radiation 1 day up to 8
months − APB-1.233%

Research novelties/Contributions: A hybrid model with CNN accurately predicts global solar radiation and energy
availability to be regularly monitored when linked to an LSTM.

[21] BMA-EL − Wind power Short term GF and Nor-
malisation

MAPE-
10.0848%

Research novelties/Contributions: SOM clustering and k-fold cross-validation increases the diversity of base learner’s
input samples, and they have more different outputs. BMA combines the forecasting results of different base learners,
resulting in higher precision and stability for wind power prediction.

[44] ALSTM RMSProp PV power 7.5, 15, 30, 60 min Normalisation MAE-0.80

Research novelties/Contributions: The ensemble deep framework with an attention mechanism allows the two
LSTM neural networks to focus on significant input features.

[85] ECMWF-
HRES − Solar radiance Short term Normalisation −

Research novelties/Contributions: This work primarily aims to acquire predictability maps for CONUS, which offer
fresh perspectives on solar forecast verification.

[22] LSTMDE-
HELM DE Wind speed 10 min, 1 h − MAE-0.47054

Research novelties/Contributions: ELM considers the fact that the output depends not only on its input but also on
derivative information, and it prevemts the neuron from becoming struck in the local minima by switching between
two segments.

[23] WT-PSO-
SVM PSO PV-solar power 1 day ahead WT SDE-0.7072

Research novelties/Contributions: Implementation of WT-PSO-SVM for short-term solar power prediction.

[24]

MOGWO
-WPD-
AdaBoost.
MRT-
ORLEM

MOGWO Wind speed − WPD MAE-0.1691

Research novelties/Contributions: The base predictors guarantee the tuning and optimisation of mother wavelets in
the wind speed forecasting performance in order to find the optimal mother wavelet.

[25] GLSTM GA Wind power Short term
16-
dimensional
wind features

MSE-0.00924

Research novelties/Contributions: An LSTM is employed due to its capability of automatically learning features
from sequential data. An GA adjusts the size of the window and neurons in the LSTM layers.

[26]
MCEEMD
-MOSCA
-WNN

MOSCA Wind speed 10, 30 min MCEEMD MAE-0.099039

Research novelties/Contributions: A hybrid WNN based on MOSCA obtains high accuracy and strong stability
simultaneously; the model effectively captures the strengths of each component, making it a robust technique for
enhancing wind speed forecasting with high accuracy and stability.

[27] PEM − PV power day-ahead MCD SS-0.540
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Table 2. Cont.

Ref. Method Opt. Forecast Variable Forecast Horizon Pre-
Processing Lowest Metric

Research novelties/Contributions: A novel ensemble method, PEM, based on probabilistic distributions of trials, is
introduced to enhance forecasting performance specifically on cloudy days.

[28]
CEEMD-
MOGWO-
ELM

MOGWO Wind speed Short term CEEMD AE-0.0064

Research novelties/Contributions: CEEMD decomposes the original wind speed sequence into a series of intrinsic
mode functions, followed by optimisation using ELM enhanced by MOGWO, resulting in excellent forecasting
performance.

[29]
Review of
forecast
methods

GA, PSO PV-solar power − Normalisation
and WT −

Research novelties/Contributions: Ensemble ANNs forecast short-term PV power and online sequential extreme
learning machine superb for adaptive networks, while the Bootstrap technique is optimal for estimating uncertainty.

[30] FN
Whale
Algo-
rithm

Wind speed Short term BE MAE-1.05

Research novelties/Contributions: FN’s foundation lies in generating problem-specific network topologies and
optimal neural networks with diverse structures, leading to optimal models for precise forecasting of wind speed
and power.

[34] RNN

Gradient
descent
algo-
rithm

Electricity and energy
needs Long term Normalisation ER < 3%

Research novelties/Contributions: Uncovering of the untapped potential of modern AI techniques for long-term
forecasting of electricity and final energy needs in Portugal through the development of a dynamic model based on
low-error ANN methods.

[35] ANN-mEDE ACO WT and PV energy Day ahead - nRMSE < 0.09%

Research novelties/Contributions: An ANN-mEDE model forecasts the generation profile of microgrid using weather
information and mathematical models of WT and PV, and ACO is used to efficiently manage energy, the scheduling
of load, and EV charging/discharging needs to be adjusted.

[36] WT-NBDM Mallat al-
gorithm PV power 15 days WT MAPE-9.2%

Research novelties/Contributions: The dendritic neural network is used to directly design the PV power forecasting
model, avoiding the need for empirical adjustments in the size of traditional neural network models. Additionally,
WT assists in PV forecasting design by decomposing input data into high and low frequency components.

[67] GD, QR,
QRA − Solar power 24 h − CRPS-0.2636

Research novelties/Contributions: Review of solar power forecasting literature.

[46] GRU-RNN AdaGrad Renewable energy and
electricity load Long-term Normalisation MAE-0.0393

Research novelties/Contributions: The stacked GRU-RNN achieves precise energy prediction using time-series data
and monitoring parameters. The enhanced GRU-RNN reduces model complexity, resulting in lower computational
costs and requiring less training data.

[37] NARX-GA GA PV power 5, 15, 30, 60 min Normalisation MPE-0.012%

Research novelties/Contributions: Ultra-short-term forecasting of PV power is made with an NARX model. This
extends the high prediction accuracy of static multi-layered perceptron neural networks to dynamic models with
a more stable learning process. The proposed NARX-GA demonstrates superior performance as the forecasting
horizon narrows, achieving improvements of up to 58.4%.

[38] SARIMA-
RVFL − Solar-PV power Very short term MODWT MASE-0.589

Research novelties/Contributions: Combination of forecast models for solar PV power that has positive effects of
wavelet decomposition which helps achieve better forecasts.

[39] 12 hybrid
models − Wind speed and power Hourly FS nRMSE-

0.04446

Research novelties/Contributions: Clustered segments and DL hybrid models improve the aggregated system
performance, and it is validated by using a different unseen dataset with the proposed models as well as using k-fold
cross-validation.

[31]
ML, ANN
and Ensem-
ble methods

− Renewable energy and
electricity needs

Intra-hour, intra-
day, day ahead − −

Research novelties/Contributions: Review of machine learning, ANN, and ensemble-based approaches applied in
energy planning and management.

[43] SVR − Energy storage systems − − MSE-0.0002
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Table 2. Cont.

Ref. Method Opt. Forecast Variable Forecast Horizon Pre-
Processing Lowest Metric

Research novelties/Contributions: Evaluation of the performance of different kernels for SVR for predicting the
storage efficiency of energy; SVR can minimise the generation error of a prediction problem.

[51] RWT-
ARIMA − Wind speed 1, 3, 5, 7, 10 min MODWT MAE-0.2268

Research novelties/Contributions: RWT-ARIMA decomposes the high-frequency time series into further subsequent
detailed coefficients, reducing forecasting errors.

[52] ALHM GA Solar intensity Long term − MAPE-13.68%

Research novelties/Contributions: ALHM predicts solar intensity based on meteorological data. TMLM identifies
linear relationships and time-varying features, while GABP efficiently learns non-linear relationships in the data with
accelerated training and searching capabilities.

[53] SARIMA − Solar radiation Daily, monthly − RMSE-33.18

Research novelties/Contributions: An implementation of SARIMA time series forecasts daily and monthly solar
radiation, taking into account the precision, appropriateness, sufficiency, and promptness of the gathered data.

[54]
Spatio-
temporal
model

− PV power Few min–6 h Normalisation RMSE-4.5

Research novelties/Contributions: A new stationarisation process aims to suppress weaknesses of the clear sky-
based normalisation considering local meteorological conditions and proposes a model that integrates an automatic
selection of the appropriate input variables.

[55] Statistical − Wind speed 24 h − −

Research novelties/Contributions: A statistical-based correction method is employed to enhance wind speed
forecasting, involving the development of a “correction topography” that is valuable for wind field operators and
utilities focused on integrating wind energy, and also interpolates correction topographies and instantaneous forecast
errors.

[56] ANDGM PSO Renewable energy con-
sumption Long term − MAPE-3.21%

Research novelties/Contributions: ANDGM is introduced to achieve accurate predictions of annual renewable
energy consumption, utilising an accumulation parameter to flexibly adjust the weighting between historical and
new information.

[60] FOTP-DGM PSO Hydropower consump-
tion Annual − MAPE-2.43%

Research novelties/Contributions: FOTP-DGM uses periodic aggregation generation operators to unify short-term
and long-term system development, fully leveraging the long-term trends in seasonal sequences.

[57] PGM PSO Electricity consumption Annual Bernoulli distri-
bution

MAPEVE-
0.18%

Research novelties/Contributions: PGM based on P-AGO eliminates invalid information, mines grey information,
and maximises grey information.

[58] FTDP-DGM GA Energy generation Long term
R-function
cumulative
sequence

MAPE-2.45%

Research novelties/Contributions: FTDP-DGM models and forecasts the problem of small-sample time series
containing time-delay, non-linearity, and uncertainty characteristics. GA finds the optimal value of the non-linear
parameter.

[59] ATDGM GA PV power Long term − GRC-0.94

Research novelties/Contributions: ATDGM is modelled to grasp non-linear, fluctuant, and periodic patterns, and GA
obtains the best solutions to deal with complex optimisation problems.

[61] SADGM PSO Renewable energy gener-
ation Mid to long term 1-order accu-

mulation MAPE-1.99%

Research novelties/Contributions: SADGM enhances prediction performance and improves the DGM model’s ability
to capture the periodicity of complex data sequences by introducing non-linear and periodic terms.

[69] −

Single
and
multi-
objective
algo-
rithms

Wind speed and power Short term

Data de-
composition,
dimensional
deduction, and
data de-noising

−

Research novelties/Contributions: Systematic review of deterministic and probabilistic methods for wind forecasting.

[66] ET and RF − PV power Hourly − R2 − 0.7293

Research novelties/Contributions: Tree-based ensemble methods analyse the variable importance of each input
characteristic, improving the prediction and stability of the method.
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Table 2. Cont.

Ref. Method Opt. Forecast Variable Forecast Horizon Pre-
Processing Lowest Metric

[72]
Bagging en-
semble learn-
ing

PCA Solar irradiance Annual Z-score normal-
isation EVS-0.92

Research novelties/Contributions: Bagging-based ensemble learning system forecasts solar radiation based on
weather patterns.

[86] ELM − Wind power Next hour − MSE-0.0716

Research novelties/Contributions:The objective of utilising ELM is to retrieve the quantity of wind energy produced
while avoiding complex mathematical calculations to address uncertainties in the system.

[63]
SSA-
MOGWO-
EF

MOGOA PV power Short term SSA MAPE < 2%

Research novelties/Contributions: The proposed forecasting method considers the advantages of multiple algorithms
and validly depicts the linear and non-linear characteristic of PV time series to obtain precise and reliable predictions.

[64] EHO-
LSSVM EHO Wind power Ultra short term EEMD nRMSE-0.282

Research novelties/Contributions: Wind power is decomposed into a series of signal sets by EEMD. An optimised
LSSVM by EHO is used to predict each component signal, and then the EHO-LSSVM is used to ensemble the sample
results into the final prediction value.

[87]
EEMD-
LSSVR-K-
LSSVR

GSA Solar radiation 1, 3, 6 steps ahead EEMD MAPE-2.83%

Research novelties/Contributions: A novel DCE with EEMD, K-means, and LSSVR improves the performance of
solar radiation forecasting and compares its predictive capabilities rivaling those of popular existing forecasting
models.

[88] Bi-GRUNN − Wind power Short term − RMSE-2.40%

Research novelties/Contributions: Bidirectional GRUNN is used to correct NWP wind speed considering statistical
and time series characteristics.

[89] SVM
Sine
cosine al-
gorithm

Load Short term FD, FFT MASE-0.197

Research novelties/Contributions: Adaptive Fourier decomposition obtains the fluctuation characteristics, and an
optimised sine cosine algorithm obtains the penalty and kernel parameters of an SVM.

[90] Different
models GA, PSO Wind energy −

WD, WPD,
EMD, EEMD,
CEEMD,
CEEMDAN

−

Research novelties/Contributions: Review and comparison of different decomposition-based models.

[50] MODWT-
LSTM − PV power Day ahead MODWT MBE-0.0262

Research novelties/Contributions: Historical solar power and environmental factors are used with MODWT to
decompose the time series into components, while LSTM extracts the non-linearities and deep features.

[45] DLNNs Adam PV power 1, 5, 30, 60 min Normalisation MAE-0.05

Research novelties/Contributions: Various DLNN algorithms predict PV power for both single-step and multi-step
forecasting across different time periods.

[48] B-LSTM Adam Wind speed, load de-
mand, electricity price daily MC MAPE-0.91%

Research novelties/Contributions: The MC task clusters the input data sequence, categorising each hour’s data
into distinct groups. Each group is assigned a dedicated forecasting unit. B-LSTM is then applied for multitask
forecasting, handling the dataset profile for each cluster hourly.

[91] FNDGM GWO Hidropower, renewable
energy 1 year − TIC-0.0129

Research novelties/Contributions: To effectively capture the non-linear relations among system variables and the
evolving non-linear behaviour of each variable, the proposed FNDGM incorporates the GWO algorithm and hold-out
cross-validation method. This approach significantly improves generalisation ability and mitigates over-fitting issues.

[92] RF, DT, KNN GA Load and supply dis-
patch Hourly Normalisation Precision-1

Research novelties/Contributions: Comparison of the outcomes of ML techniques, namely RF, DT, and KNN.

[47] LSTM-CNN − PV power Short term Normalisation MAPE-0.042

Research novelties/Contributions: PV temporal data features are extracted by an LSTM and spatial features by a
CNN.

[93] GA-BiLSTM GA PV power Ultra short term Normalisation MSE-0.191
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Table 2. Cont.

Ref. Method Opt. Forecast Variable Forecast Horizon Pre-
Processing Lowest Metric

Research novelties/Contributions: BiLSTM predicts the output of the target PV station with its bi-directional learning
characteristics. GA optimises the structure and the parameters of the Bi-LSTM in order to attain the best performance.

[94] BILSTM-AE-
ORELM PSO PV power 1 day − MAPE-0.0134

Research novelties/Contributions: BiLSTM forecasts each input weather piece of data that affects PV power, and an
improved ELM predicts the future PV power based on the anticipated weather data.

[95] QRF

Chance-
constrained
stochas-
tic opti-
misation

Renewable Energy Day ahead Normalisation,
logit transform nCRPS-0.012

Research novelties/Contributions: The proposed approach involves generating scenarios of the combined production
with probabilistic forecasts. Additionally, the method incorporates correlations using a multivariate Gaussian copula.

[96] HFEGM − Renewable energy 1 year − sMAPE-
12.10%

Research novelties/Contributions: Integration of EGM and heuristic FTS to obtain precise forecasts for renewable
energy in Taiwan.

[97] CNN-LSTM,
Conv LSTM − PV power 1 day to 1 week

ahead Normalization MAE-5.05

Research novelties/Contributions: CNN-LSTM and ConvLSTM are proposed for time-series predictions.

[98] GA, RNN,
KNN − Solar power Shortcterm − rMAE-4.49

Research novelties/Contributions: The application of forecasting high-frequency solar radiation data using GA,
RNN, and KNN models is discussed.

[99]
EWT-GWO-
RELM-
IEWT

GWO Wind speed 10 min EWT MAE-0.0273

Research novelties/Contributions: EWT decomposes the raw series into several wind speed subseries; an optimised
RELM with GWO forecasts each subseries, and to avoid unexpected forecasting values, IEWT is employed for
reconstructing the projected results.

[100] ANN, RF,
Persistence − Solar radiation 1 h up to 6 h Cleaning and

filtering nMAE-12.63%

Research novelties/Contributions: The forecast of the components of solar radiation are compared through smart
persistence, ANN, RF.

[32] BORT Bayesian Solar irradiance 1 year Normalisation R2 − 0.98

Research novelties/Contributions: Bayesian optimisation adjusts the hyperparameter of the regression tree algorithm,
and BORT forecasts the global radiation.

[101]
Spatio-
temporal
Probabilistic

− Wind power 24 h ahead Normalisation CRPS < 0.15

Research novelties/Contributions: Non-linear and non-stationary patterns exhibited by the data are effectively
handled using non-linear transformations and sinusoidal basis functions. These methods can accurately capture
high-frequency observations and provide estimation efficiently.

[102]
CEEMD-
AWDO-
MSA-ENN

AWDO-
MSA Wind speed Ultra short term CEEMD MAE-0.2696

Research novelties/Contributions: An improved optimisation algorithm which combines AWDO and MSA is
proposed to optimise the initial weights and thresholds of ENN, improving the global and local search ability.

[73] AGRU − Wind power 5 min up to 2 h Normalisation MAPE-4.25%

Research novelties/Contributions: AGRU improves the accuracy of forecasting processes, a hidden activation of
GRU blocks correlates different forecasting steps, and an attention mechanism selects the most significant input
variables.

[103] EWT-LSTM-
ENN − Wind speed − EWT MAE-0.51

Research novelties/Contributions: EWT decomposes the raw wind speed data, LSTM predicts low-frequency, and
ENN forecasts high-frequency wind speed sub-layers.

[104] GRU-CSNN-
GWO GWO Wind speed Short and long

term EWT MAPE-1.40%

Research novelties/Contributions: The original wind speed series are decomposed into multiple sub-series, each
containing distinct oscillatory characteristics. GRU models are employed initially to forecast each sub-series. Subse-
quently, CSNN corrects these forecasts, extracting previously unexplored temporal information. The GWO algorithm
is then utilised to optimise weights for a linear combination of the forecasting results, improving overall accuracy.
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Table 2. Cont.

Ref. Method Opt. Forecast Variable Forecast Horizon Pre-
Processing Lowest Metric

[105] IMODA-
ELM IMODA Wind speed Short term VMD nMSE-0.0062

Research novelties/Contributions: A two-stage wind speed forecasting model combines the advantages of the VMD
technique, IMODA, error correction, and the non-linear ensemble method.

[49] CNN-L;
MICNN-L Adam Solar irradiance 10 min − r-0.94

Research novelties/Contributions: Infrared sky images and past values of GHI are predicted, considering CNN for
spatial features extraction and LSTM for temporal feature extraction.

The state-of-the-art research presented in Table 2 illustrates the feasibility of forecasting
in managing and integrating renewable energy sources into the electricity grid.

To predict renewable energy production, the forecast variables considered can be the
renewable energy production itself, such as wind and PV energy, or the meteorological vari-
ables that directly affect renewable energy production, such as solar radiation, temperature,
and wind speed.

According to the state-of-the-art research that we analysed, in this paper, four main
types of methods were considered. The physical methods comprised physical characteris-
tics (temperature, solar radiation, wind speed). However, they are not able to deal with
short-term forecasts and require high computational costs. Statistical methods are more
appropriate for short-term forecasts and consider historical data for the forecast. However,
they cannot deal with irregular and non-linear data. In this regard, ML methods were
considered, since they are capable of dealing with non-linear data. Despite the advantages
of each of these methods, the individual methods do not consider the pre-processing of the
input data, which decreases their efficiency. Thus, combined or hybrid methods emerge as
a solution to this problem, as they combine the main advantages of the individual methods,
allowing for a significant improvement in forecast accuracy.

The forecast horizon is also another factor to take into consideration when choosing a
forecasting method. In this review, three main types of horizons were considered: short,
medium, and long. According to some literature, a very short forecast horizon was also
considered. In general, analysing state-of-the-art research, regardless of the forecasting
method and the forecast variable, research was carried out for short-term forecast intervals.

Methods based on ML, in particular ANN and ensemble-based approaches, play a
crucial role in renewable prediction, appearing to be the most considered methods in this
context and with better prediction results [31]. ANNs enhance forecasting efficiency by
establishing non-linear mappings between input and output data. However, they are prone
to over-fitting and easily converge to local optima. ML approaches offer solutions for
addressing complex issues that are challenging to model explicitly, and they can perceive
relationships between outputs and inputs. ML methods have higher accuracy and improve
the accuracy of regression models witha greater amount of data. On the other hand,
ensemble-based approaches are based on the concept of divide and conquer and can
improve the performance of forecasts.

A common technique used in state-of-the-art research to evaluate forecasting methods
is the comparison of referenced and proposed methods [29]. In general, the reference
methods considered are persistence methods, statistical methods, or methods that consider
physical and meteorological characteristics. The main evaluation metrics considered were
RMSE, MAE, MAPE, and MSE, among others.

The conjugation of the forecasting methods with optimisation techniques and/or data
pre-processing techniques also improves the performance of the proposed methods.

4.1. Real Grid Operation

Grid operators rely on forecasting methods such as statistical, artificial intelligence,
or hybrid methodologies to manage electricity supply and demand [106]. To address
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the increasing complexity of the power grid and the need for more precise forecasts,
Ahmad et al. [31] suggests the use of ML algorithms, ensemble-based approaches, and
ANN. These methods deal with large amounts of data and provide accurate forecasting
analysis. Furthermore, Wazirali et al. [107] emphasise the significance of ANN, ML, and
DL techniques in predicting energy flows in microgrids, providing a systematic analysis of
their applications.

According to the results in Table 2, traditional methods like time series and regression
models are commonly used by grid operators due to their simplicity and interpretability. In
turn, there is a growing trend towards implementing ML methods, like ANNs, in real grid
operations. Hybrid methods are also being explored, with some grid operators starting to
implement them for their improved accuracy and robustness.

Overall, grid operators use a combination of statistical and ML methods for forecasting
loads and renewable energy production. While traditional methods still hold significant
ground due to their simplicity and reliability, ML approaches are rapidly being considered.
Our research shows a strong focus on practical applicability, with a considerable share
of studies detailing methodologies that are implemented or validated in real operations.
As computational resources and data availability continue to improve, the adoption of
advanced machine learning techniques is expected to rise.

4.2. Literature Gaps and Future Work

The comprehensive review presented in this paper highlights significant advancements
in renewable energy forecasting methods. However, there are still several gaps in the
literature that future research should address for improvement of accuracy, efficiency, and
applicability of these models. Some of these gaps are presented below.

• While current models incorporate various climatic and historical data, there is a need
for more sophisticated integration of multivariate data sources. Future research should
focus on developing models that can effectively integrate diverse data types, such as
satellite imagery, real-time sensor data, and socioeconomic factors, to improve forecast
accuracy.

• Short-term models often fail to maintain accuracy over extended periods, while long-
term models may not capture short-term fluctuations adequately. Research should
aim to develop hybrid models that can seamlessly transition between short-term and
long-term forecasting, maintaining high accuracy across different time horizons.

• Many advanced forecasting models, particularly those involving ML and artificial
intelligence, require substantial computational resources. This limitation can hinder
their scalability and practical application in real-time scenarios. Future research should
focus on improving the computational efficiency of these models and developing
scalable algorithms that can be deployed in large-scale energy systems.

• As smart grids become more prevalent, integrating forecasting models with these
technologies can provide real-time adjustments and enhance grid stability. There is a
need for research that explores how forecasting models can be embedded into smart
grid systems to enable dynamic and responsive energy management.

Transfer learning is a type of ML that has emerged as a powerful technique enabling the
application of knowledge gained from one domain to improve performance in another. For
renewable energy forecasting, transfer learning methods hold significant promise. These
methods allow pre-trained models, developed for related tasks such as weather prediction
or energy consumption forecasting, to be adapted for renewable energy contexts. By
leveraging existing models, transfer learning can mitigate the challenges posed by limited
data availability and high computational costs, facilitating accurate and efficient forecasting
models. This approach not only enhances predictive capabilities but also accelerates the
deployment of sophisticated forecasting tools in regions with sparse historical data, thereby
supporting the broader integration of renewable energy into the power grid [108,109].

Future work should also analyse and consider innovative synthetic data generation
techniques in order to fill the gaps in the availability of historical data; forecasting models
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should also predict rare events like tornadoes or periods of severe drought in order to
minimise the effects of climate change; and theoretical and practical data obtained with
forecasting models should also be compared in order to check that the models are reliable.

5. Conclusions

With the growing integration of renewable energy sources in the electricity system,
new technologies were developed. However, renewable energy still has some limitations
due to the intermittency and unpredictability of resources. In this regard, forecasting
methods appear as a solution, allowing, for example, a more efficient management of
renewable sources in the grid, or minimising the difference between electricity demand
and its supply.

A systematic review of forecasting methods in a renewable context was performed.
According to the current literature, there are several factors that affect the results of forecast-
ing methods, in particular the type of method, the data pre-processing, the forecast horizon,
optimisation algorithms, the forecast variables, and the efficiency evaluation metrics.

In conclusion, forecasting methods for renewable energy play a crucial role in shap-
ing the sustainability of our energy landscape. Accurate predictions not only enhance
the reliability of renewable energy but also drive innovation in energy storage and grid
management, accelerating the global shift into a cleaner and resilient energy ecosystem.

For regions with highly variable weather conditions, such as coastal areas or mountain-
ous regions, advanced forecasting models using ML techniques such as neural networks
and SVM coupled with detailed meteorological data are recommended. These models can
effectively anticipate fluctuations in renewable energy generation due to dynamic weather
patterns and seasonal variations, ensuring a more reliable integration of renewable sources
into the grid.

In urban areas with high energy demand, short-term forecasting methods that leverage
real-time data and optimisation algorithms, such as ARIMA models and hybrid models
combining statistical and ML approaches, are more suitable. These methods can minimise
the discrepancy between electricity demand and supply, enhancing grid stability and
efficiency. For rural or remote regions where grid infrastructure may be less robust, long-
term forecasting techniques that incorporate historical data and trend analysis, such as time
series analysis and regression models, are recommended. These techniques can support
better planning and investment in renewable energy infrastructure, ensuring a stable and
sustainable energy supply over time.

Finally, in regions where multiple renewable resources are available, such as areas with
both wind and solar potential, hybrid forecasting methods that integrate data from various
sources and use ensemble techniques can provide more accurate and comprehensive
forecasts. These methods combine the strengths of individual forecasting models to handle
the complexity of multiple energy sources.

Overall, the selection of an appropriate forecasting method and evaluation metric
depends on the specific forecasting problem and the type of data being used. Continued
development and refinement of these methods is essential for achieving a sustainable and
reliable energy future.
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Abbreviations
The following abbreviations are used in this manuscript:

ATDGM adaptive time-varying discrete grey model
ANN artificial neural network
ARIMA auto-regressive integrated moving average
BMA Bayesian averaging model
CNN convolutional neural network
DBN deep belief network
DL deep learning
DLNN deep learning neural network
DGM discrete grey model
ESN echo state network
EHO elephant herding optimisation
ENN Elman neural network
EMD empirical mode decomposition
EDE enhanced differential evolution
EL ensemble learning
EVS explained variance score
ET extra trees
FOTP-SDGM fractional-order full-order time power seasonal discrete grey model
GRU gated recurrent unit
GD Gaussian distribution
GA genetic algorithm
GM grey model
MOGWO multi-objective grey wolf optimisation
ALHM hybrid adaptive learning model
HIMVO hybrid improved multi-verse optimiser
LSSVM least squares support vector machine
LSTM long short-term memory
MAE mean absolute error
MAPE mean absolute percentage error
MASE mean absolute scaled error
ML machine learning
MRE maximum residual error
MSE mean squared error
MODWT maximum overlap discrete wavelet transform
MC micro-clustering
NBDM model based on dendritic neuron network
MMODA modified multi-objective dragonfly algorithm
MOGOA multi-objective grasshopper optimisation algorithm
MLR multiple linear regression
NARX non-linear auto-regressive recurrent network
nRMSE normalized root mean squared error
NWP numerical weather prediction
ORELM outlier-robust extreme learning machine
PSO particle swarm optimisation
PV photovoltaic
PEM probabilistic ensemble method
QR quantile regression
QRA quantile regression averaging
QRF quantile regression forest
RF random forest
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RVFL random vector functional link neural network
RNN recurrent neural network
RMSE root mean squared error
SARIMA seasonal auto-regressive integrated moving average
SOM self-organizing mapping
SSA singular spectrum analysis
SADGM structural adaptive discrete grey model
SVM support vector machine
SVR support vector regression
TMLM time-varying multiple linear model
WNN wavelet neural network
WPD wavelet packet decomposition
WT wavelet transform
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