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Abstract: Accurate and reliable wind speed prediction is conducive to improving the power gen-
eration efficiency of electrical systems. Due to the lack of adequate consideration of spatial feature
extraction, the existing wind speed prediction models have certain limitations in capturing the rich
neighborhood information of multiple sites. To address the previously mentioned constraints, our
study introduces a graph isomorphism-based gated recurrent unit (GIN-GRU). Initially, the model
utilizes a hybrid mechanism of random forest and principal component analysis (PCA-RF) to dis-
cuss the feature data from different sites. This process not only preserves the primary features but
also extracts critical information by performing dimensionality reduction on the residual features.
Subsequently, the model constructs graph networks by integrating graph embedding techniques
with the Mahalanobis distance metric to synthesize the correlation information among features from
multiple sites. This approach effectively consolidates the interrelated feature data and captures
the complex interactions across multiple sites. Ultimately, the graph isomorphism network (GIN)
delves into the intrinsic relationships within the graph networks and the gated recurrent unit (GRU)
integrates these relationships with temporal correlations to address the challenges of wind speed
prediction effectively. The experiments conducted on wind farm datasets for offshore California in
2019 have demonstrated that the proposed model has higher prediction accuracy compared to the
comparative model such as CNN-LSTM and GAT-LSTM. Specifically, by modifying the network
layers, we achieved higher precision, with the mean square error (MSE) and root mean square error
(RMSE) of wind speed at a height of 10 m being 0.8457 m/s and 0.9196 m/s, respectively.

Keywords: multisite wind prediction; PCA-RF; graph embedding; graph neural network; convolutional
neural network

1. Introduction

The growing global energy crisis and the critical issue of environmental pollution have
highlighted the need for clean and renewable energy sources. Wind energy has garnered
significant attention due to its relatively short construction cycle, minimal environmental
prerequisites, and vast reserves [1]. This has led to its widespread adoption and rapid
development globally. Many nations have recognized the potential of wind power and
are actively promoting its generation to capture wind energy. Consequently, the wind
power sector has undergone rapid growth and expansion, firmly establishing wind power
generation as a field with promising current prospects. Presently, wind speed prediction
plays a pivotal role in formulating control strategies for wind farms, which stands as a
cornerstone technology that enhances the operational efficiency of wind turbines [2].

Accurate wind speed prediction is crucial to optimizing wind power generation. It en-
hances wind energy utilization, mitigates wind power’s grid impact, and ensures efficient
operation of wind farms. To refine wind speed forecasting, researchers worldwide have
pioneered various innovative approaches. For instance, data decomposition techniques
like wavelet transform [3], empirical modal decomposition [4–6], and variational modal
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decomposition [7] are employed to analyze wind speed’s multiscale attributes. Addition-
ally, data fusion strategies such as Kalman filtering, data assimilation, and multi-source
data fusion are utilized [8–10]. These methods provide a comprehensive analysis of vari-
ous meteorological elements and data sources, which improves the accuracy of weather
forecasting and monitoring.

Traditional statistical methods often focus on specific learning facets. With the accu-
mulation of a large amount of historical operational data in the wind power industry, deep
learning methods based on large-scale and multi-dimensional data have been increasingly
applied to the field of wind speed prediction due to their powerful nonlinear mapping
ability. H Xu et al. developed a hybrid deep learning model for wind speed prediction
that integrates grid search optimization with a recurrent neural network [11]. This ap-
proach effectively corrected the errors of numerical weather prediction to enhance both the
precision and dependability of wind speed forecasts. Ai X et al. proposed a wind speed
prediction model based on data augmentation and deep learning. The results showed that
empirical mode decomposition and data augmentation techniques generated more training
data which improved the generalization ability as well as robustness of the wind speed
prediction model [12]. B Shao et al. utilized a configuration of long short-term memory
(LSTM) networks with diverse architectural complexities to uncover the underlying pat-
terns in wind speed time series data [13]. The researchers integrated the predictive outputs
using a nonlinear regression layer, which consisted of support vector regression machines.
This integration resulted in a combined prediction model that exhibited high accuracy.
However, the abovementioned wind speed prediction methods mostly use the historical
and real-time data of wind speed at a single point. Thus, the prediction accuracy of the
models still requires further improvement and augmentation.

The integration of comprehensive spatio-temporal data from multiple locations can
provide a novel approach to predicting wind speeds. Q Zhu et al. leveraged the spatio-
temporal correlation characteristics across various spatial scales to improve wind speed
prediction [14]. By employing convolutional neural networks (CNN) for spatial modeling,
the method captures the intricate spatial correlations between the macroscopic and micro-
scopic levels, which offers a more comprehensive approach than traditional one-to-one
modeling methods. Trebing K et al. employ a multiscale convolutional neural network
filter to extract the multi-features influencing long-term wind speed distribution [15]. It
introduces a deep convolutional recurrent neural network model for wind speed prediction
at various points within a wind farm. This model excels at feature extraction and time-
series analysis, which enables simultaneous ultra-short-term wind speed forecasts for each
turbine. By integrating spatial and temporal flow field data, the model enhances overall
prediction accuracy. W Tuerxun et al. proposed a novel spatio-temporal neural network
that employs a deep convolutional neural network coupled with a bidirectional gated
recurrent unit [16]. This model comprehensively captures the spatio-temporal dynamics
between wind speed and direction across various altitudes within a wind farm, as well as
pertinent NWP data. MM Yuan et al. combine CNN with LSTM networks to propose a
multifactor spatio-temporal correlation model [17]. It introduces a data representation tech-
nique that uses three-dimensional matrices. This innovative model demonstrates enhanced
predictive performance in wind speed forecasting. Therefore, by considering not only
the direct spatio-temporal distribution of wind speed within the wind farm but also the
potential spatio-temporal relationships of wind speed at multiple sites using deep learning
algorithms, it will be probable to further improve the prediction accuracy.

This paper introduces a deep learning-based integrated multi-site wind speed pre-
diction model for wind farms, designated as RPCA-GIN-GRU. This model enhances the
predictive accuracy for each site by leveraging the feature correlations across multiple
sites. Firstly, we apply PCA-RF to the feature set, which captures the essential features and
extracts key insights by reducing the dimensions of the remaining features. Secondly, we
use a method that combines graph embedding techniques with the Mahalanobis distance
metric to construct the network graph’s edges, which facilitates a thorough analysis of
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the relationships between each site’s features. Ultimately, the GIN model is leveraged
for its proficient learning of graph structure similarities. By conducting deep learning
on the spatial attributes of these graph structures, we can then feed the deeply learned
feature data into a GRU network for subsequent prediction. This approach generates wind
speed predictions that considers the characteristics of each site and their interconnectedness
to generate wind speed predictions. Additionally, it summarizes the interactive effects
between sites on the predicted wind speeds.

2. Materials and Methods
2.1. Construction of Graph Networks
2.1.1. PCA-RF Fusion Model

Raw meteorological data are complex and multifaceted. However, not all variables
are pertinent to changes in wind speed. An overabundance of predictive variables can
introduce redundancy, thereby diminishing the model’s generalization capabilities. Some
residual features have some key information that needs to be extracted. Therefore, we
focus on primary feature extraction and dimensionality reduction of residual features from
the original meteorological elements. This approach streamlines the dataset and enhances
model interpretability and efficiency. Consequently, this research leverages the intrinsic
feature extraction capabilities of the random forest algorithm in conjunction with PCA to
further diminish the dimensionality of residual features. This approach enables the separate
processing of primary and residual features to achieve maximal efficiency. Subsequently,
the primary features and the dimensionality-reduced residual features are concatenated to
form the dataset used for constructing graph networks.

2.1.2. Random Forests

Random forest is a kind of machine learning algorithm that makes predictions from
multiple decision trees and integrates their results. Random forests construct each decision
tree using random samples and features, which imparts the model with robustness against
overfitting [18]. MDI is a measure of feature importance based on the reduction in Gini
impurity of each feature at the split point in the decision tree [19]. Given a dataset containing
nodes from C categories, where the probability that node j belongs to category c is denoted
as pj, the Gini impurity of node j is as follows:

Gini(j) = 1 −
C

∑
c=1

p2
j (1)

Gini impurity is a statistical metric that measures the probability of a random classifi-
cation error for an element chosen from a dataset, given that the classification is random
and reflects the distribution of classes in the dataset. Owing to its simplicity and direct
computation, MDI is selected for evaluating the significance of feature variables within this
study. The MDI value signifies a feature’s greater relevance in strengthening the predictive
accuracy of the model. The steps for calculating MDI are given as follows:

Step 1. Each decision tree generated through bootstrap sampling on the training set
constitutes a random forest.

Step 2. For every tree, the Gini impurity of each node is computed.
Step 3. MDI for each feature is ascertained by averaging the reduction in Gini impurity

across all trees.

2.1.3. Principal Component Analysis

PCA is a prevalent technique for reducing data dimensionality. It employs orthogonal
transformations to convert correlated variables into a new set of uncorrelated variables,
known as principal components [20]. PCA is designed to preserve critical information from
the original dataset and reduce dimensionality by decreasing the number of variables. PCA



Energies 2024, 17, 3516 4 of 20

streamlines complex datasets by isolating pivotal features to reduce noise and safeguard
essential information.

The fundamental method involves computing the eigenvalues and eigenvectors from
the covariance matrix. The eigenvalues represent the core information of the original
variables, which are crucial to the remaining features. Subsequently, the dimensionality
reduction of the feature matrix facilitates the isolation of distinctive meteorological factors
that exert a significant influence on wind speed variations.

2.1.4. PCA-RF Feature Fusion

In this study, the primary and residual feature matrices are based on the ordering of
features according to their MDI scores. The residual feature matrix is then subjected to PCA
for dimensional reduction. For a wind field with N sites, the feature matrix of the n-th site is
expressed as Xn =

[
VT

1 , VT
2 · · ·VT

M
]
, where n = 1, . . ., N, M is the number of features per site, the

total number of features is M× D and Vi = [vi(1), vi(2) · · · vi(t)] (i = 1, . . ., M t = 1, . . ., D) is the
feature vector of the site. This dataset primarily includes measurements taken at 15-m intervals
for wind speed, wind direction, temperature, pressure, and other relevant characteristics. The
steps of wind speed feature processing for the n-th site are given as follows:

(1) Build a random forest. Bootstrap sampling and random feature selection techniques
are utilized to generate a training dataset and a corresponding subset of features.
These elements form the basis for constructing an individual decision tree. The
process of building a decision tree involves randomly selecting a subset of the dataset
and recursively splitting the nodes based on optimal segmentation criteria until the
stopping criteria of the random forest are met. Through the repetition of this process,
a random forest model is assembled with I different decision trees, where the i-th
decision tree has T nodes and C categories.

(2) Calculate the Gini impurity and the amount of its variation. In tree i, at node j, it is essential
to calculate the proportion of category c, represented as p(c|(i, j), k), against the total
categories. The variation in Gini impurity is then determined by evaluating the Gini
impurity before and after the branching of node j. The calculation formula is as follows:

Gini(i, j, k) = 1 −
C

∑
c=1

p(c|(i, j), k)2 (2)

∆Gini(i, j, k) = Gini(i, j, k)− Gini(i, jb, k)− Gini
(

i, j f , k
)

(3)

where j = 1, 2. . .T, i = 1, 2. . .I, k = 1, 2. . .M, c = 1, 2. . .C. jb and j f represent the two new
nodes after node j is branched. ∆Gini(i, j, k) are feature vector Vk reduction of Gini
impurity after node splitting in decision tree i.

(3) Calculate the MDI. MDI for feature Vk is as follows:

M(Vk) =
1
I ∑T

t=1 ∆Gini(i, j, k) (4)

(4) Feature selection. In the feature selection phase, features are ranked by their MDI values.
Subsequently, a threshold denoted by γ is determined. Features with an MDI value
of M(Vk) are selected to comprise the primary feature matrix X f , which includes M f
features. Conversely, features with an MDI value of M(Vk) < γ are used to construct
the auxiliary matrix Xb, which incorporates the remaining Mb = M − M f features.

(5) Feature decentralization. The auxiliary matrix Xb is decentralized to yield the matrix X′
b.

X′
b = Xb − Xb (5)

where Xb is the auxiliary matrix Xb.
(6) Compute eigenvalues and eigenvectors. The eigenvalue decomposition is performed

on the covariance matrix. The feature values are ranked in descending order and
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sequentially aggregated until the cumulative contribution rate, denoted by η ≥ 0.85.
Consequently, in adherence to this criterion, the primary r features are chosen to
constitute the matrix R of r × D.

λl =
1

D − 1
Xb

′TXb
′l (6)

η =
∑r

i=1 λi

∑M
k=1 λk

(7)

where λ =
{

λ1, λ2 . . . λMb

}
is a set of eigenvalues, l =

[
l1, l2 . . . lMb

]
is the matrix of

eigenvectors.
(7) Data dimensionality reduction. We calculate the dimensionality reduction matrix Y

utilizing the subsequent formula:

Y = RXb (8)

(8) Matrix splicing. By horizontally concatenating the matrices X f and Y, we obtain a

matrix Wn of dimension
(

M f + r
)
× D.

Wn =
[

X f Y
]

(9)

PCA-RF processes all sites to yield a sequence of feature matrices W1, W2 . . . WN ,
which captures the pivotal features of the dataset. Finally, all the feature matrices are
horizontally spliced to obtain a feature matrix W of g × D.

W = [W1W2 . . . WN ] (10)

where g = N ∗
(

M f + r
)

. Figure 1 illustrates the steps of PCA-RF. Initially, the raw
datasets from different sites are processed through RF algorithm to extract the primary
feature matrix and the auxiliary feature matrix. Subsequently, the auxiliary feature matrix
is subjected to PCA for dimensionality reduction to yield the dimensionality reduction
matrix. Finally, the final feature matrix is constructed by concatenating the primary feature
matrix with the dimensionality reduction matrix.

Energies 2024, 17, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 1. The flow chart of PCA-RF. 

2.1.5. Integrative Modeling of Graph Embeddings and Mahalanobis Distances 
Graph neural networks combined with graph networks on some feature correlations 

have achieved excellent results in wind speed prediction [21,22]. However, the perfor-
mance of graph neural networks is highly dependent on predefined graphs to characterize 
the relationships between site features, such as those based on the Pearson correlation 
coefficients. Predefined graphs often do not reflect the complex dynamics of wind speed 
features, with their quality significantly depending on expert judgment and accurate wind 
speed measurements. Considering these factors, this paper introduces a novel composi-
tional algorithm to analyze the spatio-temporal attributes of wind speed. The algorithm 
acquires node embedding vectors by employing graph embedding techniques on a pre-
defined graph, which elucidate the graph’s topology and the inter-node relationships [23]. 
Subsequently, it quantifies the distance between node embedding vectors by employing 
the Mahalanobis distance [24,25]. The final graph network results from the adjustment of 
edge relationships in the predefined graph through a filter based on a threshold Ma-
halanobis distance. 

2.1.6. Construction of Predefined Graphs 
In this paper, we use the matrix W obtained above to construct the predefined graph 𝐺 = (𝑽, 𝐸), where 𝑽 = {𝑽𝟏𝑻, 𝑽𝟐𝑻, 𝑽𝟑𝑻, … 𝑽𝒈𝑻} represents the set of nodes. We consider each col-

umn of data of matrix 𝑊   as the feature vector of a node and the dimension is 𝑔 × 𝐷 
where 𝑔 is the number of nodes and D is the dimension of each node feature. The set of 
edges 𝐸 = ൫𝒆𝒊𝒋൯௜,௝ୀଵ𝒗    embodies the connectivity relationships among nodes within the 
network, such that there exists an edge connecting any two nodes  𝑽𝒊 and 𝑽𝒋. In the pre-
defined graphs, the existence of an edge is denoted by 𝒆𝒊𝒋 = 1, which is presented as fol-
lows: 

𝑒௜௝ =
⎩⎪⎪⎨
⎪⎪⎧1,    ∑  ஽௧ୀଵ (𝑣௜(𝑡) − 𝑣̅௜)൫𝑣௝(𝑡) − 𝑣̅௝൯ඥ∑  ஽௧ୀଵ (𝑣௜(𝑡) − 𝑣̅௜)ଶට∑  ஽௧ୀଵ ൫𝑣௝(𝑡) − 𝑣̅௝൯ଶ < 𝛿

0,    ∑  ஽௧ୀଵ (𝑣௜(𝑡) − 𝑣̅௜)൫𝑣௝(𝑡) − 𝑣̅௝൯ඥ∑  ஽௧ୀଵ (𝑣௜(𝑡) − 𝑣̅௜)ଶට∑  ஽௧ୀଵ ൫𝑣௝(𝑡) − 𝑣̅௝൯ଶ > 𝛿 (11) 

Figure 1. The flow chart of PCA-RF.



Energies 2024, 17, 3516 6 of 20

2.1.5. Integrative Modeling of Graph Embeddings and Mahalanobis Distances

Graph neural networks combined with graph networks on some feature correlations
have achieved excellent results in wind speed prediction [21,22]. However, the performance
of graph neural networks is highly dependent on predefined graphs to characterize the
relationships between site features, such as those based on the Pearson correlation coeffi-
cients. Predefined graphs often do not reflect the complex dynamics of wind speed features,
with their quality significantly depending on expert judgment and accurate wind speed
measurements. Considering these factors, this paper introduces a novel compositional algo-
rithm to analyze the spatio-temporal attributes of wind speed. The algorithm acquires node
embedding vectors by employing graph embedding techniques on a predefined graph,
which elucidate the graph’s topology and the inter-node relationships [23]. Subsequently, it
quantifies the distance between node embedding vectors by employing the Mahalanobis
distance [24,25]. The final graph network results from the adjustment of edge relationships
in the predefined graph through a filter based on a threshold Mahalanobis distance.

2.1.6. Construction of Predefined Graphs

In this paper, we use the matrix W obtained above to construct the predefined graph
G = (V, E), where V =

{
VT

1 , VT
2 , VT

3 , . . . VT
g

}
represents the set of nodes. We consider

each column of data of matrix W as the feature vector of a node and the dimension is
g × D where g is the number of nodes and D is the dimension of each node feature. The
set of edges E =

(
eij

)v
i,j=1 embodies the connectivity relationships among nodes within

the network, such that there exists an edge connecting any two nodes Vi and Vj. In the
predefined graphs, the existence of an edge is denoted by eij = 1, which is presented as
follows:

eij =


1, ∑D

t=1 (vi(t)−vi)(vj(t)−vj)√
∑D

t=1 (vi(t)−vi)
2
√

∑D
t=1 (vj(t)−vj)

2 < δ

0, ∑D
t=1 (vi(t)−vi)(vj(t)−vj)√

∑D
t=1 (vi(t)−vi)2

√
∑D

t=1 (vj(t)−vj)
2 > δ

(11)

where δ is the correlation threshold. vi represents the mean value of the i-th node.
Graph embedding is a process that maps graph data into low-dimensional, dense

vectors, preserving the graph’s structure and properties. This process facilitates node
classification, clustering, link prediction, graph reconstruction, and visualization [26]. In
this study, graph embedding techniques are employed to transform a predefined graph
into a continuous vector space. This conversion enables the effective learning of features
and facilitates subsequent data analysis tasks. Certain shallow graph embedding tech-
niques are initiated by randomly selecting neighboring nodes within the network to create
a fixed-length random walk sequence. This sequence is then utilized by the skip-gram
model to project the sequence of nodes into a low-dimensional space, which results in an
embedding vector that captures the essential structural features of the graph [27]. This
method effectively reduces the dimensionality and maintains node contextuality. The
specific process is shown in Figure 2. However, the shallow model is unable to capture
the highly nonlinear structure, which in turn leads to the generation of non-optimal solu-
tions. Recent breakthroughs in deep learning have profoundly impacted graph analysis, as
deep neural network techniques are increasingly employed to advance graph embedding
methodologies [28]. Then we use deep neural networks to perform a nonlinear transforma-
tion of node features and neighborhood information, which leads to the generation of node
embedding vectors that capture the graph’s higher-order dependencies. This approach
allows for a more profound understanding of node characteristics, which optimizes the
graph’s structural representation.
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2.1.7. GraphSAGE-Based Graph Embedding

We employ a deep learning approach grounded in GraphSAGE for graph embedding.
This method leverages node feature information to generate embedding vectors for new
nodes or subgraphs via an enhanced graph convolutional network. It facilitates incremental
updates to node embeddings and preserves the graph’s features and structural information.
Based on this groundwork, the algorithm establishes ‘edges’ that precisely delineate the
relationships between nodes. The specific process is given as follows:

A. Sampling: for node Vi, we randomly sample a subset of its neighboring nodes N(Vi)
from the set of its neighbor nodes Sk to create a subgraph. This method decreases
computational demands yet preserves the heterogeneity among adjacent nodes.

B. Aggregation: for node Vi, we employ an aggregation function AGGREGATEk that com-

presses and transforms the feature vectors of its neighboring nodes
{

hk−1
u ,∀u ∈ N(Vi)

}
to generate a new feature vector hk

Vi
through aggregation. The formula for aggregation

is expressed as

hk
Vi

= σ
(

Qk · CONCAT
(

hk−1
Vi

, AGGREGATEk
({

hk−1
u , ∀u ∈ N(Vi)

})))
(12)

where hk
Vi

denotes the node Vi in the first k layer of the embedding vector, and hk−1
Vi

is the feature vector of node Vi. σ denotes the sigmoid activation function. The
matrix Qk represents the learnable weights. CONCAT signifies the splicing operation.
AGGREGATEk is the aggregation function at the first k layer and N(Vi) refers to the
node Vi neighboring set.

C. Update: for node Vi, the feature vector hk−1
Vi

is concatenated with the aggregated

feature vector hk
Vi

. This combined vector then passes through a fully connected layer
followed by an activation function, which results in the embedding vector hk+1

Vi
for

node Vi. This process facilitates the integration and nonlinear transformation of the
features represented by node Vi with those of its neighboring nodes. The updated
formula is expressed as follows:

hk+1
Vi

= σ
(

Qk+1 · COMBINE
(

hk−1
Vi

, hk
Vi

))
(13)

where COMBINE denotes the splicing or summing operation and Qk+1 denotes the
learnable weight matrix.

2.1.8. Modification of Graph Network Edges

The node embedding vectors obtained through GraphSAGE graph embedding capture
the features of the nodes and the relationships between the nodes. However, they are not
directly used as components of the graph network. In this study, the edge connections are
determined by setting a similarity threshold based on the Mahalanobis distance, which
dictates the connectivity between nodes.
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The Mahalanobis distance quantifies the similarity or divergence between two data
samples by incorporating their covariance matrix. This metric excels at handling features
with varying scales and interdependencies, which effectively neutralizes the impact of
scale disparities and feature correlations. Unlike traditional distance measures (such as
Euclidean distance), which often assume that individual features are independent, real-
world data often exhibit correlations between features. The Mahalanobis distance accounts
for these correlations by utilizing the covariance matrix. Consequently, we employ the
Mahalanobis distance method for optimizing node embedding vectors. This method is
particularly suitable for high-dimensional data influenced by numerous meteorological
factors and can accommodate the conditions of non-independent as well as identically
distributed dimensions. Its calculation formula is expressed as follows:

dmahal =

√(
hk+1

Vi
− hk+1

Vj

)T
Σ−1

(
hk+1

Vi
− hk+1

Vj

)
(14)

where hk+1
Vi

denotes the node embedding vector. The covariance matrix is represented by
Σ, and its inverse is denoted as Σ−1. Finally, we can compute the dimension dmahal and the
correlation threshold α to determine the connectivity of the optimized edges E′ =

(
eij
)v

i,j=1
within the predefined graph network G = (V, E).

eij =

{
1, dmahal < α
0, dmahal > α

(15)

A new graph network G′ = (V, E′) is thus created. The process of embedding the
graph network is illustrated in Figure 3.
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2.2. Spatio-Temporally Integrated Forecasting Model Based on GIN and GRU
2.2.1. Graph Isomorphism Network

GIN is a robust method for learning graph representations, which closely approximates
the graph isomorphism test (WL-test) performance [29,30]. It effectively distinguishes be-
tween non-isomorphic graphs. GIN excels at learning node embedding vectors, discerning
patterns within graphs to enhance efficiency and capturing structural dependencies to
improve performance. The framework of GIN proceeds as follows:

(1) Aggregation. The GIN model employs a summation aggregation function to compile
the feature vectors hk−1

u from the neighboring nodes u ∈ N(Vi) of node Vi, which
aims to integrate the information from all adjacent nodes.

ak
Vi

= ∑ u∈N(Vi)
hk−1

u (16)

where ak
Vi

is the temporary aggregation result at layer k, which contains only the
information of neighboring nodes.
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(2) Combination. The aggregated features of neighboring nodes are combined with the
target node Vi and the features from the previous layer hk−1

Vi
to form a new node

feature hk
Vi

. This process, facilitated by learnable parameters and the nonlinear trans-
formations of a multilayer perceptron (MLP), enhances the model’s ability to learn
and represent complex patterns.

hk
Vi

= MLPk
((

1 + ϵk
)
· hk−1

Vi
+ ak

Vi

)
(17)

where ϵk is a trainable parameter that allows the model to adjust the self-loop when
updating the node features with the contribution. hk

Vi
is the final node feature repre-

sentation after combination.

2.2.2. Gated Recurrent Unit

GRU is a variant of the recurrent neural network (RNN) designed for processing
sequential data, including natural language, speech, and video. Characterized by its dual
gating mechanisms—the reset and update gates—GRU regulates the information flow and
memory within the network [31,32]. This architecture effectively addresses the vanishing
gradient problem, preserves long-term dependencies, and enhances model performance.
GRU is particularly adept at extracting temporal correlations, which makes it a prime
choice for the second layer in deep learning neural networks. The procedural steps are as
follows:

(1) Determine the values of the update and reset gates. The update gate assesses the degree to
which the hidden state from the preceding timestep is retained in the current timestep.
Conversely, the reset gate regulates the proportion of the previous timestep’s hidden
state that is incorporated into the computation of the current state. The formula for
this step is given by

zt = σ(Uz[ht−1, xt] + bz)
rt = σ(Ur[ht−1, xt] + br)

(18)

where zt and rt denote the values of the update gate and the reset gate, respectively.
The sigmoid activation function, represented by σ, is utilized to facilitate the compu-
tation of gradients and enable effective backpropagation. The weight matrices Uz
and Ur, along with the bias vectors bz and br, play a pivotal role in this mechanism.
Additionally, br represents the hidden state from the previous timestep, while xt
corresponds to the input at the current timestep.

(2) Compute the candidate hidden state. This represents the candidate hidden state, obtained
by applying the hyperbolic tangent (tanh) activation function to the current input and
the previously reset hidden state. The formulas are expressed as follows:

∼
ht = tanh(Uh[rt ⊙ ht−1, xt] + bh) (19)

where ht−1 is the candidate hidden state, Uh is the weight matrix, bh is the bias vector,
and ⊙ represents the element-wise multiplication operation.

(3) Compute the current hidden state. The current hidden state is computed as the weighted
average of the previous hidden state and the candidate hidden state, where the
weights are governed by the update gate. The formulas are expressed as follows:

ht = (1 − zt)⊙ ht−1 + zt ⊙
∼
h
′
t (20)

where ht represents the hidden state at the current moment, zt denotes the value of

the update gate, and
∼
h
′
t is the candidate hidden state.

These equations collectively illuminate the dynamic update mechanism of the hidden
state at each timestep, as orchestrated by gated recurrent units (GRUs). This update
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methodology is intricately designed to capture long-term dependencies and complex
patterns inherent in sequential data. Illustrated in Figure 4, the GRU’s input–output
structure includes the current input xt, as well as the transmitted hidden state ht−1 from
the previous timestep, which retains essential historical information. By amalgamating xt
and ht−1, the GRU calculates the hidden node output yt for the current timestep and the
hidden state ht, which will be forwarded to the next timestep.
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2.3. Hybrid Model of GE-GIN-GRU Network

In our study, we explore wind speed prediction models based on GIN and GRU. These
models capture both multi-site wind speed spatio-temporal correlations and wind direction
spatio-temporal correlations, which facilitate accurate local wind speed predictions across
various time domains. The data such as wind direction data, wind speed information,
temperature information, and barometric pressure information are independent time series
from each other. To incorporate feature information affecting loads and prepare it as input
for the GIN, we need to process this information to construct a network graph. In our
study, we use the PCA-RF method to optimize the nodes. Furthermore, more accurate edge
representations are obtained by employing graph embedding techniques in conjunction
with Mahalanobis distance. Graph embedding techniques are intended to augment the
accuracy of graph network within the GIN framework.

Firstly, at the node level, primary features are extracted using PCA-RF and residual
features are dimensionally reduced to retain essential information. This process yields the
g × D fusion matrix W, which serves as the nodes in the predefined graph G = (V,E).

Secondly, at the edge level, the predefined graph G = (V,E) is subject to aggregation and
subsequent updating to obtain the node embedding vector. Subsequently, the Mahalanobis
distance between node embedding vectors is employed as a discriminative criterion to
establish the edges within the newly formulated graph network G′ = (V, E′).

Finally, we use the new graph network G′ = (V, E′) as the input for the GIN-GRU
network. The structure of the proposed GIN-GRU network model is illustrated in Figure 5.
Within this model, the GIN component primarily handles feature extraction; furthermore,
the GRU network focuses on load prediction. The GIN is structured with two convolutional
layers, which sequentially perform the aggregation and combination operations. In the
GRU network component, we observed that a greater number of GRU network units, which
adds to the model’s depth, enhances its prediction capability. Consequently, the proposed
model includes two layers of GRU networks, with 128 neurons in each layer. In each layer
of the GRU network, random deactivation is employed to prevent overfitting. Ultimately,
the wind speed prediction vector is generated through the fully connected layer (Dense).
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3. Results

This subsection is structured into four different parts: the first part introduces the
dataset, the second part analyzes the dimension reduction results of PCA-RF on the dataset,
the third part discusses the results of graph networks for graph embedding, and the fourth
part examines the prediction results of different models on the same test data.

3.1. Datasets and Settings
3.1.1. Dataset

The dataset is historical data for 20 sites along the California coast. Site IDs are 0, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 69, 70, 71, 72, 73, 74, 75, and 76 for 200 days at 15 min
intervals. The size of the preprocessed dataset is set to 5000 and the ratio of the training,
validation, and test sets is set to 6:2:2. Table 1 describes the characteristics of the dataset for
each site.

3.1.2. Experimental Equipment

This experiment implements the TensorFlow 2.10.0 framework in Python 3.10.9 and
accelerates computation through Compute Unified Device Architecture (CUDA). The sim-
ulation hardware platform features an Intel Core i7-10875H CPU (manufactured by Intel
Corporation, Santa Clara, CA, USA) running at 2.30 GHz with 32GB of RAM, comple-
mented by an Nvidia GeForce RTX 2070 GPU (manufactured by NVIDIA Corporation,
Santa Clara, CA, USA).

3.1.3. Error Assessment Criteria

For the multi-site local wind speed prediction with graph network input in the wind
farm, we evaluate its effectiveness using several key metrics. These metrics serve as
indicators of prediction accuracy and performance. The following evaluation metrics are
employed in this simulation: mean squared error (MSE), mean absolute error (MAE),
normalized (RMSE), and normalized mean absolute error (MAPE) [33]. The formulas are
expressed as follows:
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EMSE =
1
n∑n

i=1(yi − ŷi)
2, (21)

ERMSE =

√
1
n∑n

i=1(yi − ŷi)
2, (22)

EMAE =
1
n∑n

i=1|yi − ŷi|, (23)

EMAPE =
1
n∑n

i=1 |yi − ŷi
yi

| ×100%, (24)

where n represents the number of samples, yi denotes the i-th observed value, and ŷi
represents the i-th predicted value. MSE and RMSE quantify the goodness of fit of the
model. Smaller values indicate better performance and reduced prediction error. However,
it’s important to note that MSE and RMSE are sensitive to outliers and can reflect the
distribution of prediction errors. The MAE is the mean of the absolute differences between
the predicted values and the true values. Unlike MSE, MAE is not influenced by outliers and
provides a robust measure of prediction accuracy. MAPE remains unaffected by outliers
and provides insight into the relative error across different data points. MSE and RMSE
are commonly utilized for evaluating model performance, while MAE and MAPE offer
alternative perspectives that take outliers into account, providing a more comprehensive
assessment.

Table 1. Site dataset classification.

Category Variables

Velocity and friction friction_velocity_2 m
Monin–Obukhov length inversemoninobukhovlength_2 m

Roughness roughness_length
Sea temperature surface_sea_temperature

Pressure pressure_0 m, pressure_100 m, pressure_200 m
Humidity relativehumidity_2 m

Precipitation rate precipitationrate_0 m

Wind speed
(at various heights)

windspeed_10 m, windspeed_40 m,
windspeed_60 m, windspeed_80 m,

windspeed_100 m, windspeed_120 m,
windspeed_140 m, windspeed_160 m,
windspeed_180 m, windspeed_200 m

Wind direction
(at various heights)

winddirection_10 m, winddirection_20 m,
winddirection_40 m, winddirection_60 m,

winddirection_80 m, winddirection_100 m,
winddirection_120 m, winddirection_140 m,
winddirection_160 m, winddirection_180 m,

winddirection_200 m

Temperature
(at various heights)

temperature_2 m, temperature_10 m,
temperature_20 m, temperature_40 m,
temperature_60 m, temperature_80 m,

temperature_100 m, temperature_120 m,
temperature_140 m, temperature_160 m,
temperature_180 m, temperature_200 m

General weather parameters wind_speed, wind_direction, pressure,
temperature

3.2. Experimental Results and Analysis
3.2.1. Analysis of PCA-RF

In our study, we address the challenge of extracting meaningful meteorological fea-
tures from a dataset containing 46 variables. Previous attempts using individual methods
yielded inaccurate results and exhibited bias. Therefore, we employ random forest to
identify weather elements that capture essential information from the original variables.
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By doing so, we filter out noise and focus on the most relevant features. Subsequently,
we employ PCA to downsize the remaining minor weather elements. Finally, we fuse the
main features with the dimensionality-reduced data to extract the characteristic weather
elements that significantly impact wind changes. Figure 6 shows the MDI of the first
13 features of windspeed_10 m, which is the feature with the largest contribution to the
other features of the site numbered 0. This paper observed a significant decline in MDI for
all sites after the 10th feature. Consequently, the first 10 features are selected as the main
features. Subsequently, the remaining 36 residual features undergo downsizing via PCA,
which results in a new downscaled matrix with five principal components. Finally, the
main feature matrix and the downscaling matrix are spliced as our feature set to build the
graph network.
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3.2.2. Evaluation of Graph Embedding for Graph Networks

To verify the effectiveness of graph embedding to build graph networks, we will
compare the method of building graph networks solely using the Pearson correlation
coefficient, i.e., the PS-GIN-GRU model. Due to the variability in the number of edges
resulting from distinct threshold settings, we employ the optimally constructed network
graph by both models for training purposes. The constructed graph networks were put into
the same GIN-GRU model training and wind speed prediction at 10 m height for 40 days
was performed. The model’s performance was assessed using four key metrics: MSE,
RMSE, MAE, and MAPE. We compared the predicted wind speeds from several stations
with the actual measurements to validate the model’s effectiveness. The error metrics for
wind speed prediction, as obtained from graph networks constructed by different methods,
are presented in Table 2.

Our focus was on evaluating the stability of predictions across multiple sites. The
GE-GIN-GRU model integrates various neural network algorithms. Notably, this model
demonstrates robustness and strong generalization ability. Models constructed solely using
Pearson correlation coefficients rely exclusively on the correlation threshold method for
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building graph networks. While this approach is straightforward, it lacks the adaptability
and complexity inherent in the GE-GIN-GRU model. We evaluated both models to assess
the stability of wind speed forecasts across various sites. Especially, the GE-GIN-GRU
model consistently outperformed the single correlation threshold model in terms of stability.
Additionally, the GE-GIN-GRU model demonstrated robust prediction quality across
diverse wind speed datasets. Our study underscores the critical role of constructing a
graph that captures intricate relationships among wind speed features. By embedding
vectors within this graph, we enhance accuracy in wind speed prediction. Particularly, the
fusion of graph embedding techniques with neural networks significantly contributes to
the model’s performance and reliability.

Table 2. Comparison results of different methods of constructing graph networks.

Graph Foundation Models MSE RMSE MAE MAPE

①PS-GIN-GRU 2.5422 1.5944 1.4224 0.1151
①GE-GIN-GRU 0.8457 0.9196 0.7612 0.0636
②PS-GIN-GRU 2.7184 1.6488 1.4988 0.1231
②GE-GIN-GRU 1.0712 1.0350 0.8645 0.0726
③PS-GIN-GRU 2.7143 1.6475 1.4856 0.1209
③GE-GIN-GRU 0.9258 0.9622 0.8027 0.0685
④PS-GIN-GRU 2.7724 1.6651 1.4912 0.1208
④GE-GIN-GRU 0.9222 0.9603 0.7897 0.0666
⑤PS-GIN-GRU 2.5713 1.6035 1.4319 0.1160
⑤GE-GIN-GRU 0.8507 0.9223 0.7455 0.0624
⑥PS-GIN-GRU 2.1951 1.4816 1.3085 0.1062
⑥GE-GIN-GRU 1.0044 1.0022 0.8317 0.0705
⑦PS-GIN-GRU 2.2201 1.4900 1.3143 0.1066
⑦GE-GIN-GRU 0.9340 0.9665 0.8060 0.0684
⑧PS-GIN-GRU 2.2993 1.5163 1.3373 0.1079
⑧GE-GIN-GRU 1.1580 1.0761 0.9188 0.0761
⑨PS-GIN-GRU 2.2724 1.5074 1.3321 0.1074
⑨GE-GIN-GRU 0.7793 0.8828 0.7233 0.0613
⑩PS-GIN-GRU 2.1376 1.4620 1.2833 0.1032
⑩GE-GIN-GRU 1.0573 1.0283 0.8545 0.0719

Figure 7 presents the graph networks constructed by various models. With 20 sites
in total, the diagram is divided into 20 corresponding groups. Within this diagram, each
feature is depicted as a node, and features belonging to the same site are denoted by a
uniform color. Figure 7 reveals that the graph networks generated through the Pearson
correlation coefficient possess fewer edges compared to the one constructed via graph
embeddings. Additionally, the node density within the correlation-based graph networks
is comparatively lower, which leads to a more uniform distribution of edge connections. In
contrast, the graph networks constructed by graph embeddings demonstrate a concentrated
focus on specific nodes to capture their profound connections.

3.2.3. Evaluation and Analysis of GIN-GRU Neural Networks

To further validate the effectiveness of the GIN-GRU neural network, we compared it
with recent popular wind speed prediction models: CNN-LSTM proposed by W. Tuerxun [16],
GAT-GRU proposed by D. Aykas [34], and GAT-LSTM proposed by A. Flores [35]. For these
models, we also constructed a network using the TensorFlow 2.10.0 framework in Python
for training and fine-tuning. We evaluated these models using a test set of 20 stations over
40 days for each height wind speed prediction. The input graph network, which is identical
across various models, is constructed utilizing consistent graph embedding techniques.
We employed four key metrics (MSE, RMSE, MAE, and MAPE) to summarize the results.
The results were summarized using four metrics: MSE, RMSE, MAE, and MAPE. The
error metrics for the wind speed predictions made by different neural network models are
displayed in Tables 3 and 4.
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Table 3. Wind speed error metrics predicted by different neural networks at 10 m height.

Error Metrics CNN-LSTM GAT-GRU GAT-LSTM GE-GIN-GRU

MSE 7.7851 2.1808 2.3968 0.8457
RMSE 2.7902 1.4768 1.5482 0.9196
MAE 2.6851 1.3567 1.4009 0.7612

MAPE 0.2283 0.1152 0.1213 0.0636

Table 4. Wind speed error metrics predicted by different neural networks at 30 m height.

Error Metrics CNN-LSTM GAT-GRU GAT-LSTM GE-GIN-GRU

MSE 4.9849 1.3163 1.4214 0.6400
RMSE 2.2327 1.1473 1.1922 0.8000
MAE 2.0489 0.9414 0.9726 0.6076

MAPE 0.1629 0.0759 0.0787 0.0503

As shown in Figure 8, we compare the wind speed predictions for heights of 10 m and
30 m using the GIN-GRU model.

Despite variations in altitude, the GIN-GRU model consistently predicts wind speed
with higher accuracy compared to other models. This result validates the effectiveness of
the proposed method.

An examination of wind speed forecasts using various models at the designated site
for elevations of 10 m and 30 m uncovers notable trends, as illustrated in Figure 9. While
other networks generally align with measured wind speed signals, they often fail to grasp
the nuanced graphical structural relationships. In contrast, GIN excels in this regard by
leveraging additional spatio-temporal nodes as a predictive foundation.
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Overall, both GE-GIN-GRU and other models effectively track wind speed trends.
However, due to the limitations of other models in data processing and their sensitivity
to critical information, the prediction error tends to be larger during wind speed fluctua-
tions. GE-GIN-GRU stands out by leveraging information from neighboring stations. This
approach better simulates unique wind speed patterns across wind of different heights.
Notably, the predicted trend of GE-GIN-GRU closely aligns with the measured wind speed
data, particularly during smooth wind speed changes and gradual increases. Additionally,
during wind speed fluctuation periods, GE-GIN-GRU leverages its nonlinear fitting ability
to approximate the wind speed more accurately than the continuous method.

4. Discussion

To delve deeper into the impact of network graph alterations on wind speed prediction
outcomes within graph neural networks, this study will explore two primary dimensions:
the variations in nodes within the input graph networks and the modifications in edges
within the input graph networks.

4.1. Effect of the Different Nodes on Graph Networks

In this study, we construct the graph nodes using the primary site features obtained
through PCA-RF processing. We focus exclusively on the principal features identified after
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RF processing as the graph’s nodes and deliberately omit the residual feature matrix that is
obtained following PCA dimensionality reduction for our comparative analysis. Tables 5
and 6 present the error metrics for wind speed predictions, following the application of
different feature selection methods to the nodes.

Table 5. Different feature selection methods are utilized to predict the wind speed error metrics at
10 m height.

Error Metrics RF PCA-RF

MSE 2.5422 0.8457
RMSE 1.5944 0.9196
MAE 1.4224 0.7612

MAPE 0.1151 0.0636

Table 6. Different feature selection methods are utilized to predict the wind speed error metrics at
30 m height.

Error Metrics RF PCA-RF

MSE 0.6945 0.6400
RMSE 0.8334 0.8000
MAE 0.6354 0.6076

MAPE 0.0510 0.0503

The distinction between the RF and PCA-RF models is evident in the diminished
quantity of nodes and edges within the graph networks, as presented in Figure 10. To
ascertain the influence of varying nodes, we modulate the threshold to align the number of
edges as closely as possible. Our empirical observations reveal that both models exhibit
parallel accuracy levels in predicting wind speeds at an altitude of 30 m. However, at
a 10-m elevation, the performance of the RF model is significantly inferior to that of the
PCA-RF model. This discrepancy may stem from the presence of nodes in the residual
feature matrix, obtained through the PCA dimensionality reduction, which significantly
enhances the precision of wind speed predictions at the 10-m mark. Conversely, the RF
model which relies solely on the primary feature matrix yields suboptimal predictions due
to an inadequate feature set.
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4.2. Effect of the Different Edges on Graph Networks

The construction of additional edges within the input graph networks do not necessar-
ily correlate with the improvement of prediction accuracy. By varying the threshold value,



Energies 2024, 17, 3516 18 of 20

we manipulate the number of edges via graph embedding and the predictive outcomes are
expressed as Table 7.

Table 7. The impact of varying the number of network edges on the error metrics of wind speed
prediction.

Error Metrics GE-GIN-GRU (362) GE-GIN-GRU (1724) GE-GIN-GRU (3124)

MSE 1.6184 0.8457 1.4014
RMSE 1.2722 0.9196 1.1838
MAE 1.1254 0.7612 1.0025

MAPE 0.0924 0.0636 0.0857

The experimental data suggest that the network achieves peak predictive accuracy
when it maintains a balanced number of edges, as illustrated in Figure 11. A paucity of
edges compromises accuracy due to the neural network’s deficiency in requisite infor-
mation for effective learning. On the other hand, an overabundance of edges leads to
computational inefficiency by introducing unnecessary data, which does not translate to
improved accuracy.
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Furthermore, the capacity for information processing and filtration varies across
graph networks constructed via disparate methodologies. Notably, when a graph network
constructed via correlation amasses 1000 edges, there is a significant decline in the accuracy
of neural network processing. Comparatively, when the correlation and graph embedding
models are used to construct graph networks with an equivalent number of edges, the
latter outperforms the former in terms of quality. This superiority is attributed to the
graph embedding model’s advanced proficiency in feature extraction, understanding of
the dataset’s topology, and advanced analysis of node relationships, which facilitates
the construction of a network graph optimally suited for graph neural network learning.
Moreover, the methods by which various neural networks process graphical networks
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differ significantly. GIN exhibits superior performance over other graph neural networks
in managing intricate network edges, which translates to enhanced prediction accuracy.

5. Conclusions

This paper presents the GE-GIN-GRU model, which synthesizes graph embeddings
and neural network techniques to streamline wind speed prediction for stations within the
study area. The proposed PCA-RF algorithm effectively reduces the number of features
involved in the computation and improves the computational efficiency of the model.
Subsequently, we employed deep learning-based graph embedding techniques to construct
graph networks that capture the interrelationships among the sites. Our graph embedding
methods capitalize on the strengths of both GraphSAGE and the Mahalanobis distance. The
former excels at extracting intricate connections within wind speed features, forming feature
vectors. Meanwhile, the latter demonstrates advantages in processing high-dimensional
feature vectors. By fully leveraging the strengths of these two methods, we construct
optimized graph networks. The GIN-GRU model seamlessly integrates diverse neural
network algorithms to enhance generalization capabilities and improve prediction accuracy.
Consequently, it consistently maintains excellent prediction quality and stability across
wind speed datasets at varying heights. By fully leveraging the strengths of both models,
we achieve deep extraction of spatio-temporal relationship features. In subsequent research,
our primary goal is to construct new graph networks by combining the location coordinates
of the sites with their corresponding nodes.
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