Impact of Air-Cathodes on Operational Stability of Single-Chamber Microbial Fuel Cell Biosensors for Wastewater Monitoring
Abstract
:1. Introduction
- A catalyst layer (CL) in contact with the electrolyte, usually made of precious metals such as Pt, which decreases the activation energy of ORR.
- A microporous layer (MPL) is usually made of conductive ink, which acts as a microporous support for the CL, preventing flooding and biofilm penetration [19].
- A gas diffusion layer (GDL), which is the scaffolding of the electrode, is placed in direct contact with the air. It is generally made of conductive carbon-based materials with a hydrophobic treatment, which ensures oxygen diffusion without the electrolyte leaking through to the air-facing side of the GDE [19]. The most used carbonaceous GDLs for MFC-biosensing applications are carbon paper (CP) [20,21,22,23] and carbon cloth (CC) [9,24,25,26,27] due to their wide availability, reasonable cost, mechanical strength, thermal stability, and easiness of CL coating. [19,28,29,30].
2. Materials and Methods
2.1. Set-Up and Operation Mode of the 3D-Printed MFC-Based Biosensor
2.2. Electroactive Biofilm Formation
2.3. Biosensing Performance
2.4. Electrochemical Analysis
2.5. Taxonomic Analysis of the Biofilm
2.6. Surface Material Analysis
3. Results and Discussions
3.1. Correlation of Electroactive Biofilm Formation Time and Type of GDE Cathode
3.2. Biosensing Performance
3.3. Electrochemical Analyses
3.4. Material Surface Analyses
3.5. Effect of GDE Cathodes on the Anodic Biofilm Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Drinking-Water. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 13 October 2023).
- Zhang, W.; Tooker, N.B.; Mueller, A.V. Enabling Wastewater Treatment Process Automation: Leveraging Innovations in Real-Time Sensing, Data Analysis, and Online Controls. Environ. Sci. 2020, 6, 2973–2992. [Google Scholar] [CrossRef]
- Emaminejad, S.A.; Morgan, V.L.; Kumar, K.; Kavathekar, A.; Ragush, C.; Shuai, W.; Jia, Z.; Huffaker, R.; Wells, G.; Cusick, R.D. Statistical and Microbial Analysis of Bio-Electrochemical Sensors Used for Carbon Monitoring at Water Resource Recovery Facilities. Environ. Sci. 2022, 8, 2052–2064. [Google Scholar] [CrossRef]
- Chang, I.S.; Jang, J.K.; Gil, G.C.; Kim, M.; Kim, H.J.; Cho, B.W.; Kim, B.H. Continuous Determination of Biochemical Oxygen Demand Using Microbial Fuel Cell Type Biosensor. Biosens. Bioelectron. 2004, 19, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Curtis, T.P.; Head, I.M.; Velasquez-Orta, S.B.; Scott, K. A Single Chamber Packed Bed Microbial Fuel Cell Biosensor for Measuring Organic Content of Wastewater. Water Sci. Technol. 2009, 60, 2879–2887. [Google Scholar] [CrossRef]
- Pasternak, G.; Greenman, J.; Ieropoulos, I. Self-Powered, Autonomous Biological Oxygen Demand Biosensor for Online Water Quality Monitoring. Sens. Actuators B Chem. 2017, 244, 815–822. [Google Scholar] [CrossRef]
- Spurr, M.W.A.; Yu, E.H.; Scott, K.; Head, I.M. A Microbial Fuel Cell Sensor for Unambiguous Measurement of Organic Loading and Definitive Identification of Toxic Influents. Environ. Sci. 2020, 6, 612–621. [Google Scholar] [CrossRef]
- Spurr, M.W.; Yu, E.H.; Scott, K.; Head, I.M. No Re-Calibration Required? Stability of a Bioelectrochemical Sensor for Biodegradable Organic Matter over 800 Days. Biosens. Bioelectron. 2021, 190, 113392. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Scott, K.; Curtis, T.P.; Head, I.M. Effect of Increasing Anode Surface Area on the Performance of a Single Chamber Microbial Fuel Cell. Chem. Eng. J. 2010, 156, 40–48. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Wang, S.; Jin, X.; Yang, J.; Liu, H. Role Played by the Physical Structure of Carbon Anode Materials in MFC Biosensor for BOD Measurement. Sci. Total Environ. 2023, 856, 158848. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, C.; Zhong, Z.; Liu, S.; Li, M.; Wang, X. Design, Optimization and Application of a Highly Sensitive Microbial Electrolytic Cell-Based BOD Biosensor. Environ. Res. 2023, 216, 114533. [Google Scholar] [CrossRef]
- Nakamoto, T.; Nakamoto, D.; Taguchi, K. Stand-Alone Floating Microbial Fuel Cell-Based Biosensor for Tracking Organic Pollution Influx. Biochem. Eng. J. 2023, 200, 109087. [Google Scholar] [CrossRef]
- Vilas Boas, J.; Oliveira, V.B.; Marcon, L.R.C.; Simões, M.; Pinto, A.M.F.R. Optimization of a Single Chamber Microbial Fuel Cell Using Lactobacillus Pentosus: Influence of Design and Operating Parameters. Sci. Total Environ. 2019, 648, 263–270. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochem. Commun. 2006, 8, 489–494. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Gil, G.C.; Chang, I.S.; Kim, B.H.; Kim, M.; Jang, J.K.; Park, H.S.; Kim, H.J. Operational Parameters Affecting the Performannce of a Mediator-Less Microbial Fuel Cell. Biosens. Bioelectron. 2003, 18, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Freguia, S.; Rabaey, K.; Yuan, Z.; Keller, J. Electron and Carbon Balances in Microbial Fuel Cells Reveal Temporary Bacterial Storage Behavior during Electricity Generation. Environ. Sci. Technol. 2007, 41, 2915–2921. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Li, S.F.Y. Cathode Reactions and Applications in Microbial Fuel Cells: A Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2504–2525. [Google Scholar] [CrossRef]
- Santoro, C.; Agrios, A.; Pasaogullari, U.; Li, B. Effects of Gas Diffusion Layer (GDL) and Micro Porous Layer (MPL) on Cathode Performance in Microbial Fuel Cells (MFCs). Int. J. Hydrogen Energy 2011, 36, 13096–13104. [Google Scholar] [CrossRef]
- Modin, O.; Wilén, B.M. A Novel Bioelectrochemical BOD Sensor Operating with Voltage Input. Water Res. 2012, 46, 6113–6120. [Google Scholar] [CrossRef]
- Winfield, J.; Greenman, J.; Ieropoulos, I. Response of Ceramic Microbial Fuel Cells to Direct Anodic Airflow and Novel Hydrogel Cathodes. Int. J. Hydrogen Energy 2019, 44, 15344–15354. [Google Scholar] [CrossRef]
- Yi, Y.; Xie, B.; Zhao, T.; Liu, H. Comparative Analysis of Microbial Fuel Cell Based Biosensors Developed with a Mixed Culture and Shewanella Loihica PV-4 and Underlying Biological Mechanism. Bioresour. Technol. 2018, 265, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Quaglio, M.; Massaglia, G.; Vasile, N.; Margaria, V.; Chiodoni, A.; Salvador, G.P.; Marasso, S.L.; Cocuzza, M.; Saracco, G.; Pirri, F.C. A Fluid Dynamics Perspective on Material Selection in Microbial Fuel Cell-Based Biosensors. Int. J. Hydrogen Energy 2019, 44, 4533–4542. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Thomson, A.R.; Schneider, K.; Cameron, P.J.; Ieropoulos, I. A Small-Scale Air-Cathode Microbial Fuel Cell for on-Line Monitoring of Water Quality. Biosens. Bioelectron. 2014, 62, 182–188. [Google Scholar] [CrossRef]
- Lóránt, B.; László, K.; Tardy, G.M. Improving the Performance of Microbial Fuel Cells with Modified Carbon Aerogel Based Cathode Catalysts. Period. Polytech. Chem. Eng. 2022, 66, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Wang, M.; Zhang, P.; Zong, Y.; Zhang, Q. A Single-Chamber Microbial Fuel Cell for Rapid Determination of Biochemical Oxygen Demand Using Low-Cost Activated Carbon as Cathode Catalyst. Environ. Technol. 2018, 39, 3228–3237. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, X.; Shi, Y.; Qi, Y.; Huang, D.; Tadé, M.; Wang, S.; Liu, S. FePO4 Based Single Chamber Air-Cathode Microbial Fuel Cell for Online Monitoring Levofloxacin. Biosens. Bioelectron. 2017, 91, 367–373. [Google Scholar] [CrossRef]
- Sánchez-Peña, P.; Rodriguez, J.; Montes, R.; Baeza, J.A.; Gabriel, D.; Baeza, M.; Guisasola, A. Less Is More: A Comprehensive Study on the Effects of the Number of Gas Diffusion Layers on Air–Cathode Microbial Fuel Cells. ChemElectroChem 2021, 8, 3416–3426. [Google Scholar] [CrossRef]
- Jia, L.; Jiang, B.; Huang, F.; Hu, X. Nitrogen Removal Mechanism and Microbial Community Changes of Bioaugmentation Subsurface Wastewater Infiltration System. Bioresour. Technol. 2019, 294, 122140. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.Y.; Chen, K.S. Elucidating Differences between Carbon Paper and Carbon Cloth in Polymer Electrolyte Fuel Cells. Electrochim. Acta 2007, 52, 3965–3975. [Google Scholar] [CrossRef]
- Zhao, F.; Harnisch, F.; Schröder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells. Environ. Sci. Technol. 2006, 40, 5193–5199. [Google Scholar] [CrossRef]
- Córdova-Bautista, Y.; Paraguay-Delgado, F.; Pérez Hernández, B.; Pérez Hernández, G.; Martínez Pereyra, G.; Ramírez Morales, E. Influence of External Resistance and Anodic PH on Power Density in Microbial Fuel Cell Operated with B. Subtilis BSC-2 Strain. Appl. Ecol. Environ. Res. 2018, 16, 1983–1997. [Google Scholar] [CrossRef]
- Cristiani, P.; Carvalho, M.L.; Guerrini, E.; Daghio, M.; Santoro, C.; Li, B. Cathodic and Anodic Biofilms in Single Chamber Microbial Fuel Cells. Bioelectrochemistry 2013, 92, 6–13. [Google Scholar] [CrossRef]
- Logan, B.E.; Rossi, R.; Ragab, A.; Saikaly, P.E. Electroactive Microorganisms in Bioelectrochemical Systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Almatouq, A.; Babatunde, A.O.; Khajah, M.; Webster, G.; Alfodari, M. Microbial Community Structure of Anode Electrodes in Microbial Fuel Cells and Microbial Electrolysis Cells. J. Water Process Eng. 2020, 34, 101140. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, K.; Zhao, Q.; Jiao, Y.; Lee, D.J. Effect of Cathode Types on Long-Term Performance and Anode Bacterial Communities in Microbial Fuel Cells. Bioresour. Technol. 2012, 118, 249–256. [Google Scholar] [CrossRef]
- Kiely, P.D.; Rader, G.; Regan, J.M.; Logan, B.E. Long-Term Cathode Performance and the Microbial Communities That Develop in Microbial Fuel Cells Fed Different Fermentation Endproducts. Bioresour. Technol. 2011, 102, 361–366. [Google Scholar] [CrossRef]
- Dávila, D.; Esquivel, J.P.; Sabaté, N.; Mas, J. Silicon-Based Microfabricated Microbial Fuel Cell Toxicity Sensor. Biosens. Bioelectron. 2011, 26, 2426–2430. [Google Scholar] [CrossRef] [PubMed]
- Janicek, A.; Gao, N.; Fan, Y.; Liu, H. High Performance Activated Carbon/Carbon Cloth Cathodes for Microbial Fuel Cells. Fuel Cells 2015, 15, 855–861. [Google Scholar] [CrossRef]
- Li, B.; Zhou, J.; Zhou, X.; Wang, X.; Li, B.; Santoro, C.; Grattieri, M.; Babanova, S.; Artyushkova, K.; Atanassov, P.; et al. Surface Modification of Microbial Fuel Cells Anodes: Approaches to Practical Design. Electrochim. Acta 2014, 134, 116–126. [Google Scholar] [CrossRef]
- López-Hincapié, J.D.; Picos-Benítez, A.R.; Cercado, B.; Rodríguez, F.; Rodríguez-García, A. Improving the Configuration and Architecture of a Small-Scale Air-Cathode Single Chamber Microbial Fuel Cell (MFC) for Biosensing Organic Matter in Wastewater Samples. J. Water Process Eng. 2020, 38, 101671. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Aghababaie, M.; Farhadian, M.; Jeihanipour, A.; Biria, D. Effective Factors on the Performance of Microbial Fuel Cells in Wastewater Treatment—A Review. Environ. Technol. Rev. 2015, 4, 71–89. [Google Scholar] [CrossRef]
- González del Campo, A.; Cañizares, P.; Lobato, J.; Rodrigo, M.; Fernandez Morales, F.J. Effects of External Resistance on Microbial Fuel Cell’s Performance. In The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2014; pp. 175–197. [Google Scholar]
- Stein, N.E.; Hamelers, H.V.M.; Buisman, C.N.J. Stabilizing the Baseline Current of a Microbial Fuel Cell-Based Biosensor through Overpotential Control under Non-Toxic Conditions. Bioelectrochemistry 2010, 78, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ramnarayanan, R.; Logan, B.E. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 2281–2285. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Ahn, Y.; Hou, H.; Zhang, F.; Logan, B.E. Electrochemical Study of Multi-Electrode Microbial Fuel Cells under Fed-Batch and Continuous Flow Conditions. J. Power Sources 2014, 257, 454–460. [Google Scholar] [CrossRef]
- Ma, L.; Chen, N.; Feng, C.; Hu, Y.; Li, M.; Liu, T. Feasibility and Mechanism of Microbial-Phosphorus Minerals-Alginate Immobilized Particles in Bioreduction of Hexavalent Chromium and Synchronous Removal of Trivalent Chromium. Bioresour. Technol. 2019, 294, 122213. [Google Scholar] [CrossRef] [PubMed]
- Spurr, M.W.A. Microbial Fuel Cell-Based Biosensors for Estimation of Biochemical Oxygen Demand and Detection of Toxicity. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2017. [Google Scholar]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Martinez, S.M.; Di Lorenzo, M. Electricity Generation from Untreated Fresh Digestate with a Cost-Effective Array of Floating Microbial Fuel Cells. Chem. Eng. Sci. 2019, 198, 108–116. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Zhu, T.J.; Lin, C.W.; Liu, S.H. Sensitivity and Reusability of a Simple Microbial Fuel Cell-Based Sensor for Detecting Bisphenol A in Wastewater. Chemosphere 2023, 320, 138082. [Google Scholar] [CrossRef]
- Juang, D.F.; Yang, P.C.; Chou, H.Y.; Chiu, L.J. Effects of Microbial Species, Organic Loading and Substrate Degradation Rate on the Power Generation Capability of Microbial Fuel Cells. Biotechnol. Lett. 2011, 33, 2147–2160. [Google Scholar] [CrossRef] [PubMed]
- Ding, A.; Yang, Y.; Sun, G.; Wu, D. Impact of Applied Voltage on Methane Generation and Microbial Activities in an Anaerobic Microbial Electrolysis Cell (MEC). Chem. Eng. J. 2016, 283, 260–265. [Google Scholar] [CrossRef]
- Tardy, G.M.; Lóránt, B.; Gyalai-Korpos, M.; Bakos, V.; Simpson, D.; Goryanin, I. Microbial Fuel Cell Biosensor for the Determination of Biochemical Oxygen Demand of Wastewater Samples Containing Readily and Slowly Biodegradable Organics. Biotechnol. Lett. 2021, 43, 445–454. [Google Scholar] [CrossRef]
- Ayyaru, S.; Dharmalingam, S. Enhanced Response of Microbial Fuel Cell Using Sulfonated Poly Ether Ether Ketone Membrane as a Biochemical Oxygen Demand Sensor. Anal. Chim. Acta 2014, 818, 15–22. [Google Scholar] [CrossRef]
- Xiao, N.; Selvaganapathy, P.R.; Wu, R.; Huang, J.J. Influence of Wastewater Microbial Community on the Performance of Miniaturized Microbial Fuel Cell Biosensor. Bioresour. Technol. 2020, 302, 122777. [Google Scholar] [CrossRef]
- Salvian, A.; Farkas, D.; Ramirez-Moreno, M.; Torruella-Salas, D.; Berná, A.; Avignone-Rossa, C.; Varcoe, J.R.; Esteve- Núñez, A.; Gadkari, S. Resilience of Anodic Biofilm in Microbial Fuel Cell Biosensor for BOD Monitoring of Urban Wastewater. npj Clean. Water 2024, 7, 53. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, P.; Liu, P.; Miao, B.; Bian, Y.; Zhang, H.; Huang, X. Enhancement of the Sensitivity of a Microbial Fuel Cell Sensor by Transient-State Operation. Environ. Sci. 2017, 3, 472–479. [Google Scholar] [CrossRef]
- Kolajo, O.O.; Pandit, C.; Thapa, B.S.; Pandit, S.; Mathuriya, A.S.; Gupta, P.K.; Jadhav, D.A.; Lahiri, D.; Nag, M.; Upadhye, V.J. Impact of Cathode Biofouling in Microbial Fuel Cells and Mitigation Techniques. Biocatal. Agric. Biotechnol. 2022, 43, 102408. [Google Scholar] [CrossRef]
- Zhang, F.; Pant, D.; Logan, B.E. Long-Term Performance of Activated Carbon Air Cathodes with Different Diffusion Layer Porosities in Microbial Fuel Cells. Biosens. Bioelectron. 2011, 30, 49–55. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Qu, Y.; Wang, H.; Feng, Y. Analysis of the Effect of Biofouling Distribution on Electricity Output in Microbial Fuel Cells. RSC Adv. 2016, 6, 27494–27500. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Lynam, J.G.; Lee, W.H.; Dai, F.; Dakhil, I.H. Roughness and Wettability of Biofilm Carriers: A Systematic Review. Environ. Technol. Innov. 2021, 21, 101233. [Google Scholar] [CrossRef]
- Shafahi, M.; Vafai, K. Biofilm Affected Characteristics of Porous Structures. Int. J. Heat. Mass. Transf. 2009, 52, 574–581. [Google Scholar] [CrossRef]
- Chen, Y.C.; Karageorgiou, C.; Eller, J.; Schmidt, T.J.; Büchi, F.N. Determination of the Porosity and Its Heterogeneity of Fuel Cell Microporous Layers by X-Ray Tomographic Microscopy. J. Power Sources 2022, 539, 231612. [Google Scholar] [CrossRef]
- Vilajeliu-Pons, A.; Bañeras, L.; Puig, S.; Molognoni, D.; Vilà-Rovira, A.; Hernández-del Amo, E.; Balaguer, M.D.; Colprim, J. External Resistances Applied to MFC Affect Core Microbiome and Swine Manure Treatment Efficiencies. PLoS ONE 2016, 11, e0164044. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Regan, J.M. Influence of External Resistance on Electrogenesis, Methanogenesis, and Anode Prokaryotic Communities in Microbial Fuel Cells. Appl. Environ. Microbiol. 2011, 77, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.; Bender, K.; Buckley, D.; Sattley, W.; Stahl, D. The Foundation of Microbiology. In Brock Biology of Microorganisms; Pearson Education, Limited: London, UK, 2018; pp. 37–172. [Google Scholar]
- Choi, T.S.; Song, Y.C.; Joicy, A. Influence of Conductive Material on the Bioelectrochemical Removal of Organic Matter and Nitrogen from Low Strength Wastewater. Bioresour. Technol. 2018, 259, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Zhang, Y.; Gao, N.; Li, D.; Zhou, Q. Effects of Catalyst Layer and Gas Diffusion Layer Thickness on the Performance of Activated Carbon Air-Cathode for Microbial Fuel Cells. Int. J. Electrochem. Sci. 2015, 10, 5086–5100. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, K.; Song, T.; Xie, J. Enhancing Microbial Electrosynthesis by Releasing Extracellular Polymeric Substances: Novel Strategy through Extracellular Electron Transfer Improvement. Biochem. Eng. J. 2022, 184, 108496. [Google Scholar] [CrossRef]
- Boyd, A.; Chakrabarty, A.M. Pseudomonas Aeruginosa Biofilms: Role of the Alginate Exopolysaccharide. J. Ind. Microbiol. 1995, 15, 162–168. [Google Scholar] [CrossRef]
- Pham, T.H.; Boon, N.; Aelterman, P.; Clauwaert, P.; De Schamphelaire, L.; Vanhaecke, L.; De Maeyer, K.; Höfte, M.; Verstraete, W.; Rabaey, K. Metabolites Produced by Pseudomonas Sp. Enable a Gram-Positive Bacterium to Achieve Extracellular Electron Transfer. Appl. Microbiol. Biotechnol. 2008, 77, 1119–1129. [Google Scholar] [CrossRef]
- Jian, M.; Xue, P.; Shi, K.; Li, R.; Ma, L.; Li, P. Efficient Degradation of Indole by Microbial Fuel Cell Based Fe2O3-Polyaniline-Dopamine Hybrid Composite Modified Carbon Felt Anode. J. Hazard. Mater. 2020, 388, 122123. [Google Scholar] [CrossRef]
- Jangir, Y.; French, S.; Momper, L.M.; Moser, D.P.; Amend, J.P.; El-Naggar, M.Y. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species. Front. Microbiol. 2016, 7, 756. [Google Scholar] [CrossRef]
- Meng, L.; Xie, L.; Hirose, Y.; Nishiuchi, T.; Yoshida, N. Reduced Graphene Oxide Increases Cells with Enlarged Outer Membrane of Citrifermentans Bremense and Exopolysaccharides Secretion. Biosens. Bioelectron. 2022, 218, 114754. [Google Scholar] [CrossRef]
- Guo, N.; Ma, X.; Ren, S.; Wang, S.; Wang, Y. Mechanisms of Metabolic Performance Enhancement during Electrically Assisted Anaerobic Treatment of Chloramphenicol Wastewater. Water Res. 2019, 156, 199–207. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, T.; Chen, S.; Quan, X. Accelerating Anaerobic Hydrolysis Acidification of Dairy Wastewater in Integrated Floating-Film and Activated Sludge (IFFAS) by Using Zero-Valent Iron (ZVI) Composite Carriers. Biochem. Eng. J. 2022, 177, 108226. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, L.; Zhang, Y.; Yu, Y. Microbial Fuel Cell-Based Biosensor for Simultaneous Test of Sodium Acetate and Glucose in a Mixed Solution. Int. J. Environ. Res. Public Health 2022, 19, 12297. [Google Scholar] [CrossRef]
- Cheng, P.; Shan, R.; Yuan, H.R.; Deng, L.F.; Chen, Y. Enhanced Rhodococcus Pyridinivorans HR-1 Anode Performance by Adding Trehalose Lipid in Microbial Fuel Cell. Bioresour. Technol. 2018, 267, 774–777. [Google Scholar] [CrossRef]
- Nath, D.; Ghangrekar, M.M. Plant Secondary Metabolites Induced Electron Flux in Microbial Fuel Cell: Investigation from Laboratory-to-Field Scale. Sci. Rep. 2020, 10, 17185. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Li, N.; Sardar, M.F.; Song, T.; Zhu, H.; Xing, X.; Zhu, C. Dynamics of a Bacterial Community in the Anode and Cathode of Microbial Fuel Cells under Sulfadiazine Pressure. Int. J. Environ. Res. Public Health 2022, 19, 6253. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, S.; Liu, H.; Liu, S.; Zhang, J.; Yuan, J.; Fu, W.; Dang, W.; Xu, Y.; Yang, X.; et al. Heteroatom-Doped Porous Carbon Nanoparticle-Decorated Carbon Cloth (HPCN/CC) as Efficient Anode Electrode for Microbial Fuel Cells (MFCs). J. Clean. Prod. 2022, 336, 130374. [Google Scholar] [CrossRef]
- Garbini, G.L.; Barra Caracciolo, A.; Grenni, P. Electroactive Bacteria in Natural Ecosystems and Their Applications in Microbial Fuel Cells for Bioremediation: A Review. Microorganisms 2023, 11, 1255. [Google Scholar] [CrossRef]
- He, J.; Xin, X.; Pei, Z.; Chen, L.; Chu, Z.; Zhao, M.; Wu, X.; Li, B.; Tang, X.; Xiao, X. Microbial Profiles Associated Improving Bioelectricity Generation from Sludge Fermentation Liquid via Microbial Fuel Cells with Adding Fruit Waste Extracts. Bioresour. Technol. 2021, 337, 125452. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.G.; Hurtado, R.; Gomes, L.G.R.; Profeta, R.; Rifici, C.; Attili, A.R.; Spier, S.J.; Giuseppe, M.; Morais-Rodrigues, F.; Gomide, A.C.P.; et al. Complete Genome Analysis of Glutamicibacter Creatinolyticus from Mare Abscess and Comparative Genomics Provide Insight of Diversity and Adaptation for Glutamicibacter. Gene 2020, 741, 144566. [Google Scholar] [CrossRef]
- Lee, C.Y.; Ho, K.L.; Lee, D.J.; Su, A.; Chang, J.S. Electricity Harvest from Nitrate/Sulfide-Containing Wastewaters Using Microbial Fuel Cell with Autotrophic Denitrifier, Pseudomonas Sp. C27. Int. J. Hydrogen Energy 2012, 37, 15827–15832. [Google Scholar] [CrossRef]
- Xing, D.; Cheng, S.; Logan, B.E.; Regan, J.M. Isolation of the Exoelectrogenic Denitrifying Bacterium Comamonas Denitrificans Based on Dilution to Extinction. Appl. Microbiol. Biotechnol. 2010, 85, 1575–1587. [Google Scholar] [CrossRef]
- Hou, J.; Deng, H.-K.; Liu, Z.-X.; Xu, P.; Wang, L.-J. Sulfur Metabolism in Rhodococcus Species and Their Application in Desulfurization of Fossil Fuels. J. Appl. Microbiol. 2023, 134, lxad048. [Google Scholar] [CrossRef]
- Dutta, K.; Kundu, P.P. A Review on Aromatic Conducting Polymers-Based Catalyst Supporting Matrices for Application in Microbial Fuel Cells. Polym. Rev. 2014, 54, 401–435. [Google Scholar] [CrossRef]
GDL | Pt Loading | OCP Cathode | REx | Max Current Peak | Max Current Density | Reference |
---|---|---|---|---|---|---|
(mg cm−2) | (mV) | (Ω) | (µA) | (mA m−2) | ||
CC | 0.5 | - | 953 | 440 1 | 1500 | [8] |
CC | 0.5 | 230 | 1000 | 520 | 353 1 | [46] |
CC | 0.5 | 236 | 1000 | 365 | 333 | This study |
CP | 0.3 | - | 500 | 120 1 | - | [5] |
CP | 0.5 | 111–191 | 100 | - | 2000 1 | [19] |
CP | 0.5 | 101 | 1000 | 130 | 231 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvian, A.; Farkas, D.; Ramírez-Moreno, M.; Avignone Rossa, C.; Varcoe, J.R.; Gadkari, S. Impact of Air-Cathodes on Operational Stability of Single-Chamber Microbial Fuel Cell Biosensors for Wastewater Monitoring. Energies 2024, 17, 3574. https://doi.org/10.3390/en17143574
Salvian A, Farkas D, Ramírez-Moreno M, Avignone Rossa C, Varcoe JR, Gadkari S. Impact of Air-Cathodes on Operational Stability of Single-Chamber Microbial Fuel Cell Biosensors for Wastewater Monitoring. Energies. 2024; 17(14):3574. https://doi.org/10.3390/en17143574
Chicago/Turabian StyleSalvian, Anna, Daniel Farkas, Marina Ramírez-Moreno, Claudio Avignone Rossa, John R. Varcoe, and Siddharth Gadkari. 2024. "Impact of Air-Cathodes on Operational Stability of Single-Chamber Microbial Fuel Cell Biosensors for Wastewater Monitoring" Energies 17, no. 14: 3574. https://doi.org/10.3390/en17143574
APA StyleSalvian, A., Farkas, D., Ramírez-Moreno, M., Avignone Rossa, C., Varcoe, J. R., & Gadkari, S. (2024). Impact of Air-Cathodes on Operational Stability of Single-Chamber Microbial Fuel Cell Biosensors for Wastewater Monitoring. Energies, 17(14), 3574. https://doi.org/10.3390/en17143574