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Abstract: Linear Fresnel concentrators (LFR) are widely seen by the scientific community as one of
the most promising systems for the production of solar energy via thermal plants or concentrated
photovoltaics. The produced energy depends on the optical efficiency of the LFR, which is mainly
dictated by the geometry of the plant. For this reason, the analysis of LFR geometry and its effects on
optical behavior is a crucial step in the design and optimization of a Fresnel plant. The theoretical
and computational tools used to model the optics of a LFR are fundamental in research on energy
production. In this review, geometrical aspects of the optics of linear Fresnel concentrators are
presented, with a detailed discussion of the parameters required to define the geometry of a plant
and of the main optical concepts. After an overview of the literature on the subject, the main part
of the review is dedicated to summarising useful formulas and outlining general procedures for
optical simulations. These include (i) a ray-tracing procedure to simulate a mirror field, and (ii) a fast
quasi-analytical method useful for optimizations and on-the-fly computations.

Keywords: Fresnel collector; geometry of collector; optics of LFR; shadowing; blocking; ray-tracing

1. Introduction

Linear Fresnel reflecting concentrators (LFR) are widely studied and tested for electric-
ity generation. They are seen as one of the most promising tools for solar energy harvesting,
due to their relatively low cost and simplicity. From the pioneering work of Francia [1],
the concept of LFR attracted the attention of researchers worldwide: at first quite sporad-
ically, with some detailed technical reports [2], works on the geometrical design [3–10],
analysis of receivers [11,12] and studies of prototypes [13]; then with a revamped interest in
the new millennium, with the proposal of the Compact LFR (CLFR) geometry [14], followed
by general analyses and other configuration proposals as [15–24]. For reviews, see [25–27].

In an LFR, a solar field composed of relatively narrow mirror strips, each rotating
around an axis at ground level, tracks the sun and sends the reflected radiation to an
elevated fixed receiver. The receiver is usually a thermal absorber where a heat transfer fluid
is heated in order to feed a power block, but it can also be a hybrid PV/T absorber [28,29]
or a (suitably refrigerated) narrow strip of PV modules [30].

Beside the already-mentioned works, a large number of papers devoted to specific
aspects or methods can be found in the literature: proposals, analyses and simulations of
receiver models, such as trapezoidal cavities [31–37], CPC-enclosed single tubes [38–40],
or unusual configurations as a triangular cavity [41] or receivers devised for CPV [42]; CFD
studies of heat transfer [43–46]; proposals and analyses of different heat transfer mecha-
nisms, such as the use of circulating molten salts [47–50], direct steam generation [51–54] or
even nanofluids [55]; technical and economical considerations and optimizations [56–62];
different applications of LFRs, such as desalination [63], roof absorption chillers [64],
Solar-GAX cycle [65], building-integrated PV/T [66] or integration with fuel cells [67,68];
new designs, such as small-scale LFRs [69–74], elevated LFRs [75], beam-down config-
urations [76], and additional movements to reduce end losses [77]; control systems and
algorithms [78–80]; manufacture aspects [81]; energy storage materials [82]; studies for spe-
cific locations, such as Sicily [83] or Cyprus [84]; comparisons between LFR and parabolic
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troughs (PTC) [85–92], sometimes including tower systems in the comparison [93] and
analyses, descriptions and experimental results on built prototypes: the Solarmundo
concentrator [94], the PSA facility in Spain [95–97], the AREVA demonstration plant in
Kimberlina (CA, USA) [98], the molten-salt Partanna plant [99], and other experimental
plants [100–102].

The comparison between LFR and parabolic trough, in particular, evidenced that PTC
clearly has a higher optical efficiency that leads to higher energy production. The estimation
of the overall efficiency reduction is found to be in the range of 23–40% in [86] for a single
tube receiver, the variation being due to the thermal efficiency of the receiver (which can
be evacuated or not); in [87] a lower difference (around 20%) is found. In [88], a reduc-
tion between 23% and 32% is given. In [91] a reduction between 15% and 30% is given,
depending on the location and working conditions. As a general conclusion, an efficiency
reduction around 20–30% of the obtained energy for a LFR plant with the same collector
total area of a PTC can be expected; such a reduction must be weighed against the strong
simplifications of the structures involved (narrow, almost flat mirror strips vs. large curved
collectors), of the movement system (rotation of narrow mirrors around their central axis
vs. the moving of a large structure), the advantage of having a fixed receiver—especially
for high-temperature applications—and the reduction in land occupation. Cost estimations
claim that the specific cost of an LFR mirror field can be only slightly above half of the cost
of a PTC (52% according to [103]).

However, the aspect that attracted the largest amount of research is probably the
system optics. The optical efficiency in any real-life condition is crucial information to
assess the energy yield obtainable from an LFR, which can change considerably with the
plant design and properties. For this reason, the study of optical properties attracted
considerable attention from researchers in the field of solar energy. In the literature one can
find ray-tracing analyses [104], as in [105–108] or analytical methods with different degrees
of approximation [109–112]; theoretical design principles have been proposed [113,114];
shading and blocking effects have been specifically studied [115–117]. Other more specific
analyses can be found, such as the detailed concentration process for different designs [118],
a comparison between cylindrical and parabolic mirrors [119], analysis of the mirror curva-
ture [120], effects of mechanical deformations [121], the analysis of the flux distribution on
the target [122], the aiming strategy [123], high-Zenith analysis [124], end losses compu-
tation [125], analysis of primary mirrors [126], of the spacing gap between mirrors [127]
and analysis of particular optical designs [128–131]. The Incidence Angle Modifier (IAM)—
depending on two incidence angles for LFRs—was analyzed, e.g., in [132–134]. A review
can be found in [27].

Another field strictly related to optical simulation is the optical optimization of the
solar field [135–141], or of more specific aspects such as the focal lengths of the primary mir-
rors [142,143] or the receiver properties [144,145]. These studies underline the importance
of a good geometrical design, in order to reduce shadowing and blocking, to reduce spillage
by correctly tuning the focal lengths of the mirrors and to reduce the impact of mirror
defects. Such optimizations can produce an efficiency increase of 10% and more w.r.t. a
“naive” configuration (adjacent equal mirrors) [135]: this is a significant improvement on
the amount of collected energy.

This review is dedicated to the analysis of the geometrical aspects of the optics of a
Linear Fresnel plant. LFRs show a rather complex optical behavior, mainly dictated by
geometry. LFRs are subject to shadowing and blocking, and their geometry can depend—in
principle—on a large number of parameters (positions, widths and focal lengths of each
mirror strip; height of the receiver; size and shape of the effective target). However, LFRs are
not so complex as to require dedicated software—unlike, for instance, tower systems with
large heliostat fields—and their behavior can be simulated with rather simple instruments.
This review is aimed at supplying a self-contained “toolbox” of concepts, techniques,
formulas and investigation methods in order to build a realistic description of the optical
behavior of a generic LFR, for implementing simulations and, possibly, optimizations.
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Section 2 is dedicated to the general description of a plant, and to the identification
of the parameters that define its geometry, its orientation and the tracking angles of each
primary mirror. Section 3 illustrates a method to build a ray-tracing analysis of a solar field,
following rays up to the effective opening of the receiver. However, in Section 4 it will be
shown that ray-tracing is required only when a detailed distribution of the radiation on the
receiver is needed; if only the overall efficiency is concerned, an accurate and very fast quasi-
analytical method can be used, with a computational time that is a few orders of magnitude
lower than a ray-tracing simulation, and with the same accuracy. Such a quasi-analytical
method is especially recommended for optimization tasks when a large number of different
configurations must be simulated. Section 5 compares the accuracy and the computational
cost of ray-tracing and quasi-analytical methods. In Section 6, the computation of end
losses will be discussed. Section 7 shows examples of the application of the illustrated
methods to two real-life case studies.

2. System Description

A fixed receiver linear Fresnel concentrator (LFR) is composed of two main elements:
(i) a linear, elevated, fixed receiver, suspended above and (ii) a mirror field, formed by a
set of long linear strips of mirrors, each of them rotating around a fixed axis in order to
reflect the radiation towards the receiver. The axes of rotation are placed near the ground
level. The primary mirrors are usually—but not necessarily—slightly bent, in order to
concentrate the reflected radiation beam. A schematic representation of the system in the
transversal section is shown in Figure 1.

In the following, all the angles appearing in formulas are assumed to be measured in
radians. Other units are arbitrary, as long as they are consistent.

yn

H wn

cn

ls lr

Focal line
Effective aperture

Mirror n

Mirror axis

Receiver

qn

y

z

Figure 1. Representation of the transversal section of a LFR, with the notation introduced in the
main text.
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2.1. A Semantic Clarification

In an LFR as described above, despite the name, the mirror field is not a true Fresnel
mirror. In a true Fresnel mirror, the mirror segments are mounted on a common frame,
and each segment reproduces (or approximates very well) the parabolic surface that would
concentrate the radiation towards the common focus. The frame is moved as a whole
to track the sun, together with the receiver. The system is conceptually equivalent to a
parabolic concentrator: the focusing is optimal—except for unavoidable manufacturing
defects—and no shadowing or blocking of the radiation occurs if the system is correctly
designed. In a fixed-receiver LFR, on the contrary, the mirror strips act more like heliostats:
they almost never work in-focus, and they rotate on independent axes (but with a common
rotation speed) to send the radiation towards the fixed receiver. Such a system is optically
less efficient than a true Fresnel mirror, and can suffer from shadowing and blocking
(discussed below in Sections 4.1.2 and 4.1.3); moreover, the fixed receiver doubles the effect
of tracking errors. However, the structural simplicity of a LFR w.r.t. a true Fresnel mirror is
widely seen as advantageous, on the whole.

LFRs are especially studied in view of their use as thermal concentrators, since the
fixed receiver is a strong advantage, and the movements of the necessarily large structures
involved are reduced to the rotation of—relatively narrow—strips of mirrors at ground
level. True Fresnel mirrors have been proposed and tested for concentrating photovoltaic
(CPV) [146–149]: the possibility of using flat mirror segments to approximate the parabolic
profile helps to avoid hotspots on the target, which could be dangerous for a PV module.
However, the use of LFRs for CPV has been proposed as well [30].

2.2. Geometrical Description of the Mirror Field

In this section, the basic structure of the LFR is presented, identifying the parameters
needed to describe its geometry.

When tracking the sun, the mirrors will send the radiation toward a linear receiver.
An accurate definition of the tracking can be given supposing that, in a perfect tracking
condition, all the mirrors will send the central ray of the sun, reflected by the central point
of the mirror, towards a common aiming line, which will be called (somewhat improperly)
the focal line. Note that in principle the so-defined focal line can be different from the
center of the physical receiver element, e.g., if a secondary concentrator is present and
rays are aimed at the secondary opening. The structure of some possible receivers will be
discussed later.

Define a right-handed xyz reference system—which will be called local frame in the
following—with the origin lying in the plane containing the mirror axes (mirror plane in the
following), the x direction parallel to the mirror axes, the y direction lying in the mirror
plane, and the z direction orthogonal to both. Moreover, let the axis z cross the focal line
of the plant (in a positive direction). The y and z axes are shown in Figure 1; the x-axis is
orthogonal to the figure and pointing towards the reader. For brevity, the following “left”
and “right” directions will be understood w.r.t. this figure, i.e., the left edge of an object
(the receiver, a mirror) will be the edge with lower y, and the right edge will be the edge
with higher y.

In order to better visualize the defined reference frame, consider an NS-oriented
system with horizontal mirror axes: the x-axis will point toward the South, the y-axis will
point eastward, and the z-axis will be vertical. The origin of the reference system will be on
the mirror plane, exactly below the focal line. ( Note that a system with the x-axis pointing
North and the y-axis pointing West could be used to describe the same system).

In the following, the xyz system with x-axis towards South, y-axis towards East,
and z-axis towards the Zenith will be called standard frame, or SEV (South-East-Vertical).
A direction in this frame can be described using “standard” Zenith (φs) and Azimuth
(Γs) angles: φs is simply the angle between the given direction and the vertical, Γs is
the angle between the projection of the given direction on the horizontal plane and the
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South direction, considered positive westwards. In the standard frame, the unitary vector
indicating the direction given by (φs, Γs) is

(sin φs cos Γs,− sin φs sin Γs, cos φs). (1)

Note that different conventions can be used in the literature to define the Azimuth angle;
e.g., another quite common convention places the zero of the Azimuth in North direction.

The orientation of the plant can be described giving the relation between the local
frame xyz and the standard frame SEV. This can be conducted by simple solid geometry
using, e.g., a set of three rotation angles with a standard frame as a starting point: the
standard SEV frame can be superimposed to any local frame applying in sequence a
clockwise rotation of an angle Ω1 around the initial z-axis (i.e., the vertical direction), then
a counterclockwise rotation of Ω2 around the new y-axis, and finally a counterclockwise
rotation of Ω3 around the new x-axis (clockwise and counterclockwise rotations around
i-axis (i = x, y or z) are defined looking down from the positive i-axis.)

The choice between clockwise/counterclockwise rotations is arbitrary. A clockwise
rotation of Ω1 was chosen for sign coherence with the Azimuth angle, and counterclockwise
rotations were chosen for the other two angles.

Such a sequence defines the orientation of the plant, and there are immediate interpre-
tations of the rotation angles, that can be easily obtained from measurable properties of
the LFR:

• Ω1 is the standard Azimuth angle Γs of the local frame x-axis;
• Ω2 is the inclination of the focal line w.r.t. the horizontal plane, considered positive if

the local x-axis points downwards;
• Ω3 is obtainable from the inclination of the local frame y-axis w.r.t. the horizon-

tal plane (Ωi, considered positive if local y-axis points upwards) by the relation
sin Ωi = sin Ω3 cos Ω2.

Note that if Ω2 = 0, Ω3 is simply Ωi. The geometrical meaning of the angles can be seen
in Figure 2.

S

E

V

x

y

z

Wi

W2

W1

Figure 2. Angles used to define the orientation of an LFR (by its local xyz frame, red) w.r.t. a SEV
frame (blue).
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Combining the three rotations one can obtain the rotation matrix corresponding to
the change of coordinates from the standard frame to the local frame: if a vector has
components (vS, vE, vV) in the SEV frame, its components in the local xyz frame are vx

vy
vz

 =

 c1c2 −s1c2 −s2
s1c3 + c1s2s3 c1c3 − s1s2s3 c2s3
−s1s3 + c1s2c3 −c1s3 − s1s2c3 c2c3

 vS
vE
vV

, (2)

where c1 = cos Ω1, s1 = sin Ω1, and so on. From this transformation, formulas for the
conversion of standard Zenith and Azimuth angles to local Zenith zl and Azimuth Γl . Local
variables are defined using the z axis as the polar axis, and setting Γl = 0 in the direction of
the x axis.

φl = arccos(s3 sin φs sin(Γs − Ω1) + s2c3 sin φs cos(Γs − Ω1) + c2c3 cos φs) (3)

Γl = −sgn(−c3 sin φs sin(Γs − Ω1) + s2s3 sin φs cos(Γs − Ω1) + c2s3 cos φs)×

arccos
(

c2 sin φs cos(Γs − Ω1)− s2 cos φs

sin φl

)
. (4)

Such cumbersome formulas drastically simplify if some of the Ω angles are 0, as often
happens. Note that the first line of the Azimuth formula is needed only to decide the sign of
the Azimuth, i.e., to guess if the direction points to the semispace with positive or negative
local y. Note also that when sin φl = 0 then Γl is undefined, as it should be.

These formulas are not fully explicit, since φl must be computed first and then used to
compute Γl . A fully explicit formula for Γl can be easily obtained by substitution, but it is
more cumbersome and not very useful.

Once the orientation has been defined, the description of the geometry of a mirror
field must be completed by the sizes and positions of the elements.

A fundamental parameter of an LFR is the height H of the focal line above the mirror
plane, simply defined as the z coordinate of the focal line in the local frame. If the z-axis is
not inclined w.r.t. the vertical direction, H is simply the height of the receiver above the
ground minus the possible elevation of the mirror axes.

The system is composed of N primary mirrors. Their axes are identified by their yn
coordinates, n = 1, . . . , N. Mirrors are numbered in order to have increasing yn, i.e., looking
down from the x-axis, the leftmost mirror has n = 1, and the rightmost mirror has n = N.
Each mirror has a width and a focal length; the semi-width of the n-th mirror is denoted as
wn, and the inverse of the focal length of the n-th mirror is denoted as fn. Semi-widths are
used just for the convenience of notation, while the use of the inverses of the focal lengths
allows one to deal with flat mirrors (setting fn = 0), a case that can be relevant in practice.

Note that some implicit assumptions are made:

• all the mirrors have a common aiming line;
• the mirror axes lie on a common plane;
• each mirror is mounted symmetrically w.r.t. its axis and rotates around its central point.

In conclusion, apart from the receiver specifications, the basic geometry of a mirror
field is defined by 3N + 4 parameters: 3N defining the mirrors (positions, sizes and focal
lengths), one defining the height of the focal line, and three angles defining the orientation of
the local frame. Other auxiliary quantities can be introduced. One is the already mentioned
Ωi, which has a clear geometrical meaning and can be used as a starting input to obtain Ω3.

Other often useful angles are the θn, each associated with a mirror, defined as
θn = arctan(yn/H). Their geometrical meaning is clearly seen in Figure 1.

A set of variables d(n) will be used to identify a point on the transversal section of a
mirror n, in the yz plane: the quantity d(n) is the signed distance from the n-th mirror axis.
Note that d(n) is comprised of −wn and wn.
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2.3. Incidence Angles and Tracking

In the local system of a LFR, in order to identify a direction (e.g., the position of the
sun) two angles are usually employed: the transversal incidence angle α and the longitudinal
incidence angle γ. Here γ is defined as the angle between the considered direction and the yz
plane, and α is defined as the angle between the z-axis and the projection of the direction on
the yz plane. The angle γ is in the range [−π/2,+π/2], and is considered positive when
the x component of the direction is positive; α is in the range [−π,+π] and is considered
positive when the y component of the direction is negative, in order to have the sign of α
coherent with the sign of the local Azimuth. (Of course, other ranges or sign choices are
possible. One should always check carefully the choice of the authors.).

With the chosen conventions, if a direction has angles α and γ, the unitary vector
pointing in that direction is

v̂ = (sin γ,− cos γ sin α, cos γ cos α). (5)

Such angular coordinates are not so different from an azimuthal system; however, here the
“vertical” axis lies along the x-axis and an “elevation” angle (γ) is used instead of a zenithal
one. The conversion from (φl , Γl) to (α, γ) can be conducted via the relations:

γ = arcsin(sin φl cos Γl);

α = sgn(sin φl sin Γl) arccos(cos φl/ cos γ). (6)

The angle α, being an azimuth-like angle, is undefined when cos γ = 0.
The equation for α deserves two comments:

1. the formula is universal, in the sense that it is correct everywhere α is well defined
(i.e., when cos γ ̸= 0), and it gives correct angles and signs also when φl > π/2. But if
one limits the considered cases to φl ≤ π/2, the simpler formula (without the sign
function) can be used:

α = arcsin(sin φl sin Γl/ cos γ) (for φl ≤ π/2), (7)

saving the computation of a trigonometric function.
2. formulas for α, both in (6) and in (7) versions are not fully explicit, since γ must

be computed before α. Fully explicit formulas for α from (φl , Γl) can be obtained

substituting cos γ with
√

1 − sin2 γ =
√

1 − (sin φl cos Γl)2 (note that the sign is
always correct, since −π/2 ≤ γ ≤ π/2). Note however, that α and γ are usually
computed together, so (6) (or (7)) can be applied.

A simpler, explicit relation is α = arctan(tan φl sin Γl), but this is applicable only when
φl < π/2 (strictly).

Note that another angle is often used, which may be called “longitudinal incidence
angle” too: it is the angle ζ between the z-axis and the projection of the given direction
on the xz plane, obtainable (for φl < π/2 only) by the formula ζ = arctan(tan φl cos Γl).
Sometimes the angle γ is called simply “incidence angle” (in analogy with trough systems)
and ζ is called “longitudinal angle”. So, when reading the literature, one should always
check carefully which of the two angles γ and ζ is used by the authors, and the nomen-
clature they adopt. In this work, only the angle γ will be considered and no ambiguities
should arise.

Note, however, that the IAM is often given as IAM(α⊙, ζ⊙), where the subscript
⊙ denotes sun coordinates, following McIntyre [150] who proposed a factorization as a
product IAM(α⊙, 0)IAM(0, ζ⊙). However, the use of γ⊙ allows for an equally satisfying—
maybe even better— factorization [151].
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The coordinates α⊙ and γ⊙ are the coordinates α and γ of the center of the sun,
respectively. In perfect tracking conditions, each mirror strip will be rotated at an angle χn
w.r.t. the horizontal position, as shown in Figure 1. A formula for χn is easily obtained:

χn =
α⊙ + θn

2
. (8)

Note that the rotation speed is common for all the mirror strips.
In real conditions, tracking cannot be perfect. Two kinds of tracking errors can be

identified: coherent tracking error, in which all the mirrors have the same deviation from
the correct tracking position, and random tracking error, in which each mirror strip has a
deviation taken from a random distribution. Coherent tracking errors are more harmful but
less interesting because they can be corrected simply by modifying the tracking algorithm.
Random tracking errors can be directly simulated by adding a deviation δn to each χn,
with δn taken from a random distribution, usually a Gaussian whose standard deviation
quantifies the tracking error. However, note that such a procedure is not the best way to
obtain the average behavior of an LFR. Since the number of mirrors is quite limited (in the
order of tens) a single simulation with a fixed set of δn assigned to each mirror will likely
exhibit very specific behaviors that should be averaged on a sufficiently large number of
simulations with different assignments of δn. Such a procedure is computationally slow and
is not recommended unless the aim is exactly the observation of the peculiarities that can
arise as the effect of tracking errors (e.g., possible radiation spikes on the receiver). If only
the averages are concerned, one should note that the effect of a random tracking error is,
on average, the same as the effect of slope errors in the transversal section of the mirrors.
The small difference between the two types of error is only due to the position of the mirror,
which is altered by tracking errors but not by slope errors. However, this is a negligible
effect: for instance, a tracking error of 0.2 mrad changes the position of the extremities of a
1 m wide mirror of 1 mm only. So, if the average effect of tracking errors is needed, the best
way to deal with random tracking errors is to add the variance of their distribution to the
variance of the transversal slope error (supposing both are Gaussian). The simulation of
cumulative slope/tracking errors will be discussed in the next two sections.

The tracking angle χn allows one to establish a relation between the relative coordinate
d(n) of a point on the mirror n and the local Cartesian coordinates y and z:

y = yn + d(n) cos χn, z = d(n) sin χn. (9)

2.4. Receiver

A large variety of receivers has been proposed and built [31–42], and the receiver
is surely the element for which it is more difficult to make a general analysis. However,
a large family of receivers—surely the vast majority of the proposals—are characterized
by a horizontal flat effective target. Among this group, the two most widely proposed
alternatives are a set of parallel tubes enclosed in a shallow trapezoidal cavity [31–37] or a
single tube—possibly evacuated—enclosed in a secondary reflector, usually a CPC, whose
opening is the effective target [38–40]. In some cases, the physical receiver is itself a flat
element, such as a rack of evacuated Dewar tubes, like one of the models described in [14],
or a strip of PV cells [30].

The universality of the flat horizontal effective opening suggests a simulation strategy
based on the decoupling of the mirror field from the receiver. It is possible to perform a gen-
eral simulation of a mirror field assuming a flat horizontal target, computing the incident
radiation on the effective receiver aperture: then, the incident radiation is multiplied by an
overall receiver optical efficiency ηrec, obtained in advance by accurate ray-tracing simu-
lations of the receiver. The result is the radiation absorbed by the receiver. The efficiency
ηrec may or may not depend on the sun incidence angles α⊙ or γ⊙, or even on the tracking
or slope errors, depending on the desired accuracy. Sections 3 and 4 will be devoted to
building an accurate simulation of a mirror field with a horizontal flat effective target.
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Of course, decoupling is not possible when details of the radiation distribution on
the physical receiver are required. In such cases, ray-tracing of the complete system must
be used. The first steps of the ray-tracing—up to the receiver aperture—are illustrated
in Section 3.

Other less common choices for the receiver deserve to be mentioned, characterized by
different shapes or orientations of the effective target:

• A tubular receiver without a secondary reflector: the target is the tube itself, which
presents the same section view from every direction. Such a configuration favors the
mirror farther from the axis, allowing a higher width/H ratio for the plant, but the
absence of a secondary is a strong disadvantage for tracking.

• A triangular receiver [6], in which the mirrors with yn > 0 aim at an effective target
that is flat and inclined to face more favorably this half of the mirror field, and the
opposite happens for mirrors with yn < 0. In fact, from the optical point of view,
the two halves of the mirror field can be considered as two independent LFRs, reducing
the analysis to the next case;

• A more general case with a flat, but inclined effective target, e.g., for EW-oriented
plants: triangular receivers are then just a couple of symmetrical, non-superimposing
plants of this kind;

• A flat vertical target, such as the vertical rack of Dewar tubes discussed in [14], can be
considered a degenerate triangular receiver.

Figure 3 shows some of the receivers discussed above.
In the following two sections, when describing simulation methods, the effective target

will always be taken as a flat horizontal surface, with semi-width lr; another semi-width ls
will be used to describe the shadowing due to the receiver itself.

a) b)

d)c)

Effective aperture

Effective aperture

Effective aperture

Effective aperture

Effective aperture

HTF Insulating layer

Insulating layer

PV cells

HTF

HTF

Cooling duct

Effective aperture

Figure 3. Some of the possible receivers proposed for LFR. (a) Receiver tube enclosed in a secondary
CPC (section). The tube may or may not be evacuated; the CPC may or may not be closed by a
transparent window. (b) Multiple tubes in a trapezoidal cavity (section). The cavity may or may not
be closed by a window. (c) Rack of Dewar tubes (see ref. [14]) that transfer heat to a common pipe,
in horizontal arrangement. The tubes can also be arranged vertically. (d) Flat receiver for CPV with a
refrigeration duct (see ref. [30]).
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3. Methodology for Ray-Tracing Simulations

In this section, a general scheme and some useful formulas for building a ray-tracing
simulation of a LFR will be given, up to when the ray reaches the aperture of the receiver.
Note, however, that ray-tracing simulations are slow and are recommended only for
studying specific configurations and for obtaining details on the radiation distribution.
If only global efficiencies are concerned—e.g., for optimization purposes—ray-tracing is
not recommended. An equally accurate and significantly faster quasi-analytical method is
available, which will be described in Section 4.

The effective target is assumed to be a flat horizontal surface. The aiming line is
y = 0, z = H. Consider a ray coming from the direction (α, γ) (not necessarily (α⊙, γ⊙),
since solar divergence should be considered). The starting point of the ray is (x0, y0, z0).
Of course, z0 > H, in order to correctly describe the shadow projected from the receiver.

3.1. Receiver Shadow

The first thing to check is if the ray is intercepted by the rear side of the receiver before
hitting any mirror; in this case, the ray is lost. In most practical cases, the shadowing effect
of the receiver can be effectively simulated as if it were caused by a flat surface, equal or
larger in width than the effective target, and placed at the same height. This can look like a
rather rough approximation since the shape of receivers can be far from flat, even when the
effective target is flat. However, when the receiver shadow falls within the mirror field, it
is often caused by the largest horizontal extension of the receiver. As an example, in the
case of a receiver with a trapezoidal encasing (see Figure 3a,b), if the side of the receiver
has a (quite steep) inclination of 60 deg w.r.t the horizontal plane—resulting in a bulky
structure—the analysis will be exactly correct for a mirror field that extends for 60 deg
below the receiver (e.g., if H = 10 m the mirror field would be around 11.5 m). So, using a
flat surface to compute the shadow is a simplification that produces good results more often
than one might think, with small errors involving only the more external mirrors. In other
cases, this first part of the analysis should be replaced with a more detailed computation.

The computation for a flat surface is quite simple. The ray has a direction versor

î = (− sin γ, cos γ sin α,− cos γ cos α) (10)

(remember that the ray is coming from the (α, γ) direction). The ray will intersect the plane
z = H at

ys = y0 + (z0 − H) tan α. (11)

If |ys| < ls, the ray is intercepted by the effective shadowing plane and it is lost. Otherwise,
the analysis can go on.

Note that formula (11) is correct only for −π/2 < α < π/2, otherwise it is meaningless
(when tan α = 0) or it gives spurious solutions (when |α| > π/2). In practice, one is unlikely
to encounter this limitation, since the rays considered in a ray-tracing simulation will be
always shot from above toward the mirror field. Possible pathological limit-cases should
be checked in advance. This consideration will hold in all the following analyses.

3.2. Selecting Which Mirror Is Hit, and Computing the Incidence Point

If the ray is not shadowed by the receiver, it can hit a mirror. In order to check if a ray
hits a mirror, one should compute the intersection of the ray with the plane containing the
mirror and then check if it is within the mirror width. When computing the intersection
point, mirrors can be considered flat: curvature has no significant effect on the computation
of the intersection point. As an example, consider a cylindrical mirror with a width of 1 m
and a focal length of 10 m: such a mirror has a curvature radius of 20 m, so it subtends an
angle of 1/20 rad. With a bit of trigonometry, one can easily obtain that the distance of the
edge of the mirror from the plane tangent to the mirror vertex is well below a millimeter,
and this is the maximum error on the intersection point.
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The equation of the plane in which mirror n lies is

z = (y − yn) tan χn. (12)

Project the ray in the yz plane. The coordinates (yi, zi) of the intersection between
the projected ray and the plane containing the mirror n will be given by intersecting the
parametric line y = y0 + t sin α, z = z0 − t cos α (that is, the parametric equation of the
projection of the ray in yz plane: t is the parameter) with the mirror plane (12). After a bit
of computation, the intersection coordinates are given by

yi = yn + cos χn
(y0 − yn) cos α + z0 sin α

cos(α − χn)
, zi = sin χn

(y0 − yn) cos α + z0 sin α

cos(α − χn)
. (13)

The signed distance d(n)i of the intersection point from the mirror axis is

d(n)i = (yi − yn)/ cos χn =
(y0 − yn) cos α + z0 sin α

cos(α − χn)
. (14)

If
∣∣∣d(n)i

∣∣∣ ≤ wn, the mirror is hit; otherwise it is missed.
According to these computations, it can happen that more than one mirror is “hit” by

the ray. Of course, this cannot really happen, but it can occur in the computation when
a mirror shadows an adjacent mirror: the geometrical ray intersects both, but only the
first is really hit. One can safely identify the first mirror considering that, if the ray has
α > 0, the first intercepted mirror will be the one with the smaller n; on the contrary, if the
ray has α < 0, the first intercepted mirror will be the one with the larger n. So, when
α > 0 the analysis can proceed from n = 1, increasing n until the first mirror is intercepted,
and stopping there; when α < 0, the analysis should start from n = N, decreasing n until
the first intersection is found. Such a procedure correctly manages the reciprocal shadowing
between adjacent mirrors, without any further analysis. Note that when α = 0 no multiple
intersections can be found.

Of course, it can happen that no mirrors are intercepted: in this case, the ray is lost.
Many optimizations can be devised to speed up the procedure of identifying the hit

mirror, without checking all the mirror sequences. For instance, one can estimate the range
in which the ray will intersect the mirror plane and check only the mirrors in the region,
or start the search from the last mirror hit by the last ray shot. Such methods can be easily
devised and applied on a case-by-case basis.

3.3. Reflected Ray

Once the mirror hit by the ray is correctly identified and (yi, zi) is computed, the re-
flected ray must be built. This can be conducted simply by considering that its starting
coordinates yi and zi are known (xi is irrelevant due to translational symmetry), and one
can obtain the direction versor r̂ of the reflected ray by applying the vectorial reflection law

r̂ = î − 2n̂
(
î · n̂

)
. (15)

Here, n̂ is the unitary vector normal to the surface. The versor n̂ can be easily computed
from d(n)i , with two slightly different formulas for parabolic and cylindrical mirrors:

n̂ = (0,− sin ξ, cos ξ), (16)

ξ = χn + arcsin(d(n)i fn/2) (cyl.), ξ = χn + arctan(d(n)i fn/2) (par.).

In practice, in the plausible curvature range for LFR, cylindrical and parabolic mirrors are
equivalent, and the formulas for ξ can be unified as the more simple

ξ = χn + d(n)i fn/2. (17)
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The error due to this approximation can be easily estimated: if a mirror is 1 m wide, and the
focal length is 10 m long, the values of arcsin(d(n)i fn/2) and arctan(d(n)i fn/2) differ less

than 10−5 from d(n)i fn/2, causing an error well below 0.2 mm on the intercept point of a
target 10 m afar. So, (17) can be safely used in computation, and the difference between
parabolic and cylindrical mirrors can be neglected.

If one desires to consider possible slope errors in the analysis, the components of n̂
can be perturbed introducing a random deviation of the desired size (remembering to keep
n̂ normalized to 1). If longitudinal slope errors are considered, a component nx of n̂ can be
present. The random deviation in the transversal direction (i.e., in the plane yz) can also
include the random tracking error, as illustrated in Section 2.3.

So, the reflected ray projection in the yz plane will have the parametric equations

y = yi + r̂yt, z = zi + r̂zt. (18)

The cosine of the incidence angle is simply −î · n̂.

3.4. Is the Reflected Ray Blocked?

Reflected rays can be blocked by adjacent mirrors. If a ray is reflected by nth mirror
with yn < 0, the ray can be blocked by the rear side of the (n + 1)th mirror; if yi > 0, the ray
can be blocked by the (n − 1)th mirror. In theory, one can imagine unusual configurations
in which the ray is blocked by a non-adjacent mirror (e.g., for yi < 0, with a very small
(n + 1)th mirror and a very large (n + 2)th mirror); so, a rigorous analysis would extend
to all the mirrors that follow (when yi < 0) or proceed (when yi > 0) the reflecting mirror.
However, such cases are purely theoretical and are extremely unlikely to happen in real
plants with a plausible design.

In order to check if the ray is blocked, just intersect the line (18) with the plane
containing the mirror m, with m = n ± 1. The intersection coordinate yb is given by

yb =
yi r̂z − ym r̂y tan χm − zi r̂y

r̂z − r̂y tan χm
. (19)

The local coordinate d(m)
b of intersection on mirror m is

d(m)
b =

(yi − ym)r̂z − zi r̂y

r̂z cos χm − r̂y sin χm
. (20)

If
∣∣∣d(m)

b

∣∣∣ < wm the ray is blocked, and consequently lost; otherwise, the analysis can proceed.

3.5. Does the Ray Hit the Receiver?

The reflected ray—if not blocked—can be used as input for detailed ray tracing models
of the receiver. The y coordinate at which the ray hits the effective target can be computed
in order to verify—before any other analysis—if the ray hits the target or not.

The yt coordinate is simply the y at which the reflected ray crosses the plane z = H,
that is

yt = yi +
r̂y

r̂z
(H − zi). (21)

If |yt| ≤ lr, the ray hits the effective target, otherwise it is lost.

3.6. Sum of the Contribution of All the Rays

The four simple passages illustrated above allow one to build ray-tracing simulations
of an LFR mirror field, up to the entrance in the receiver aperture, without the need for a
general purpose ray-tracing software. At this point, one could carry on the analysis using
the ray as input for a ray-tracing simulation of the receiver, or the analysis can be stopped
with the rays hitting the effective target. The concluding part of this section will describe
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how to choose the rays to shoot, and how to normalize the results to obtain the radiation
entering the aperture.

In order to compute the absorbed radiation, one should consider not only if the ray
hits the target, but also how much energy the ray carries when entering the receiver. So,
each ray will give a contribution proportional to

• the reflectivity of the mirror it hits;
• the cosine factor.

In some cases, the reflectivity of the mirrors can be assumed to be constant. In other
cases, its dependence on the incidence angle should be taken into account. More precisely,
the reflectivity ρ can be written as a function of the cosine of the incidence angle (−î · n̂),
already computed.

Given a sun position (α⊙, γ⊙), the procedure to follow for implementing a ray-tracing
simulation can be summarized in the following steps:

1. In the yz plane, choose a horizontal segment of length L above the receiver (z > H),
making sure that the radiation coming from this region will “cover” entirely the
mirror field;

2. From this segment, shoot a sample of Nrays rays with a uniform distribution of
the starting coordinate y (the starting x coordinate can be set to 0), and with an
angular distribution of the rays that reproduces the solar divergence around (α⊙, γ⊙)
according to the chosen sun profile. Both the starting points and the directions can be
chosen randomly (Monte Carlo ray tracing) or distributed on a uniform grid. The first
option is safer (no systematic errors due to the discretization) but significantly slower;

3. Shoot each ray of the sample, as illustrated: if it hits the receiver, add the quantity
ρ
(
−î · n̂

)
to the “absorbed” energy;

4. Normalize the absorbed energy multiplying by the quantity cos φl,⊙L/Nrays: here
φl,⊙ is the local Zenith of the sun, that is, the incidence angle of the radiation on the
mirror plane, and it accounts for the cosine factor. The following relation holds:

cos φl,⊙ = cos γ⊙ cos α⊙. (22)

The result is the power that enters the receiver per length unit, for a unitary DNI. The
procedure actually involves an approximation, since the rays coming from within
the sun radiation cone are considered equivalent, neglecting the cosine effect of
peripherical rays when they contribute to the DNI; it is clearly a negligible effect (the
cosine of the solar angular size differs by about 10−5 from 1).

Since the yt of each ray is computed (21), the target ([−lr,+lr]) can be divided in many
sub-segments, and the partial efficiency for each sub-segment can be computed, in order to
build a radiation distribution on the target.

Note that the analysis considered only the radiation that hits the effective target, which
was assumed to have perfect efficiency. One should not forget to include the receiver
efficiency in the analysis, as already discussed in Section 2.4.

4. Quasi-Analytical Analysis

As anticipated, ray-tracing is required only if a detailed radiation distribution is
needed, or as a starting point for a complete ray-tracing simulation including the receiver.
But if only the global efficiency of the system is concerned—and the receiver can be
reasonably decoupled from the mirror field—a faster way to obtain accurate results is
advisable. Fresnel systems are not too complex to be analyzed via a quasi-analytical
method that does not involve discretizations. Such a method is based on the concept of the
“active part” of a mirror, i.e., the part of a primary mirror that sends the radiation to the
target; the computation of the active part for collimated rays and the method to deal with
solar divergence and slope/tracking errors will be illustrated in this section. The method is
called quasi-analytical because, although it requires some numerical computations, these
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are limited to the solution of non-linear equations and to quadrature methods; they are not
strictly related to the modeling of the system—as is the case in ray-tracing—and can be
performed with high accuracy via standard methods. The quasi-analytical method is orders
of magnitude faster than an accurate ray-tracing simulation, and it is surely advisable for
optimization purposes or on-the-fly computations included in larger simulations.

4.1. Collimated Radiation

This subsection will illustrate the analysis for collimated radiation, coming from a
given direction(α, γ). All the computations for collimated radiation will consider a perfect
system, without slope errors. Slope and tracking errors will be introduced later with the
methods illustrated in Section 4.2.

The efficiency of the LFR under collimated radiation can be performed by computing,
for each mirror, the useful surface, i.e., the area of the mirror that will send radiation to the
receiver. The sum of such areas, multiplied by the radiation intensity, by appropriate cosine
factors and by the mirror reflectivity—possibly depending on the incidence angle—will
give the radiation incident on the target.

For the mirror n, the effective useful surface will have a section length An in the plane
yz. This can be computed by eliminating from the mirror surface the regions that

1. are shadowed by the receiver;
2. are shadowed by other mirrors;
3. reflect radiation that is blocked by adjacent mirrors;
4. reflect radiation that does not hit the target.

In the following, the methods for computing the active region of each mirror will
be illustrated.

All the analysis can be made in the yz plane, considering only the projection of the
rays and the sections of mirrors and receivers. So, in the following, “rays” and “lines” must
be intended as yz projections, unless otherwise specified.

4.1.1. Receiver Shadow

Consider the mirror n. The plane containing its surface, as already seen, is given by

z = (y − yn) tan χn. (23)

The projection of the shadow of the receiver on this plane can be easily found, intersecting
the rays that cross the edges of the shadowing surface with the mirror plane. The projections
on yz of the two rays have the parametric equation

z = H − t cos α, y = ±ls + t sin α, (24)

where the sign − corresponds to the edge with y = −ls, and the sign + to the edge with
y = +ls. The two intersections are given by

y± =
(H cos χn + yn sin χn) sin α ± ls cos α cos χn

cos(α − χn)
. (25)

Using the local coordinate d(n) on the mirror n, the two intersection points are given by

d(n)± = (y± − yn)/ cos χn =
H sin α + (−yn ± ls) cos α

cos(α − χn)
. (26)

Five cases can happen:

1. d(n)− > wn or d(n)+ < −wn: the mirror n is not shadowed by the receiver.

2. −wn < d(n)− < wn and d(n)+ > wn: the mirror region from d(n)− to wn is shadowed.

3. d(n)− < −wn and −wn < d(n)+ < wn: the mirror region from −wn to d(n)+ is shadowed.
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4. −wn < d(n)− < d(n)+ < wn: the mirror region from d(n)− to d(n)+ is shadowed.

5. d(n)− < −wn and d(n)+ > wn: the entire mirror is shadowed (and the analysis for mirror
n can terminate here).

4.1.2. Mirror Shadowing

In order to determine if the mirror n is shadowed by other mirrors, one should check
if α > 0 (in this case, the possible shadowing mirrors are n − 1, n − 2, and so on) or if
α < 0 (in this case, the possible shadowing mirrors are n + 1, n + 2, and so on). In real-
life configurations is very likely that only the shadow from the adjacent mirror (n + 1 or
n − 1) could be considered (this is certainly true, e.g., when all the mirrors have the same
width), but in principle, one can imagine situations in which the shadowing mirror can
be more distant (e.g., a very small n + 1 mirror and a very large n + 2). In the following,
the shadowing of mirror n from a generic mirror m will be considered; the values of m will
be, usually, only n + 1 or n − 1, but the reasoning is valid for each possible pair of mirrors
one would like to check.

When α > 0, mirror n can be shadowed by mirrors with m < n. The right edge of
mirror m has coordinates y = ym + wm cos χm, z = wm sin χm. The ray intersecting this
edge is

y = ym + wm cos χm + t sin α, z = wm sin χm − t cos α. (27)

If this ray hits the mirror n, it means that the shadow of mirror m partially covers mir-
ror n. The intersection of the ray with the plane containing mirror n can be easily
computed, yielding

y =
yn sin α sin χn + ym cos α cos χn + wm cos χn cos(α − χm)

cos(α − χn)
. (28)

From y, the coordinate d(n)s of intersection can be obtained, as usual:

d(n)s =
(ym − yn) cos α + wm cos(α − χm)

cos(α − χn)
. (29)

If d(n)s < −wn, mirror n is not shadowed by mirror m. If −wn < d(n)s < wn, the mirror
region from −wn to d(n)s is shadowed. In principle, it can also happen that d(n)s > wn: in
this case, mirror n is completely shadowed by mirror m (and this is a clear indication that
the shadow of m can extend also to n + 1 and following).

It could also happen, in principle, that the left edge of n − 1 mirror projects a shadow
within the nth mirror width, if the sun is very near to the horizon, the mirrors present strong
differences in wns, the mirror field is elevated and no shadowing obstacles are present
under it; but such theoretical limit-cases can be ignored in practice.

The same reasoning applies, when α < 0, to the shadow of mirrors at the right of n,
with m > n. In this case, the ray passing by the left edge of the mirror m must be projected
in the plane of n. The result is (note the different signs):

y =
yn sin α sin χn + ym cos α cos χn − wm cos χn cos(α − χm)

cos(α − χn)
, (30)

d(n)s =
(ym − yn) cos α − wm cos(α − χm)

cos(α − χn)
. (31)

In this case, if d(n)s > wn, mirror n is not shadowed by mirror m. If −wn < d(n)s < wn,
the mirror region from d(n)s to wn is shadowed. If d(n)s < −wn, the whole mirror n is shadowed.
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4.1.3. Blocking

Up to now, the active part selection excluded the parts of the mirror that are shadowed
either by the receiver or by the other mirrors: the remaining part receives and reflects
radiation. However, the reflected radiation can be blocked by adjacent mirrors. If yn < 0,
the reflected radiation beam can be partially blocked by the mirror n + 1; ; if yn > 0,
the reflected radiation can be blocked by mirror n − 1. A mirror with yn = 0 cannot suffer
from blocking. In theory, also non-adjacent mirrors could block the reflected radiation (see
Section 3.4), but such purely theoretical cases will be excluded from the following analysis.

The procedure for blocking analysis deserves some preliminary comments. Blocking
should be, in fact, a minor problem in a well-designed LFR plant: it is quite easy to devise
a geometry where blocking of rays directed towards the target is impossible, and even
when constraints do not allow building a blocking-free plant it is likely that blocking
would only affect a few mirrors. So, before embarking on the computations of blocking,
one should always check if the analysis is required. So, it is advisable to perform a set of
preliminary checks, illustrated in the following: the checks are, in fact, somewhat redundant
when taken as a whole, but each of them can ensure the absence of blocking and save
computational time.

First of all, one should check if blocking analysis is required at all for the given mirror
n. It is clear that if each point of the mirror has a complete view of the target surface for
any tracking position, blocking is irrelevant. This does not mean that reflected rays cannot
be blocked, but in any case, the blocked rays would not hit the target. So, before any other
computation, one can spot the mirrors for which such a condition holds: for these mirrors,
blocking analysis can be avoided.

Consider the case yn < 0. From the construction shown in Figure 4, one can easily see
that a sufficient condition for the absence of blocking is

(yn+1 − yn) cos β ≥ wn + wn+1, β = arctan
lr − yn

H
− arcsin

wn√
H2 + (lr − yn)

2
. (32)

Note that this is only a sufficient condition, but it is a good approximation of the true exact
condition and is much easier to compute (moreover, this condition rigorously holds also
in the presence of tracking errors, while the exact condition is obtained supposing perfect
tracking.). For yn > 0, the same reasoning leads to

(yn − yn−1) cos β ≥ wn + wn−1, β = arctan
lr + yn

H
− arcsin

wn√
H2 + (lr + yn)

2
. (33)

So, before the analysis of any specific tracking positions, one can list the mirrors that
satisfy condition (32) (for yn < 0) or (33) (for yn > 0) and exclude them from any further
computations of blocking. Note that the two conditions give a simple procedure to build a
blocking-free mirror field (but not a minimal one), placing the left-side mirrors in order to
satisfy (32) and the right-side mirrors in order to satisfy (33).

For the other mirrors, blocking analysis is required for each tracking position. Consider
a mirror with yn < 0. Three simple preliminary checks can be conducted:

1. First check: if χn > 0, the mirror cannot suffer from blocking and the analysis
stops here.

2. Second check: if the line connecting the rightmost point of the mirror to the rightmost
point of the receiver is not blocked by mirror n + 1, the mirror cannot suffer from
blocking (rays directed to the target cannot be blocked). The line has equation

(z − H)(yn + wn cos χn − lr) = (y − lr)(wn sin χn − H), (34)
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and the plane of mirror n + 1 is z = (y − yn+1) tan χn+1. After a bit of computation,
the coordinate d(n+1)

b of intersection on the mirror n + 1 can be obtained:

d(n+1)
b =

(yn − yn+1 + wn cos χn)H + wn(yn+1 − lr) sin χn

(yn − lr) sin χn+1 + wn sin(χn+1 − χn) + H cos χn+1
. (35)

If d(n+1)
b < −wn+1, blocking is not present and the analysis stops here.

3. Third check: if the rightmost ray reflected from mirror n is not blocked by mirror
n + 1, the mirror cannot suffer blocking (rays reflected by mirror n cannot be blocked).
The local coordinate on n + 1 mirror of the intersection is

d(n+1)
b =

(yn − yn+1) cos(α − 2χn − wn fn) + wn cos(α − χn − wn fn)

cos(α − 2χn − wn fn + χn+1)
. (36)

This equation makes use of the equation for the reflected ray projected on section yz
(see below), and of the simplified Formula (17).
If d(n+1)

b < −wn+1 blocking is not present.

A

C

Mirror n

Mirror n+1

(yn+1-yn) cos b

Receiver

y

z

b

Figure 4. Geometrical construction to obtain a sufficient condition for the absence of blocking: line A
must not intersect circle C.

If none of the above conditions are verified, it means that mirror n suffers from blocking
from the mirror n+ 1. So, one should identify the part of mirror n that is “inactive”, meaning
that the reflected radiation is blocked by mirror n + 1.

Consider the reflected ray coming from mirror n and starting from the point d(n)i ,
projected as usual on the plane yz, for perfect tracking and no slope errors

y = yn + d(n)i cos χn + t sin(α − 2ξ), z = d(n)i sin χn + t cos(α − 2ξ). (37)
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The angle ξ depends on d(n)i and is given by Formula (17). The intersection coordinate

d(n+1)
b between this reflected ray and the plane of the mirror n + 1, i.e., the plane

z = (y − yn+1) tan χn+1 (38)

can be obtained with a bit of computation:

d(n+1)
b =

(yn − yn+1) cos(α − 2ξ) + d(n)i cos(α − 2ξ + χn)

cos(α − 2ξ + χn+1)
. (39)

Note that the angle ξ is a function of d(n)i . Using (17), the formula can be written as

d(n+1)
b =

(yn − yn+1) cos
(

α − 2χn − d(n)i fn

)
+ d(n)i cos

(
α − χn − d(n)i fn

)
cos

(
α − 2χn − d(n)i fn + χn+1

) . (40)

The active part of the mirror n—concerning blocking—span from −wn to the coordinate
d̃(n)i for which d(n+1)

b = −wn+1. So, the equation to be solved is

(yn − yn+1) cos
(

α − 2χn − d̃(n)i fn

)
+ d̃(n)i cos

(
α − χn − d̃(n)i fn

)
+ wn+1 cos

(
α − 2χn − d̃(n)i fn + χn+1

)
= 0. (41)

This trigonometric equation for d̃(n)i requires numerical solution. The numerical effort
in solving this “blocking equation” is quite small; one of the widely available methods—
from simple bisection to Newton-like methods—can be employed.

Once d̃(n)i has been computed, the part of the mirror n from d̃(n)i to wn is inactive, since
the reflected rays are blocked.

For the case yn > 0, a short summary of the same analysis is as follows:

1. First check: if χn < 0, no blocking.
2. Second check: if the line connecting the leftmost point of the mirror to the leftmost

point of the receiver is not blocked by mirror n − 1, the mirror cannot suffer from
blocking. The d(n−1)

b to consider is

d(n−1)
b =

(yn − yn−1 − wn cos χn)H − wn(yn−1 + lr) sin χn

(yn + lr) sin χn−1 + wn sin(χn − χn−1) + H cos χn−1
. (42)

If d(n−1)
b > wn−1, blocking is not present and the analysis stops here.

3. Third check: if the leftmost ray reflected from mirror n is not blocked by mirror n − 1,
the mirror cannot suffer from blocking. The local coordinate of intersection is

d(n−1)
b =

(yn − yn−1) cos(α − 2χn + wn fn)− wn cos(α − χn + wn fn)

cos(α − 2χn + wn fn + χn−1)
. (43)

If d(n−1)
b > wn−1 blocking is not present.

4. If none of the above conditions is verified, the inactive part of mirror n can be obtained
from the equation

(yn − yn−1) cos
(

α − 2χn − d̃(n)i fn

)
+ d̃(n)i cos

(
α − χn − d̃(n)i fn

)
− wn−1 cos

(
α − 2χn − d̃(n)i fn + χn−1

)
= 0. (44)

and the part of the mirror n from −wn to d̃(n)i is inactive since the reflected rays
are blocked.
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4.1.4. In-Target Reflected Beam

Even if a ray is not blocked, it is possible that it does not hit the target. If a ray is
reflected by a point on the mirror n with relative coordinate d(n)i , the parametric equation of
the reflected ray—projected on the yz plane—will be given by (37), which can be rewritten
using (17):

y = yn + d(n)i cos χn + t sin
(

α − 2χn − d(n)i fn

)
, z = d(n)i sin χn + t cos

(
α − 2χn − d(n)i fn

)
. (45)

The coordinate yH of the intersection of the reflected ray with the receiver plane can
be found substituting z = H in (45), finding t, and obtaining the function yH(d

(n)
i ):

yH(d
(n)
i ) = yn +

d(n)i cos
(

α − χn − d(n)i fn

)
+ H sin

(
α − 2χn − d(n)i fn

)
cos

(
α − 2χn − d(n)i fn

) . (46)

If the focal length is significantly larger than the distance between the mirror and the
target, one can safely assume that yH(d

(n)
i ) is an increasing function; if the focal length is

significantly smaller than the distance, the function yH(d
(n)
i ) will be a decreasing function.

In such cases, one could easily obtain the two extremities of the active part of the mirror
setting yH(d

(n)
i ) = ±lr and solve the two equations. Unfortunately, focal lengths are

often set to be close to the distance mirror-receiver and the function yH(d
(n)
i ) can even be

non-monotonic in such cases.
As a general recommendation, the safest way to proceed is the following:

• find all the solutions of both equations yH(d
(n)
i ) = ±lr, in the interval −wn < d(n)i < wn;

• if k solutions are found, put the solutions in order on the interval [−wn,+wm], dividing
the interval in k + 1 segments;

• for each of the k + 1 segments, compute a probing value yH(d
(n)
i ) with d(n)i belonging

to the segment, in order to check if the segment is active (the ray hits the receiver) or
not (the ray does not hit the receiver).

Such a procedure, in practice, can reduce to very simple checks: in most cases, the function
yH(d

(n)
i ) will be monotonic anyway, or the rays will be entirely reflected within the target.

4.1.5. Sum of the Contributions of All Mirrors

Up to now, the parts of the mirror that are ineffective due to the shadowing of the
receiver and of the other mirrors, to blocking and to out-of-target rays have been computed.
Putting all these parts together, one obtains the inactive part of the mirror. The remaining
part is active. For each mirror, the yz section length of the active part (i.e., the active area
per length unit) of mirror n is denoted as An.

All the radiation reflected by the area An will hit the target. So, the contribution of
mirror n to the radiation collected per length unit is DNIcos ψn, where ψn is the incidence
angle on the plane containing the mirror n. The cosine cnψ = cos ψn can be easily computed
as the scalar product of the versor orthogonal to the plane and the direction of the ray
(considering also the angle γ), yielding cnψ = cos γ cos(α − χn). So, the radiation Icoll on
the receiver aperture per length unit will be

Icoll = DNI ×
N

∑
n=1

ρn(cnψ)Ancnψ, cnψ = cos γ cos(α − χn). (47)

where ρn is the reflectivity of mirror n. The reflectivity ρn can be fixed and common for
all n, or it can depend on the incidence angle ψn (via cnψ). The dependence on ψn is an
approximation: the true local incidence angle of a ray on the mirror surface changes along
the mirror section, as shown in Section 3; however, the incidence angle can be approximated
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with ψn if the curvature of the mirror is neglected. Consider that the deviation of the normal
vector due to the curvature for a 1 m wide mirror with a 10 m focal length is well below
1.5 deg, and such a difference is unlikely to change significantly the mirror reflectivity.

This simple formula allows one to compute the radiation collected by a horizontal flat
receiver with a computational effort that is well below a ray-tracing simulation, but it is
valid for collimated radiation only. However, a simple numerical integration allows one to
take into account the solar divergence, as it will be illustrated in the next subsection.

4.2. Solar Divergence, Slope and Tracking Errors

The value of Icoll found in (47) depends— besides the fixed properties of the plant—on
the direction (α, γ) of the collimated radiation, but also on the set of the tracking angles χn,
which are determined by the sun position (α⊙, γ⊙) via (8). So, for a fixed plant geometry,
the function Icoll(α, γ, α⊙, γ⊙) gives the radiation on the receiver for a given sun position
and for a given direction of the collimated radiation. Integrating the first two variables on
the sun rays distribution gives the radiation collected for a given (α⊙, γ⊙) sun position.

4.2.1. Pillbox Sun

Suppose, for now, that the system is perfect: no slope errors and no tracking errors.
The dispersion of the rays will be represented by the solar divergence only, and the ef-
ficiency of the system can be computed by averaging the function Icoll(α, γ, α⊙, γ⊙) on
the distribution of (α, γ) around (α⊙, γ⊙). A simple and widely used distribution is the
pillbox distribution, that is, a uniform angular distribution around the direction (α⊙, γ⊙)
with a radius equal to the sun’s angular radius a. The distribution neglects circumsolar
“direct” radiation and limb darkening, but it is anyway quite accurate. In coordinates (α, γ),
the distribution will be subject to an “enlargement” of the α domain when γ increases,
and the uniform angular distribution will come (with excellent approximation) from an el-
liptical domain center in (α⊙, γ⊙), with semiaxis a along direction γ and semiaxis a/ cos γ⊙
along direction α. The approximation breaks down when γ → ±π, a case of little practical
interest. The function Icoll(α, γ, α⊙, γ⊙) should be averaged on this distribution.

Observe that the average on γ, in fact, is not necessary: optical efficiencies depend
slowly on γ, and the change of Icoll when γ varies of a quantity a is negligible. So, one
can assume γ = γ⊙ and average only on α: however, one should remember to weight the
average on the width of the γ domain at each value of α, i.e., a

√
1 − ((α − α⊙) cos γ⊙/a)2.

So, the radiation I(α⊙, γ⊙) collected by the system, considering the solar divergence (pillbox
distribution)—with the correct normalization —is

I(α⊙, γ⊙) =
cos γ⊙

πa

∫ α⊙+a/ cos γ⊙

α⊙−a/ cos γ⊙
Icoll(α, γ⊙, α⊙, γ⊙)

√
1 − ((α − α⊙) cos γ⊙/a)2dα. (48)

Such an integral can be rewritten in a simpler form with a change of variable
t = (α − α⊙) cos γ⊙/a:

I(α⊙, γ⊙) =
1
π

∫ +1

−1
Icoll(at/ cos γ⊙ + α⊙, γ⊙, α⊙, γ⊙)

√
1 − t2dt. (49)

An accurate M-point quadrature method for integrals of this kind is the second Gauss–
Chebyshev method [152]:∫ +1

−1
g(t)

√
1 − t2dt ≈

M

∑
k=1

pkg(tk), tk = cos
(

kπ

M + 1

)
, pk =

π

M + 1
sin2

(
kπ

M + 1

)
. (50)

Such an integration method is recommended every time a pillbox sun is projected on
a linear system. It allows for accurate computations of the solar divergence effect with a
few evaluations of the function Icoll (10 are usually more than enough).

So, the evaluation of the efficiency of an LFR given the sun position can be performed
accurately by the following procedure:
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1. Compute the Zenith and Azimuth of the sun (this can be conducted via one of the
many algorithms found in the literature, e.g., [153,154]);

2. Obtain the coordinates (α⊙, γ⊙) in the local frame applying (3) and (6);
3. Obtain the tracking angles ϕn for each mirror using (8);
4. Compute the M integration nodes of (50) and the corresponding values of αk;
5. For each αk, compute the function Icoll(αk, γ⊙, α⊙, γ⊙) applying the procedure de-

scribed in this section, i.e., compute the active part An for each mirror n, and sum the
contribution of all the mirrors applying (47);

6. Average the weighted contribution of each αk using (49) and (50).

A similar procedure can be applied also when more refined models of the sun diver-
gence are considered, re-calculating the correct sun distribution projected on direction α
and choosing the best-suited integration method.

Such a procedure is accurate and considerably faster than a ray-tracing simulation.
In order to make a comparison, consider that the evaluation of An for a mirror n has a com-
putational weight as the ray-tracing of a few rays. So, the analysis for collimated radiation
weights as the simulation of a few tens of rays, and even considering the integration of the
pillbox sun the simulation has the computational weight of shooting a few hundreds of
rays. But a ray-tracing simulation of comparable accuracy would require at least tens of
thousands of rays. So, the quasi-analytical method is strongly recommended, unless the
details of the radiation distribution on the receiver are required.

However, the method has a serious drawback: it seems to work only for perfect
systems. In the next subsection, it will be shown how to introduce errors.

4.2.2. Tracking and Slope Errors

The most straightforward way to deal with slope errors (and random tracking errors
too, on average, as shown in Section 2.3) would be the use of a degraded sun, as is
often conducted: instead of a pillbox sun (or other accurate models of the sun radiation
distribution), a fictitious angular distribution is used that reproduce the dispersion of rays
due to errors. However, one can spot a serious flaw in this reasoning when applied to
the exposed method, and it is the fact that the active part An of a mirror is computed
considering some effects that are not significantly altered by the slope/tracking errors, such
as the shadowing due to the receiver or to other mirrors, and some effects (blocking, missed
receiver) that are indeed affected by the errors (in fact, all the quantities are slightly affected
by tracking errors, since the change in the position of the mirrors can slightly shift the
shadows; however, this effect is negligible w.r.t. the change of direction of the reflected ray,
which is the only truly relevant effect.).

Two strategies to tackle the problem can be devised:

1. Sampling of the χn: repeat the computation for a perfect system on a suitable large
sample of different sets of χn, introducing a random deviation δn of the χn angles.
The set of δn must be chosen with a standard deviation that is the combined standard
deviation of transversal slope errors and random tracking errors. Unfortunately,
a quite large sample is required to obtain accurate results.

2. Blurred mirrors: perform the computation as for a perfect system, but when comput-
ing An for the mirror n takes the average on a Gaussian distribution of χn, with a stan-
dard deviation corresponding to the combination of random tracking and transversal
slope errors.

Here, is the description of the two procedures:

Sampling of χn

This is the most simple and direct strategy: repeat the computation many times
introducing each time a random deviation of the set of χn, with a Gaussian distribution
and a standard deviation corresponding to the quadratic sum of the random tracking error
and of the transversal slope error. The average of the various computations is the desired
result. Unfortunately, the number of computations required to obtain the results with a
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good accuracy can be quite high and the computational weight of this method is heavy.
Note, however, that this method remains faster than ray tracing, as shown by direct tests.

Blurred Mirrors

This method has an intermediate computational burden in-between the previous two
and guarantees anyway the correct separation of the effects that are affected by slope and
tracking errors from the ones that are not. When computing An to obtain Icoll , the result
for each mirror should be weighted with a Gaussian distribution of the mirror inclination
around its mean value χn given by (8). In such a method, the interplay between the
tracking errors of the different mirrors is lost (the contribution of the mirror n is computed
supposing that all the others are in their correct positions), but this causes only a minor
shift of the border of the shadow or of the blocked region (well below a millimeter for 1-m
wide mirrors with a tracking error of 2 mrad).

The method is implemented as follows: when considering the computation of An for a
given mirror n, indicating the value obtained for an inclination χn + δ as An|δ, the average
An is obtained as the integral of An|δ on a Gaussian distribution in δ. The integration on a
Gaussian distribution can be performed numerically using the Gauss–Hermite integration
method [152]: ∫ +∞

−∞
g(x)e−t2

dt ≈
M

∑
k=1

pkg(tk), (51)

where the tk are the roots of the Hermite polynomial of degree M and the weights pk are
obtained from a formula involving the Hermite polynomial of degree M − 1; in practice,
tables of values of (tk, pk) are easily available for many values of M. With a suitable change
of variable, the average An can be obtained as

An ≈ 1√
π

M

∑
k=1

pk An|√2σtk
. (52)

The value of σ, in this case, is the combined standard deviation of the slope transversal
error and of the random tracking error, i.e., the square root of the sum of the variances.
So, if M integration nodes are used, M different values of An|δ should be computed for
each mirror, at δ corresponding to the Gauss–Hermite integration nodes, and An is then
computed as the weighted average.

The average An obtained—one for each mirror— is then used in (47) to compute Icoll ,
and then the analysis follows as if the system had no defect, with a pillbox sun, as shown in
Section 4.2.1. This second method is probably the best procedure, with a choice of a small
sample of M integration nodes; the computational cost w.r.t. the computation for a perfect
system is increased by a factor M, and remains far lower than the computational weight of
ray-tracing or of the sampling of χn, while retaining an excellent accuracy.

Note that neither of the two methods is suitable for analyzing the effects of longitudinal
slope errors; however, the effect of longitudinal slope errors on total efficiency is far smaller
than the effect of transversal errors, and usually negligible.

5. Comparison and Possible Integrations between Ray-Tracing and
Quasi-Analytical Methods

Comparison tests between the exposed procedures have been made, regarding ac-
curacy and computational time. LFR structure, mirror focal length and sun position are
chosen in order to have a strong shadowing and blocking effect, and to have a quite large
radiation cone on the receiver, in order to amplify the effect of errors. Ten integration nodes
are used for Gauss–Hermite quadrature, in the blurred mirrors method. For ray-tracing
tests, regular uniform distribution of the starting point of the solar beams was chosen, to-
gether with a random angular distribution of the rays within each solar beam, to reproduce
solar divergence: this is a compromise between a full Monte Carlo ray-tracing [104], which
would be significantly slower, and a fully discretized method with regular distribution of
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rays in the solar cone (faster, but with possible systematic errors). For both the ray-tracing
and the χ-sampling methods, the number of rays or χ values was chosen in order to obtain
a numerical accuracy of 0.1% on the results.

Extensive tests showed that, for perfect systems, ray-tracing and quasi-analytical
analysis gave the same results (when numerical convergence is achieved, of course). This is
an expected result since ray tracing can be seen, so to speak, as a numerically expensive
method to find the active part of the mirrors. Only in the presence of errors do the methods
present real differences in the modeling procedure, and discrepancies can arise.

Figure 5 shows the results of the different methods in the presence of errors, separately
considering the χ-sampling and the blurred mirror methods. One can see that the sampling
of χn gives the same results as ray tracing even in the presence of large errors: the two
methods can be considered equivalent even in the presence of errors. The blurred mirror
method is also in excellent agreement for combined errors up to 6 mrad; then a slight
discrepancy appears, but it remains within a few % in all the ranges under consideration
(up to 10 mrad). So, the blurred mirrors method should be perfectly adequate for all the
errors one can encounter in a real plant of acceptable quality.
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Figure 5. Comparison among the two methods for introducing errors in the quasi-analytical compu-
tation and a full ray-tracing simulation. The configuration of the LFR and the sun position are chosen
in order to have strong shadowing and blocking effects.

The tests were also used to compare the computational time of the methods: results
are given in Table 1, normalized w.r.t. the time required for an error-free system with the
quasi-analytical method, whose analysis does not require sampling of errors. Two different
tests with σ values of 2 and 5 mrad were performed. From the table, one can see that the
blurred mirrors method requires a computational time that is 2–3 orders of magnitude
lower than the time required by ray tracing, and it is around 10 times the time required by
the computation for perfect systems (an expected result, since 10 integration nodes were
used). The χ-sampling method is faster than ray-tracing, but only of a factor 2 or 3, since
achieving a numerical accuracy of 0.1% on the result requires a large sample of χn values.
So, the recommended method for a truly fast simulation is the blurred mirrors method.

Of course, if slope/tracking errors are negligible w.r.t. the solar divergence, the method
of election is the quasi-analytical method for perfect systems.
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Table 1. Comparison of the computational time of different computational methods, when including
slope and tracking errors. Results are normalized to the computational time required by the quasi-
analytical method for a perfect system.

Strategy σ = 0 mrad σ = 2 mrad σ = 5 mrad

Quasi-analytical (no errors) 1 — —
Ray-tracing 4104 14,693 31,269
Quasi-analytical (χ sampling) — 6144 10,614
Quasi-analytical (blurred mirrors) — 11.1 8.5

It should also be noted that, even if the two methods—ray-tracing and quasi-
analytical—are presented in this review as separate methods, some of the computational
techniques exposed for the quasi-analytical method can be employed in a ray-tracing
simulation to speed up the computation, obtaining hybrid methods. Below are listed
possible integrations of a ray-tracing simulation with techniques exposed in the quasi-
analytical analysis:

• No-blocking conditions (32) and (33) can of course be checked before a ray-tracing simu-
lation, excluding the blocking computation for mirrors that do not suffer from blocking;

• The projection of the sun profile on γ⊙ (i.e., the approximation γ ≈ γ⊙ within the solar
disk), and the following application of (49) and of the (50) quadrature rule, can also be
adopted in ray-tracing, significantly reducing the number of rays that are necessary to
reproduce the solar divergence (of course, the analysis of longitudinal slope errors is
not possible in this case);

• Relations for the inactive part of a mirror can be used to exclude from ray-tracing anal-
ysis the rays that fall within these parts (when computing inactive parts, the extremal
rays of the solar cone must be considered).

6. End Effects

The analysis presented so far neglects end effects. This is a correct assumption except
when a receiver section is close to an extremity of the receiver, in which case the collected
radiation can be significantly lowered by end effects.

The mechanism is very simple and it is illustrated in Figure 6. Consider rays reflected
by a mirror on a line at coordinate yi: even if the line belongs to the active region of the
mirror, i.e., it is not shadowed and the reflected rays from yi are not blocked and hit the
receiver aperture in yz section, it is not guaranteed that the rays would hit the receiver over
all the receiver length. Indeed—setting x = xmin at the beginning of the mirror field, as in
the figure—for a given ray direction the ray hitting the edge x = xmin of the receiver will
be sent at a coordinate x = xe(yi), and only the part of the receiver with x > xe(yi) will
receive radiation from yi. The same can happen at the other extremity of the receiver. So,
given a section of the receiver with x = xc, the collected radiation can be lower than the
radiation computed with the previously illustrated procedures, or even 0. In this section,
three approaches to compute and simulate end effects will be illustrated:

• a quick estimation, which is useful to correct the radiation collected by a receiver
string by subtracting end effects, but does not supply information on the radiation
collected in a given receiver section;

• a method for integrating the end effects analysis in the ray-tracing approach, slightly
modifying the procedure described in Section 3;

• a method for integrating the end effects analysis in the quasi-analytical approach
presented in Section 4, modifying the computation of An for collimated radiation.
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Receiver

x=xmin

y=yi

Figure 6. Illustration of end effects. The shadowed part of the receiver does not receive radiation
from yi.

6.1. Quick Estimation

A very quick—but quite accurate—estimation of the radiation loss due to end effects
for the whole collector can be devised. Suppose that the mirror field extends from xmin
to xmax in the x direction and that the receiver extends from xr1 to xr2 (the receiver can be
shifted or reduced/extended in order to optimize the collection, so one cannot assume that
the receiver is placed exactly in [xmin, xmax] and a more general case must be considered).
Three approximations are made:

• all the rays have the same γ = γ⊙;
• for a mirror n, the “representative ray” directed from y = yn, z = 0 to y = 0, z = H

(from the center of the mirror to the center of the receiver) is chosen to compute the x
shift of the radiation;

• mirror defects are neglected.

Under these three hypotheses, the x component of the direction vector of the ray is
not altered by the mirror reflection (longitudinal slope errors are 0, so n̂x = 0).

Consider the extremity x = xmin of the solar field. A mirror n will send the radiation—
under the three approximations above—at

xe1 = xmin −
√

H2 + y2
n tan γ⊙. (53)

So, a portion of the receiver of length

se1 = min(0, xe1 − xr1) (54)

will not receive radiation from mirror n.
The reasoning is the same at the extremity x = xmax, leading to

xe2 = xmax −
√

H2 + y2
n tan γ⊙ = xe1 + xmax − xmin, (55)

and the portion of the receiver that cannot receive radiation from mirror n has the length

se2 = min(0, xr2 − xe2). (56)

So, the contribution of mirror n to the collected radiation must be reduced by a factor

Sn = (se1 + se2)/(xr2 − xr1). (57)

In order to obtain a general formula for the whole mirror field, somewhat rougher
approximations are needed. A quick-and-dirty estimation can be made considering the con-
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tribution of the mirrors as proportional to their widths: so, if W = ∑N
n=1 wn, the reduction

factor due to end effects is

S(1) =
∑N

n=1 Snwn

∑N
n=1 wn

. (58)

Another quick-and-dirty formula can be obtained assuming that the mirrors have
“nominal orientation” (α⊙ = 0, hence χn = θn/2). In this case,

S(2) =
∑N

n=1 Snwn cos(θn/2)

∑N
n=1 wn cos(θn/2)

. (59)

A slightly more refined approximation—which still excludes shadowing and blocking
effects—can be obtained by introducing a dependence on α⊙:

S(3)(α⊙) =
∑N

n=1 Snwn cos
(

θn−α⊙
2

)
∑N

n=1 wn cos
(

θn−α⊙
2

) . (60)

More accurate descriptions could be devised by accurately computing the contribution
of each mirror via ray-tracing or other methods, in the absence of end effects, and then
weighing the Sn on the contributions. If mirror n gives a contribution In(α⊙, γ⊙) to the
radiation on the receiver opening, the formula is

S(4)(α⊙, γ⊙) =
∑N

n=1 Sn In(α⊙, γ⊙)

∑N
n=1 In(α⊙, γ⊙)

. (61)

6.2. End Effects in Ray-Tracing

The previous subsection supplied formulas for estimating the end losses on a whole
collector. Now, it will be shown how to analyze a specific section of the receiver with
x = xc, via ray tracing, in order to obtain the radiation collected locally. One can then
choose different values of xc to study the variation of the collected radiation along the
receiver length.

The analysis proceeds exactly as in Section 3, with an additional final check introduced
on each ray.

In (18), only y and z were considered; the x component is

x = xi + r̂xt. (62)

The component r̂x should have already been computed from (15), or it can easily be obtained

as r̂x =
√

1 − r̂2
y − r̂2

z .
Let us suppose that the ray is reflected by the section x = xmin of the mirror field, so

xi = xmin. If, at the end of the analysis of Section 3, the ray hits the receiver, the x coordinate
at which the receiver is intercepted is given by

xe1 = xmin + r̂x

√
(H − zi)2 + (yt − yi)2

1 − r̂2
x

. (63)

The coordinates yi, zi and yt have already been computed: yi and zi are given by (13),
and yt by (21). If the ray is reflected by section x = xmax of the mirror field, the x coordinate
is simply

xe2 = xe1 + xmax − xmin. (64)

The part of the receiver that receives radiation from the mirror field line at y = yi is
comprised of xe1 and xe2.

To summarize, including end effects in ray-tracing is very simple: at the end of
the analysis of a ray, performed as illustrated in Section 3, compute xe1 and xe2 with
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Formulas (63) and (64); if xc is not in the interval [xe1, xe2], discard the contribution of
the ray.

6.3. End Effects in the Quasi-Analytical Method

End effects on a section x = xc of the receiver can be introduced in the quasi-analytical
method as well. In the analysis exposed in Section 4, the basic tool was the procedure
to obtain the active section An of a mirror under collimated radiation. The active part
was obtained intersecting four parts of the mirror: the part not shadowed by the receiver,
the part not shadowed by other mirrors, the part not suffering from blocking and the part
that sends radiation within the target. In order to consider end effects, one can compute a
fifth part of the same mirror, which should be intersected with the others: the part of the
mirror that contributes to the radiation collected at the section x = xc of the receiver.

Consider a ray reflected from the point d(n)i of mirror n. The y coordinate of the inter-
section of the ray with the plane containing the receiver aperture is given by Formula (46).
From the value of yH(d

(n)
i ), one can compute the x coordinate at which a ray reflected by

the point at xi = xmin intersects the receiver, as:

xe1(d
(n)
i ) = xmin −

√
(H − d(n)i sin χn)2 + (yH(d

(n)
i )− yn − d(n)i cos χn)2 tan γ, (65)

and the x coordinate at which a ray reflected from x = xmax intersects the receiver aperture is

xe2(d
(n)
i ) = xe1(d

(n)
i ) + xmax − xmin. (66)

One should then find the region of the mirror for which it holds xe1(d
(n)
i ) ≤ xc ≤ xe2(d

(n)
i ):

this is the fifth region that should be intersected with the others in order to find the
active region when end effects are considered. The region can be obtained numerically
by computing all the solutions of the two equations xc = xe1, xc = xe2. The solutions will
divide the width of the mirror into several intervals, and then one can verify if each interval
is active or not.

This may appear to be a laborious task, but in fact, it is rarely required: a simple
preliminary check can ensure that a mirror is free from end effects—or that it is entirely
inactive due to end effects—considering that, for the already-computed active part of the
mirror (from Section 4), it holds −lr ≤ yH(d

(n)
i ) ≤ lr. So, one can devise a simple procedure

to make sure that a mirror is unaffected—or entirely inactivated—by end effects:

1. Find the maximum distance D(n)
max, in the section yz, between a point d(n)i of mirror n

and a point of the receiver (z = H, −lr ≤ y ≤ lr);
2. Find the minimum distance D(n)

min, in the section yz, between a point d(n)i of mirror n
and a point of the receiver (z = H, −lr ≤ y ≤ lr);

3. Case γ ≥ 0: if xmin − D(n)
min tan γ ≤ xc ≤ xmax − D(n)

max tan γ, then mirror n is free from
end effects;

4. Case γ ≥ 0: if xmin − D(n)
max tan γ > xc or xmax − D(n)

min tan γ < xc, then mirror n is
completely inactive due to end effects;

5. Case γ < 0: if xmin − D(n)
max tan γ ≤ xc ≤ xmax − D(n)

min tan γ, then mirror n is free from
end effects;

6. Case γ < 0: if xmin − D(n)
min tan γ > xc or xmax − D(n)

max tan γ < xc, then mirror n is
completely inactive due to end effects.

Such checks can significantly reduce the computation time since it is likely that at most
two mirrors are partially affected by end losses; the more external mirrors will probably be
entirely inactivated, and the more internal mirrors will probably be free from end effects
(in fact, these checks can be made at the beginning of the analysis for a mirror n, in order to
save work in case the mirror is completely inactivated by end effects).
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In order to perform these preliminary checks one has to find the maximum and minimum
distances D(n)

max and D(n)
min between two segments (receiver and mirror in plane yz).

One can easily find the maximum distance D(n)
max, since it will be either the distance

from the left edge of the receiver to the right edge of the mirror or vice-versa. Both distances
can be easily computed and the longer one can be chosen.

The minimum distance D(n)
min can be easily identified in the following four cases:

• χn ≤ 0 and yn − wn cos χn ≥ lr: the minimum distance is between the right edge of
the receiver and the left edge of the mirror;

• χn ≥ 0 and yn − wn cos χn − (H + wn sin χn) tan χn ≥ lr: the minimum distance is
between the right edge of the receiver and the left edge of the mirror;

• χn ≥ 0 and yn + wn cos χn ≤ −lr: the minimum distance is between the left edge of
the receiver and the right edge of the mirror;

• χn ≤ 0 and yn + wn cos χn − (H − wn sin χn) tan χn ≤ −lr: the minimum distance is
between the left edge of the receiver and the right edge of the mirror.

In other cases—which will likely involve only a few mirrors around x = 0— one can
consider all the possible minimum distances and choose the least, with the following procedure:

• Compute the two projections p±(n) of the two edges of the receiver (at y = ±lr) on
the plane containing the mirror n.

• If p+(n) lies within the mirror width, compute the distance between the right edge of

the receiver (y = +lr) and p(n)+ : this is a possible minimum distance.

• If p(n)− lies within the mirror width, compute the distance between the left edge of the

receiver (y = −lr) and p(n)− : this is a possible minimum distance.
• Compute the two projections q±(n) of the two edges of the mirror n on the plane

containing the receiver (these will simply be y = yn ± wn cos χn, z = H).
• If q(n)+ lies within the receiver width, compute the distance between the right edge of

the mirror and q(n)+ (that is, H − wn sin χn): this is a possible minimum distance.

• If q(n)− lies within the receiver width, compute the distance between the left edge of the

mirror (y = −lr) and q(n)− (that is, H + wn sin χn): this is a possible minimum distance.
• Compute the four distances between the two edges of the receiver and the two edges

of the mirror (left-left, left-right, right-left, right-right): these are four possible mini-
mum distances.

• Among the possible minimum distances found so far (of which there will be a number
between 4 and 8), choose the shortest one.

7. Examples of Simulations

In order to show examples of the possible studies and simulations that can be performed
with the illustrated methodologies, results on two real-life cases will be presented. The two
plants under consideration are the Partanna plant [99], in Italy, whose geometrical properties
used in these examples are summarised in [134] and a facility installed in the Green Energy
Park in Ben Guerir (Morocco), whose geometrical properties are summarised in [107]. Only
the geometrical aspects of the plant optics are considered, i.e., the reflectance of the mirrors
is considered to be equal to 1, and independent of the incidence angle. So, the computed
efficiency is a purely geometrical efficiency, and it is higher than the real efficiency by a
factor of about (mirror reflectivity × receiver optical efficiency). The geometric efficiency
is given as (collected radiation)/(DNI × total mirror area). The results shown here are
obtained with the blurred mirror quasi-analytical method, but no significant differences
were found w.r.t other methods, the combined random error being lower than 3 mrad. The
computations were performed using C++ software written for the purposes of the present
work (see Supplementary Materials).
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Figure 7 shows the dependence of the efficiency on the angle α⊙. One can clearly see
the effect of the receiver shadowing: when the shadow is projected entirely on a mirror the
efficiency is lower, when it is partially projected on the gap between two mirrors the effect
is reduced and the efficiency increases, producing oscillations up to values of α⊙ of about
45–50 deg. Such oscillations are about 2.4% (Partanna) and 3.6% (Ben Guerir), indicating
a non-negligible effect of the receiver shadowing. For larger α⊙, the receiver shadow is
projected outside the mirror field, and the prevailing effects are mirror shadowing and
cosine effect. Figure 8 shows the dependence of the efficiency on the angle γ⊙. Since no
optical dependencies on incidence angles are introduced, the curve is essentially a cosine
factor, except for very large incidence angles.

A test on the possible factorization of the efficiency as a product of two single-
variable efficiencies, depending on α⊙ and γ⊙, respectively, can be made by compar-
ing the simulated efficiency at (α⊙, γ⊙) with the product of the efficiencies at (α⊙, 0)
and (0, γ⊙) (Figures 7 and 8), divided by the normal incidence efficiency. The analysis
shows, for both examples, a maximum deviation below 0.3%, and a standard devia-
tion below 0.04% (one should consider, however, that the computed efficiency is purely
geometrical, and a complete analysis for a specific system, including the dependence
of optical properties on incidence angles, should be made to verify the quality of the
possible factorizations).

Specific aspects of the optics can be studied by modifying the geometry of the plants
and observing the variation in efficiency. In order to highlight blocking effects, the spacing
factor of the mirrors (i.e., the size of the gap between two mirrors w.r.t. the mirror size) was
changed from 0 to 0.5, for normal radiation incidence, in order to avoid mirror shadowing.
Results are shown in Figure 9. Strong blocking—for nearly adjacent mirrors—is responsible
for an optical loss of 5–6%. In order to study also the effect of shadowing, α⊙ = 45 deg is
assumed. Figure 10 shows that a strong shadowing—combined with blocking—can cause
a loss of 10–12% of optical efficiency. These computations illustrate, in a very simple case,
a possible procedure for a parametric optimization with the considered parameter being
the spacing factor.
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Figure 7. Geometrical efficiency of the two LFR taken as examples, in dependence of α⊙.
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Figure 8. Geometrical efficiency of the two LFR taken as examples, in dependence of γ⊙.
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Figure 9. Geometrical efficiency of the two (modified) LFR taken as examples, in dependence of the
spacing factor between mirrors, for normal incidence (blocking in evidence).
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Figure 10. Geometrical efficiency of the two (modified) LFR taken as examples, in dependence of the
spacing factor between mirrors, for α⊙ = 45 deg (blocking + shadowing in evidence).
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8. Conclusions

LFRs represent one of the most interesting designs for thermal solar concentrators,
and their optical behavior depends mainly on their geometry. So, the analysis of the plant
efficiency and of the energy yield cannot be performed without a thorough understanding
of the plant geometry and of its effect on the optical efficiency, and it can surely benefit
from specialized tools for the simulation of the optical behavior of an LFR. In this review,
a summary of the main concepts and methods are presented, to understand the different
geometrical aspects of an LFR affecting the optics; the analysis especially regards the mirror
field, which—differently from the receiver—can be the subject of a full and quite general
analysis. The geometry is responsible for four types of optical losses: shadowing due to the
receiver, reciprocal shadowing among the mirrors, blocking and out-of-target reflection.
These effects can be simulated by ray tracing, if the accurate distribution of radiation on
the receiver is required, or by a significantly faster (but equally accurate) quasi-analytical
method, when only the efficiency of the mirror field is concerned. The review supplies
methods and useful formulas to build a ray-tracing simulation—following the ray up
to the entrance in the receiver aperture—and to compute the efficiency with the faster
quasi-analytical method, which is especially recommended for on-the-fly computations or
optimization tasks. This review should supply a useful “toolbox” to build reliable simu-
lations of an LFR, without resorting to cumbersome general-purpose optical simulators,
or introducing too rough—and often unnecessary—approximations. Such instruments can
be a resource for the analysis of the design of a plant, with the goal of optimizing the energy
yield or reducing costs.

Supplementary Materials: A C++ header file (FresnelOptics.h) containing implementations of the
methods described in Sections 3 and 4 of this review will soon be available for download at the
website www.solaritaly.enea.it, in the section Tools (accessed on 20 June 2024) , or can be requested
by contacting the author. Note that this is a work in progress and comes with no guarantees. Bug
reports and suggestions are welcome.
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Abbreviations and Symbols
The following abbreviations and symbols are used in this manuscript. All the angles appearing in
formulas are assumed to be measured in radians.

CFD Computational Fluid Dynamics
CPV Concentrating Photovoltaic
DNI Direct Normal Irradiation
GAX Generator-absorber heat exchange
IAM Incidence Angle Modifier
LFR Linear Fresnel concentrator
PTC Parabolic Trough Collector
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PV Photovoltaic
PV/T Photovoltaic / Thermal
SEV South-East-Vertical reference frame
a Sun angular radius
An Width of the active part of the nth mirror
cnψ cos(ψn)

D(n)
min, D(n)

max Min. / max. distance between the receiver and the mirror n, in yz projection
d(n) Local coordinate on the nth mirror in yz section

d(n)± d(n) of projection of receiver shadow

d(n)b d(n) of intersection for blocking

d(n)i d(n) of intersection between a ray and a mirror

d(n)s d(n) of projection of other mirrors’ shadow
fn Inverse of focal length of the nth mirror
H Height of the LFR receiver (in local frame)
î Incident ray versor
Icoll Collected power for length unit, for collimated radiation
lr Semi-width of the effective receiver aperture
ls Semi-width of the effective receiver shadowing plane
L Width of the origin of rays for ray-tracing
M Number of integration nodes
N Number of primary mirrors
n Progressive number identifying a mirror (n = 1, ..., N)
n̂ Versor orthogonal to the mirror
n̂x x component of n̂
Nrays Number of shot rays in ray-tracing

p(n)± Projections of the two edges of the receiver (±lr) on the plane containing a mirror
pk Weights associated to integration nodes

q(n)± Projections of the two edges of a mirror on the plane z = H
r̂ Reflected ray versor
r̂x x component of r̂
r̂y y component of r̂
r̂z z component of r̂
Sn Correction factor to a mirror contribution for end effects

S(i) Global correction factor for end effects, for all the mirror field (i: different
approximations)

se1 Initial fraction of inactive mirror for end effects
se2 Final fraction of inactive mirror for end effects
tk Standard integration nodes
wn Semi-width of the nth mirror
x0 Starting x of a ray in ray-tracing
xc x coord. of a yz section of the receiver (when considering end effects)
xe1 x coord. at the receiver of a ray reflected from x = xmin
xe2 x coord. at the receiver of a ray reflected from x = xmax
xmin, xmax The mirror field extends in x direction between the two
xr1, xr2 The receiver extends in x direction between the two
y± y coord. of projection of receiver shadow
y0 Starting y of a ray in ray-tracing
yb y of intersection for blocking

yH(d(n)i ) y of intersection with the receiver plane of a ray reflected at d(n)i
yi y of intersection between a ray and a mirror
yn y coord. of the axis of the nth mirror
ys y of intercept between a ray and the shadowing plane
yt y of intercept between a reflected ray and the receiver
z0 Starting z of a ray in ray-tracing
zi z of intersection between a ray and a mirror
α Transversal incidence angle
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α⊙ α of the Sun center
αk Integration nodes in α

Γl Local Azimuth (in xyz frame)
Γs Global Azimuth (in SEV frame)
γ Longitudinal incidence angle, or simply incidence angle
γ⊙ γ of the Sun center
δn Random deviation of χn due to tracking error
ζ Longitudinal incidence angle (alternative definition)
ζ⊙ ζ of the Sun center
ηrec Optical efficiency of the receiver
θn Auxiliary angle (see Figure 1)
ξ Auxiliary angle
ρ Mirror reflectivity
σ Standard deviation of slope + tracking errors
φl Local Zenith (in xyz frame)
φl,⊙ Local Zenith of the Sun center
φs Global Zenith (in SEV frame)
χn Inclination of the nth mirror
ψn Incidence angle on the plane of mirror n
Ω1 Azimuth of the focal line in SEV frame
Ω2 Inclination of the focal line w.r.t horizontal plane
Ω3 Third rotation angle
Ωi Inclination of local y-axis w.r.t. horizontal plane
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