Survey of Optimization Techniques for Microgrids Using High-Efficiency Converters
Abstract
:1. Introduction
- This paper compiles and analyzes the most recent and relevant studies on high-efficiency converters and advanced control techniques applicable to MGs. This analysis includes a critical evaluation of the existing literature, identifying trends and gaps in current knowledge.
- Presents and highlights converters that have demonstrated superior performance in terms of efficiency and stability. Includes a detailed comparison of different technologies and techniques, highlighting those with the greatest potential to improve MG performance.
- Advanced control techniques, such as model based predictive control and artificial intelligence, are highlighted. These technologies allow control systems to dynamically adapt to variations in energy generation and demand, improving the resilience and efficiency of MGs.
- It provides a comprehensive overview that guides the development of new research and applications in the energy field. Based on the findings of the review, specific recommendations are offered.
2. Development and Advances in High-Efficiency Converters for MG
3. Impact on MG Performance
3.1. Case Studies
3.2. Improvements in Stability and Control
3.3. Energy Efficiency and System Stability
4. Optimization of Energy Resources
Optimization Models
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviation | Meaning | Abbreviation | Meaning |
---|---|---|---|
AC | Alternating Current | ILC | Interlinking Converters |
Ant Colony Algorithm | Ant Colony Algorithm | IoT | Internet of Things |
APF | Active Power Filter | ISM | Sliding Mode Control |
AWL | Automatic Winding Layout | KVA | Kilovolt-Ampere |
BDC | Bidirectional Converter | MEXA | Mixing and Exploring Algorithm |
BESS | Battery Energy Storage System | MFLA | Modified Frog Leaping Algorithm |
Boosted WOA | Boosted Whale Optimization Algorithm | ML | Machine Learning |
Search for Harmony | Harmony Search | MMC | Modular Multilevel Converter |
CPD | Custom Power Devices | MPC | Model Predictive Control |
Cuckoo Search | Cuckoo Search | MPIBC | Multiphasic Interleaved Boost Converter |
DC | Direct Current | MPA | Marine Predators Algorithm |
DER | Distributed Energy Resources | MRFO | Manta Ray Foraging Optimization |
DPMPC | Direct Power Model Predictive Control | OPR | Optimal Power Routing |
DSTATCOM | Distribution Static Compensator | P&O | Perturb and Observe |
DUEA | Disturbance and Uncertainty Estimation and Attenuation | PI | Proportional-Integral |
EV | Electric Vehicle | PRO | Promoted Remora Algorithm |
ESS | Energy Storage System | PR | Proportional Resonant Controllers |
FCDO | Flying Capacitor Dual Output | PSO | Particle Swarm Optimization |
FICDS | Fast Interaction Converter-Driven Stability | PV | Photovoltaic |
Firefly Algorithm | Firefly Algorithm | SASAOA | Scaled Arithmetic Optimization Algorithm with Sine Augmentation |
FSEC | Florida Solar Energy Center | SEPIC | Single-Ended Primary Inductor Converter |
Fuzzy Neural Networks + Modified PSO | Fuzzy Neural Networks + Modified PSO | SiC | Silicon Carbide |
GA | Genetic Algorithm | SMC | Sliding Mode Control |
GaN | Gallium Nitride | SPV | Solar Photovoltaic Systems |
GFM | Grid-Forming | SST | Solid-State Transformers |
GFL | Grid-Following | STATCOM | Static Synchronous Compensator |
GOA | Grasshopper Optimization Algorithm | THD | Total Harmonic Distortion |
GSA-PS | Gravitational Search Algorithm and Pattern Search Hybrid Algorithm | TPC | Three-Port Converters |
HESS | Hybrid Energy Storage System | UCF | University of Central Florida |
HG-SIQBC | High Gain Single-Inductor Quadratic Boost Converter | UPFC | Unified Power Flow Controller |
HM | Hybrid Microgrids | UPQC | Unified Power Quality Conditioner |
HVDC | High Voltage Direct Current | V2G | Vehicle to Grid |
IACODP | Improved Ant Colony Optimization with Dynamic Programming | VSG | Virtual Synchronous Generators |
IIR | Infinite Impulse Response | WBG | Wide Bandgap Devices |
ILP | Integer Linear Programming | WT | Wavelet Transform |
References
- Badal, F.R.; Sarker, S.K.; Nayem, Z.; Moyeen, S.I.; Das, S.K. Microgrid to smart grid’s evolution: Technical challenges, current solutions, and future scopes. Energy Sci. Eng. 2023, 11, 874–928. [Google Scholar] [CrossRef]
- Sarathkumar, D.; Raj, R.A. Development of smart grid from microgrids: Components and applications. In Proceedings of the 2nd International Conference on Innovative Sustainable Computational Technologies, CISCT 2022, Dehradun, India, 23–24 December 2022; Institute of Electrical and Electronics Engineers Inc.: Geneva, Switzerland, 2022. [Google Scholar]
- Khalid, M. Smart Grids and renewable energy systems: Perspectives and grid integration challenges. Energy Strategy Rev. 2024, 51, 101299. [Google Scholar] [CrossRef]
- Campagna, N.; Castiglia, V.; Miceli, R.; Caruso, M. Modelling, simulation and characterization of a supercapacitor in automotive applications. IEEE 2020, 58, 1–6. [Google Scholar]
- Hu, J.; Shan, Y.; Cheng, K.W.; Islam, S. Overview of power converter control in microgrids—Challenges, advances, and future trends. IEEE Trans. Power Electron. 2022, 37, 9907–9922. [Google Scholar] [CrossRef]
- Bashir, S.B.; Ismail, A.A.A.; Elnady, A.; Farag, M.M.; Hamid, A.K.; Bansal, R.C.; Abo-Khalil, A.G. Modular multilevel converter-based microgrid: A critical review. IEEE Access 2023, 11, 65569–65589. [Google Scholar] [CrossRef]
- Luo, Y.; Jia, Z.; Xu, L.; Li, Q.; Song, Y. A Reduced Switching Frequency Capacitor Voltage Balancing Control for Modular Multilevel Converters. Int. J. Electr. Power Energy Syst. 2022, 142, 108272. [Google Scholar] [CrossRef]
- Xiao, Q.; Mu, Y.; Jia, H.; Jin, Y.; Yu, X.; Teodorescu, R.; Guerrero, J.M. Novel Modular Multilevel Converter-Based Five-Terminal MV/LV Hybrid AC/DC Microgrids with Improved Operation Capability under Unbalanced Power Distribution. Appl. Energy 2022, 306, 118140. [Google Scholar] [CrossRef]
- Sai Sampath Kumar, P.; Suresh, P.; Lenine, D. Performance Improvement of Predictive Voltage Control for Interlinking Converters of Integrated Microgrid. Meas. Sens. 2024, 33, 101196. [Google Scholar] [CrossRef]
- Rezayof Tatari, F.; Banejad, M.; Akbarzadeh Kalat, A.; Iwanski, G. A Long-Horizon Move-Blocking Based Direct Power Model Predictive Control for Dynamic Enhancement of DC Microgrids. Ain Shams Eng. J. 2024, 15, 102837. [Google Scholar] [CrossRef]
- Yadegar, M.; Zarei, S.F.; Meskin, N.; Massoud, A. An Adaptive Voltage Control Compensator for Converters in DC Microgrids under Fault Conditions. Int. J. Electr. Power Energy Syst. 2024, 156, 109697. [Google Scholar] [CrossRef]
- Guo, Q.; Bahri, I.; Diallo, D.; Berthelot, E. Model Predictive Control and Linear Control of DC–DC Boost Converter in Low Voltage DC Microgrid: An Experimental Comparative Study. Control Eng. Pract. 2023, 131, 105387. [Google Scholar] [CrossRef]
- Frivaldsky, M.; Morgos, J.; Prazenica, M.; Takacs, K. System Level Simulation of Microgrid Power Electronic Systems. Electronics 2021, 10, 644. [Google Scholar] [CrossRef]
- Alkhaledi, K.; Cheema, K.M.; Elbarbary, Z.M.S.; Park, W.H.; El-Sherbeeny, A.M. Multilevel Converter to Access Maximum Power from Distributed Energy Source Based Smart Grids. Front. Energy Res. 2023, 11, 1125461. [Google Scholar] [CrossRef]
- Khan, I.A.; Muyeen, S.M. Application of Power Electronics Converters in Smart Grids and Renewable Energy Systems; MDPI-Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2022. [Google Scholar]
- Zhang, L.; Bento, A.; Paraiso, G.; Costa, P.; Pinto, S.; Silva, J.F. Novel Topology of Modular-Matrix-Converter-Based Smart Transformer for Hybrid Microgrid. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Toronto, ON, Canada, 13–16 October 2021; IEEE Computer Society: Toronto, ON, Canada, 2021. [Google Scholar]
- Blaabjerg, F.; Yang, Y.; Kim, K.A.; Rodriguez, J. Power electronics technology for large-scale renewable energy generation. Proc. IEEE 2023, 111, 335–355. [Google Scholar] [CrossRef]
- Yiasoumas, G.; Berbakov, L.; Janev, V.; Asmundo, A.; Olabarrieta, E.; Vinci, A.; Baglietto, G.; Georghiou, G.E. Key aspects and challenges in the implementation of energy communities. Energies 2023, 16, 4703. [Google Scholar] [CrossRef]
- Juszczyk, O.; Juszczyk, J.; Juszczyk, S.; Takala, J. Barriers for renewable energy technologies diffusion: Empirical evidence from Finland and Poland. Energies 2022, 15, 527. [Google Scholar] [CrossRef]
- Barceló, E.; Dimić-Mišić, K.; Imani, M.; Spasojević Brkić, V.; Hummel, M.; Gane, P. Regulatory paradigm and challenge for blockchain integration of decentralized systems: Example—Renewable energy grids. Sustainability 2023, 15, 2571. [Google Scholar] [CrossRef]
- Oleiwi Shami, H.; Basem, A.; Al-Rubaye, A.H.; Sabzevari, K. A Novel Strategy to Enhance Power Management in AC/DC Hybrid Microgrid Using Virtual Synchronous Generator Based Interlinking Converters Integrated with Energy Storage System. Energy Rep. 2024, 12, 75–94. [Google Scholar] [CrossRef]
- Davalos Hernandez, F.; Parsegov, S.; Rosas-Caro, J.C.; Bhatnagar, P.; Martin Ibanez, F. Optimal number of supercapacitors per submodule in the energy storage system based on a modular multilevel converter with embedded balance control. Int. J. Electr. Power Energy Syst. 2024, 159, 110030. [Google Scholar] [CrossRef]
- Khan, N.; Ooi, C.A.; Alturki, A.; Amir, M.; Shreasth; Alharbi, T. A Critical review of battery cell balancing techniques, optimal design, converter topologies, and performance evaluation for optimizing storage system in electric vehicles. Energy Rep. 2024, 11, 4999–5032. [Google Scholar] [CrossRef]
- Luo, H.; Cao, S. Advanced energy flexibility enhancement via the novel resources of wave energy converter reservoirs and electric storages for a hybrid wave-wind energy supported hotel energy system. J. Build. Eng. 2022, 60, 105167. [Google Scholar] [CrossRef]
- Lencwe, M.J.; Olwal, T.O.; Chowdhury, S.D.; Sibanyoni, M. Nonsolitary Two-Way DC-to-DC Converters for hybrid battery and supercapacitor energy storage systems: A comprehensive survey. Energy Rep. 2024, 11, 2737–2767. [Google Scholar] [CrossRef]
- Alam, M.A.; Minai, A.F.; Bakhsh, F.I. Isolated bidirectional DC-DC converter: A topological review. e-Prime Adv. Electr. Eng. Electron. Energy 2024, 8, 100594. [Google Scholar] [CrossRef]
- Leon, J.D.V.; Tarraso, A.; Candela, J.I.; Rocabert, J.; Rodriguez, P. Grid-forming controller based on virtual admittance for power converters working in weak grids. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 4, 791–801. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, Y.; Blaabjerg, F. An interlinking converter for renewable energy integration into hybrid grids. IEEE Trans. Power Electron. 2021, 36, 2499–2504. [Google Scholar] [CrossRef]
- Casey, L.; Enslin, J.H.; Joos, G.; Siira, M.; Borowy, B.; Sun, C. Advanced inverter interactions with electric grids. IEEE Power Electron. Mag. 2023, 10, 20–27. [Google Scholar] [CrossRef]
- Kojonsaari, A.R.; Palm, J. The development of social science research on smart grids: A semi-structured literature review. Energy Sustain. Soc. 2023, 13, 1. [Google Scholar] [CrossRef]
- Eslahi, M.S.; Vaez-Zadeh, S.; Heydari, R.; Rodriguez, J. Resiliency enhancement control of converter fed smart renewable micro grids against multiple risks. IEEE Trans. Energy Convers. 2023, 38, 1028–1039. [Google Scholar] [CrossRef]
- Hollweg, G.V.; Khan, S.A.; Chaturvedi, S.; Fan, Y.; Wang, M.; Su, W. Grid-connected converters: A brief survey of topologies, output filters, current control, and weak grids operation. Energies 2023, 16, 3611. [Google Scholar] [CrossRef]
- Sreekanth, N.V.; Ashok, L.; Jebasingh, D.N. Dual input single output quadratic boost converter for dc microgrid. e-Prime Adv. Electr. Eng. Electron. Energy 2024, 4, 100683. [Google Scholar]
- Vijayan, M.; Udumula, R.R.; Mahto, T.; Ravi, R.E. A Novel Multi-Port High-Gain Bidirectional DC–DC Converter for Energy Storage System Integration with DC Microgrids. J. Energy Storage 2024, 87, 111431. [Google Scholar] [CrossRef]
- Esteban, F.D.; Serra, F.M.; De Angelo, C.H. Feedback linearization control to avoid saturation of the high frequency transformer of a dual active bridge DC–DC converter for a DC microgrid. Control Eng. Pract. 2024, 149, 105974. [Google Scholar] [CrossRef]
- Araujo, L.S.; Callegari, J.M.S.; Cardoso Filho, B.J.; Brandao, D.I. Heterogeneous Microgrids: Centralized control strategy with distributed grid-forming converters. Int. J. Electr. Power Energy Syst. 2024, 158, 109950. [Google Scholar] [CrossRef]
- Afkar, M.; Gavagsaz-Ghoachani, R.; Phattanasak, M.; Pierfederici, S. Voltage-balancing of two controllers for a dc-dc converter-based dc microgrid with experimental verification. Math. Comput. Simul. 2024, 221, 159–179. [Google Scholar] [CrossRef]
- Yang, W.; Miao, S.; Liu, Z.; Han, J.; Xiong, Y. Control of parallel bidirectional converters under unbalanced conditions in an ac/dc hybrid microgrid. Electr. Power Syst. Res. 2024, 226, 109952. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.; Tang, F.; Wu, X. Adaptive virtual admittance control of bidirectional DC/DC converters for dc bus voltage ripple suppression in dc microgrids. Int. J. Electr. Power Energy Syst. 2024, 159, 110045. [Google Scholar] [CrossRef]
- Dong, Z.; Qin, J.; Hao, T.; Li, X.; Tse, C.K.; Lu, P. Distributed cooperative control of dc microgrid cluster with multiple voltage levels. Int. J. Electr. Power Energy Syst. 2024, 159, 109996. [Google Scholar] [CrossRef]
- Sunddararaj, S.P.; Rangarajan, S.S.; Nallusamy, S.; Subramaniam, U.; Collins, E.R.; Senjyu, T. Design of novel hg-siqbc-fed multilevel inverter for standalone microgrid applications. Appl. Sci. 2022, 12, 9347. [Google Scholar] [CrossRef]
- Mehmed-Hamza, M.E.; Filipov, A.B.; Ivanova, M.D. Types of Smart Systems and Their Application in Power Grids. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1216, 012003. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, Y.; Li, S.; Huang, Y.; Tan, S.C.; Hui, S.Y. A High-Efficiency DC/DC Converter for High-Voltage-Gain, High-Current Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2812–2823. [Google Scholar] [CrossRef]
- Wu, T.F.; Huang, Y.H.; Lin, T.H. Multi-Function High-Power Converters for smart-grid applications. In Proceedings of the E3S Web of Conferences, Hsinchu, Taiwan, 27 November 2018; EDP Sciences: Les Ulis, France, 2018. [Google Scholar]
- Chiang, G.T.; Tanemura, K.; Tomura, S. Proposal of a high-frequency integrated power converter for renewable energy-grid-bes interactive applications. IEEJ J. Ind. Appl. 2023, 12, 624–634. [Google Scholar] [CrossRef]
- Ortíz-Marín, J.; Gallo-Reyes, D.; Ruiz-Robles, D.; Venegas-Rebollar, V. Analyzing power losses and performance of an isolated dc-dc converter for renewable energies systems. Electronics 2023, 12, 1110. [Google Scholar] [CrossRef]
- Anzola, J.; Garayalde, E.; Urkizu, J.; Alacano, A.; Lopez-Erauskin, R. High efficiency converters based on modular partial power processing for fully electric maritime applications. Electronics 2023, 12, 2778. [Google Scholar] [CrossRef]
- Lv, M.; Wang, P.; Wei, Y.; Wen, C.; Li, J.; Jia, P.; Wei, Q. An input-series-output-parallel cascaded converter system applied to dc microgrids. Symmetry 2023, 15, 1174. [Google Scholar] [CrossRef]
- Syasegov, Y.Y.; Farhangi, M.; Barzegarkhoo, R.; Siwakoti, Y.P.; Li, L.; Lu, D.D.C.; Aguilera, R.P.; Pou, J. A 5-Level HERIC Active-clamped inverter with full reactive power capability for grid-connected applications. IEEE Open J. Ind. Electron. Soc. 2023, 4, 135–148. [Google Scholar] [CrossRef]
- Jayan, V.; Ghias, A.M.Y.M. Computationally-efficient model predictive control of dual-output multilevel converter in hybrid microgrid. IEEE Trans. Power Electron. 2023, 38, 5898–5910. [Google Scholar] [CrossRef]
- Shyni, R.; Kowsalya, M. HESS-based microgrid control techniques empowered by artificial intelligence: A systematic review of grid-connected and standalone systems. J. Energy Storage 2024, 84, 111012. [Google Scholar]
- Blazek, V.; Vantuch, T.; Slanina, Z.; Vysocky, J.; Prokop, L.; Misak, S.; Piecha, M.; Walendziuk, W. A Novel Approach to Utilization Vehicle to Grid Technology in Microgrid Environment. Int. J. Electr. Power Energy Syst. 2024, 158, 109921. [Google Scholar] [CrossRef]
- Joarder, S.; Ghosh, A.; Banerjee, S.; Sain, C.; Ahmad, F. Harmonic Modelling and Control of Dual Active Bridge Converter for DC Microgrid Applications. Energy Rep. 2024, 12, 52–74. [Google Scholar] [CrossRef]
- Ramu, S.K.; Vairavasundaram, I.; Palaniyappan, B.; Bragadeshwaran, A.; Aljafari, B. Enhanced Energy Management of DC Microgrid: Artificial Neural Networks-Driven Hybrid Energy Storage System with Integration of Bidirectional DC-DC Converter. J. Energy Storage 2024, 88, 111562. [Google Scholar] [CrossRef]
- Satyanarayana, K.V.V.; Maurya, R. Unified Control of High Gain DC-DC Converter for PV-Battery Hybrid System in a Standalone and DC-Microgrid Applications. J. Energy Storage 2024, 88, 111475. [Google Scholar] [CrossRef]
- Jagadeesh, I.; Indragandhi, V. Solar Photo Voltaic Based Hybrid CUK, SEPIC, ZETA Converters for microgrid applications. e-Prime Adv. Electr. Eng. Electron. Energy 2023, 6, 100364. [Google Scholar] [CrossRef]
- Wang, G.; Wen, H.; Xu, P.; Liu, W.; Zhou, J.; Yang, Y. A Comprehensive review of integrated three-port dc-dc converters with key performance indices. IEEE Trans. Power Electron. 2024, 39, 6391–6408. [Google Scholar] [CrossRef]
- Bayindir, A.B.; Sharida, A.; Bayhan, S.; Abu-Rub, H. Grid connected microinverter based on single leg multimode converter. In Proceedings of the 4th International Conference on Smart Grid and Renewable Energy, SGRE 2024, Doha, Qatar, 8–10 January 2024. [Google Scholar]
- Hassanpour, N.; Chub, A.; Yadav, N.; Blinov, A.; Vinnikov, D. High-Efficiency Partial Power Converter for Integration of Second-Life Battery Energy Storage Systems in DC Microgrids. IEEE Open J. Ind. Electron. Soc. 2024, 3389466. [Google Scholar] [CrossRef]
- Bidram, A.; Reno, M.J.; Abadi, S.A.G.K.; Aparicio, M.J.; Bauer, D. Trends in Dc Microgrids: From the control and protection perspective. IEEE Electrif. Mag. 2024, 12, 33–47. [Google Scholar] [CrossRef]
- Firoz, S.M.; Madichetty, S.; Banda, M.K. Design and implementation of isolated dc-dc low voltage and high power converter. In Proceedings of the 2024 International Conference on Smart Systems for Applications in Electrical Sciences (ICSSES), Tumakuru, India, 3 May 2024; IEEE: New York, NY, USA, 2024. [Google Scholar]
- Lin, Y.; Zhou, F.; Xu, G.; Xiong, W.; Ning, G. Bipolar Current-Fed DC-DC Converter With Automatic Voltage Balance and Full Range ZVS for Bipolar DC System. IEEE Trans. Power Electron. 2024, 39, 4248–4259. [Google Scholar] [CrossRef]
- De Oliveira Costa Neto, A.; Soares, A.L.; Barbosa, V.F.; Rodrigues, D.B.; Freitas, L.C.G.; De Lima, G.B. Analysis and Development of a Bidirectional Three-Phase Hybrid Rectifier for DC Microgrids with Distributed Energy Resources. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 1468–1484. [Google Scholar] [CrossRef]
- Mahafzah, K.A.; Obeidat, M.A.; Mansour, A.; Sanseverino, E.R.; Zizzo, G. A New Smart Grid Hybrid DC–DC Converter with Improved Voltage Gain and Synchronized Multiple Outputs. Appl. Sci. 2024, 14, 2274. [Google Scholar] [CrossRef]
- Rahman, M.J.; Tafticht, T.; Doumbia, M.L. Power Converters Analyzed in Energy Storage Systems to Enhance the Performance of the Smart Grid Application. Int. J. Power Electron. Drive Syst. 2024, 15, 913–924. [Google Scholar] [CrossRef]
- Sarvi, M.; Zohdi, H.Z. A Comprehensive Overview of DC-DC Converters Control Methods and Topologies in DC Microgrids. Energy Sci. Eng. 2024, 12, 2017–2036. [Google Scholar] [CrossRef]
- Henninger, S.; Jaeger, J. Advanced classification of converter control concepts for integration in electrical power systems. Int. J. Electr. Power Energy Syst. 2020, 123, 106210. [Google Scholar] [CrossRef]
- Saldaña-González, A.E.; Sumper, A.; Aragüés-Peñalba, M.; Smolnikar, M. Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review. Energies 2020, 13, 3730. [Google Scholar] [CrossRef]
- Punna, S.; Mailugundla, R.; Salkuti, S.R. Design, Analysis and Implementation of Bidirectional DC–DC Converters for HESS in DC Microgrid Applications. Smart Cities 2022, 5, 433–454. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W.; Tian, H. Power Quality Control of Smart Hybrid AC/DC Microgrids: An Overview. IEEE Access 2019, 7, 52295–52318. [Google Scholar] [CrossRef]
- Xu, Q.; Vafamand, N.; Chen, L.; Dragicevic, T.; Xie, L.; Blaabjerg, F. Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1205–1221. [Google Scholar] [CrossRef]
- Kulasekaran, P.S.; Dasarathan, S. Design and Analysis of Interleaved High-Gain Bi-Directional DC–DC Converter for Microgrid Application Integrated with Photovoltaic Systems. Energies 2023, 16, 5135. [Google Scholar] [CrossRef]
- Hidalgo, H.; Orosco, R.; Huerta, H.; Vázquez, N.; Hernández, C.; Pinto, S. A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications. Energies 2023, 16, 4860. [Google Scholar] [CrossRef]
- Aljafari, B.; Devarajan, G.; Subramani, S.; Vairavasundaram, S. Intelligent RBF-Fuzzy Controller Based Non-Isolated DC-DC Multi-Port Converter for Renewable Energy Applications. Sustainability 2023, 15, 9425. [Google Scholar] [CrossRef]
- Ullah, Q.; Busarello, T.D.C.; Brandao, D.I.; Simões, M.G. Design and Performance Evaluation of SMC-Based DC–DC Converters for Microgrid Applications. Energies 2023, 16, 4212. [Google Scholar] [CrossRef]
- Rajendran, S.; Thangavel, V.; Krishnan, N.; Prabaharan, N. DC Link Voltage Enhancement in DC Microgrid Using PV Based High Gain Converter with Cascaded Fuzzy Logic Controller. Energies 2023, 16, 3928. [Google Scholar] [CrossRef]
- Sirviö, K.; Kauhaniemi, K.; Memon, A.A.; Laaksonen, H.; Kumpulainen, L. Functional analysis of the microgrid concept applied to case studies of the sundom smart grid. Energies 2020, 13, 4223. [Google Scholar] [CrossRef]
- Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T. Micro-grid platform based on node.js architecture, implemented in electrical network instrumentation. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Hangzhou, China, 18–21 October 2015; Institute of Physics Publishing: Bristol, UK, 2015. [Google Scholar]
- Arbab-Zavar, B.; Palacios-Garcia, E.J.; Vasquez, J.C.; Guerrero, J.M. Smart inverters for microgrid applications: A review. Energies 2019, 12, 840. [Google Scholar] [CrossRef]
- Souza Junior, M.E.T.; Freitas, L.C.G. Power electronics for modern sustainable power systems: Distributed generation, microgrids and smart grids—A review. Sustainability 2022, 14, 3597. [Google Scholar] [CrossRef]
- Jadav, K.A.; Karkar, H.M.; Trivedi, I.N. A Review of microgrid architectures and control strategy. J. Inst. Eng. Ser. B 2017, 98, 591–598. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Bures, V.; Mikulecky, P. A Novel cooperative control technique for hybrid ac/dc smart microgrid converters. IEEE Access 2023, 11, 2164–2181. [Google Scholar] [CrossRef]
- Gullu, S.; Djaho, A.C.; Rezaii, R.; Elrais, M.T.; Safayatullah, M.; Mensah, A.; Batarseh, I. Advanced systems integration of 540 kva inverter and 1.86 mwh battery energy storage system for microgrid application: A case study. In Proceedings of the 2022 13th International Renewable Energy Congress, IREC 2022, Hammamet, Tunisia, 13–15 December 2022. [Google Scholar]
- Panda, S.K.; Ghosh, A. A Computational analysis of interfacing converters with advanced control methodologies for microgrid application. Technol. Econ. Smart Grids Sustain. Energy 2020, 5, 77. [Google Scholar] [CrossRef]
- Nusair, K.; Alasali, F.; Holderbaum, W.; Vinayagam, A.; Aziz, A. High hybrid power converter performance using modern-optimization-methods-based PWM strategy. Electronics 2022, 11, 2019. [Google Scholar] [CrossRef]
- Abos, H.; Ave, M.; Martínez-Ortiz, H. A case study of a procedure to optimize the renewable energy coverage in isolated systems: An astronomical center in the north of Chile. Energy Sustain. Soc. 2017, 7, 7. [Google Scholar] [CrossRef]
- Thummala, P.; Schneider, H.; Zhang, Z.; Ouyang, Z.; Knott, A.; Andersen, M.A.E. Efficiency optimization by considering the high-voltage flyback transformer parasitics using an automatic winding layout technique. IEEE Trans. Power Electron. 2015, 30, 5755–5768. [Google Scholar] [CrossRef]
- Othman, N.A. A Case Study on Most Optimal Power Flow Solutions to Supply Power to a New Residential Compound Load Located at the Outskirts of an Industrial Area by Using the Optimization Tools. Master’s Thesis, Ryerson University, Toronto, ON, Canada, 2011. Available online: https://rshare.library.torontomu.ca/articles/thesis/A_case_study_on_most_optimal_power_flow_solutions_to_supply_power_to_a_new_residential_compound_load_located_at_the_outskirts_of_an_industrial_area_by_using_the_optimization_tools/14652777 (accessed on 22 July 2024).
- Dimd, B.; Midtgård, O.-M. Power Converters as Smart Instruments and Actuators in a Smarter Grid. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2015. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2368121 (accessed on 22 July 2024).
- Maier, S. Smart energy systems for smart city districts: Case study reininghaus district. Energy Sustain. Soc. 2016, 6, 9. [Google Scholar] [CrossRef]
- Eslahi, M.S.; Vaez-Zadeh, S.; Rodriguez, J. Resiliency Enhancement and Power Quality Optimization of Converter-Based Renewable Energy Microgrids. IEEE Trans. Power Electron. 2023, 38, 7785–7795. [Google Scholar] [CrossRef]
- Gao, Y.; Ren, H.-P.; Li, J. Grid-forming converters control based on DC voltage feedback. arXiv 2020, arXiv:2009.05759. [Google Scholar]
- Lamrani, Y.; Huang, L.; Colas, F.; Guillaud, X.; Blaajberg, F.; Cardozo, C.; Prevost, T. Grid following converters stability study and control enhancements using an improved test setup. In Proceedings of the IET Conference Publication, Glasgow, UK, 1–3 March 2023. [Google Scholar]
- Saridaki, G.; Paspatis, A.G.; Kotsampopoulos, P.; Hatziargyriou, N. An Investigation of Factors Affecting Fast-Interaction Converter-Driven Stability in Microgrids. Electr. Power Syst. Res. 2023, 223, 109610. [Google Scholar] [CrossRef]
- Kumar, R.; Kannan, R.; Singh, N.S.S.; Abro, G.E.M.; Mathur, N.; Baba, M. An efficient design of high step-up switched z-source (HS-SZSC) DC-DC converter for grid-connected inverters. Electronics 2022, 11, 2440. [Google Scholar] [CrossRef]
- Jeong, S.G.; Kim, K.S.; Kwon, J.M.; Kwon, B.H. High-Efficiency Three-Phase Bidirectional Dc–Ac Converter for Energy Storage Systems. IET Power Electron. 2019, 12, 2031–2037. [Google Scholar] [CrossRef]
- Sampath, S.; Rahiman, Z.; Chenniappan, S.; Sundaram, E.; Subramaniam, U.; Padmanaban, S. Efficient Multi-Phase Converter for E-Mobility. World Electr. Veh. J. 2022, 13, 67. [Google Scholar] [CrossRef]
- Song, Y.; Sahoo, S.; Yang, Y.; Blaabjerg, F.; Li, Y.W. Aggregated emulation of multiple converters with heterogeneous dynamics in low-voltage microgrids—A clustering approach. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022, Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Gorbunov, A.; Peng, J.C.H.; Bialek, J.W.; Vorobev, P. Identification of stability regions in inverter-based microgrids. IEEE Trans. Power Syst. 2022, 37, 2613–2623. [Google Scholar] [CrossRef]
- Rohten, J.; Villarroel, F.; Pulido, E.; Muñoz, J.; Silva, J.; Perez, M. Stability analysis of two power converters control algorithms connected to micro-grids with wide frequency variation. Sensors 2022, 22, 7078. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Xue, Y.; Qiao, L.; Wang, F. Review of small-signal converter-driven stability issues in power systems. IEEE Open Access J. Power Energy 2022, 9, 29–41. [Google Scholar] [CrossRef]
- Koiwa, K.; Kuribayashi, T.; Zanma, T.; Liu, K.Z.; Natori, K.; Sato, Y. Stability and robust performance analysis of grid-connected inverter with high-order filter: Resonances beyond the nyquist frequency. IET Control Theory Appl. 2021, 15, 1818–1831. [Google Scholar] [CrossRef]
- Gorbunov, A.; Vorobev, P.; Peng, J.C.-H. Identification and stabilization of critical clusters in inverter-based microgrids. Electr. Power Syst. Res. 2020, 189, 106731. [Google Scholar] [CrossRef]
- Zhang, Y.; Mou, J.; Zhang, F.; Huang, N. Modeling and stability analysis based on internal voltage dynamics in synchronverter. Electronics 2023, 12, 700. [Google Scholar] [CrossRef]
- Khan, M.R.; Haider, Z.M.; Malik, F.H.; Almasoudi, F.M.; Alatawi, K.S.S.; Bhutta, M.S. A Comprehensive review of microgrid energy management strategies considering electric vehicles, energy storage systems, and AI techniques. Processes 2024, 12, 270. [Google Scholar] [CrossRef]
- Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Role of optimization techniques in microgrid energy management systems—A review. Energy Strategy Rev. 2022, 43, 100899. [Google Scholar] [CrossRef]
- Tkac, M.; Kajanova, M.; Bracinik, P. A Review of advanced control strategies of microgrids with charging stations. Energies 2023, 16, 6692. [Google Scholar] [CrossRef]
- Al-Imran, S.M.; Fuad, M.A.R.; Ahmed, T.; Ali, M.R.; Maruf, M.N.I. Optimization of distributed energy resources to balance power supply and demand in a smart grid. In Proceedings of the 2015 International Conference on Green Energy and Technology, ICGET 2015, Dhaka, Bangladesh, 11 September 2015. [Google Scholar]
- Mathur, A.; Kumari, R.; Meena, V.P.; Singh, V.P.; Azar, A.T.; Hameed, I.A. Data-driven optimization for microgrid control under distributed energy resource variability. Sci. Rep. 2024, 14, 10806. [Google Scholar] [CrossRef] [PubMed]
- Worrell, E.; Laitner, J.A.; Ruth, M.; Finman, H. Productivity Benefits of Industrial Energy Efficiency Measures. Energy 2003, 28, 1081–1098. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers. Energy Efficient Snubber Networks; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2019; ISBN 9781728133492. [Google Scholar]
- Pendić, Z.; Pendić-Polak, S.; Jakovljević, B.; Polak, M.; Živković, M.; Marković, Ž. Energy Efficiency: Examples of Which Less Talk. Tehnika 2019, 74, 885–895. [Google Scholar] [CrossRef]
- Farooq, H.; Khalid, H.A.; Khalid, M.U.; Syed, S.A. Efficiency Analysis of GaN Based LLC Resonant Converter for PV Applications. Eng. Proc. 2022, 20, 31. [Google Scholar] [CrossRef]
- Trianni, A.; Merigó, J.M.; Bertoldi, P. Ten years of energy efficiency: A bibliometric analysis. Energy Effic. 2018, 11, 1917–1939. [Google Scholar] [CrossRef]
- Li, S.; Deng, N.; Lee, X.; Yan, S.; Chen, C. Optimal Configuration of Photovoltaic Microgrid with Improved Ant Colony Dynamic Programming. J. Energy Storage 2024, 83, 110714. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ray, S. Operational cost minimization of a microgrid with optimum battery energy storage system and plug-in-hybrid electric vehicle charging impact using slime mould algorithm. Energy 2023, 278, 127842. [Google Scholar] [CrossRef]
- Araoye, T.O.; Ashigwuike, E.C.; Mbunwe, M.J.; Bakinson, O.I.; Ozue, T.G.I. Techno-economic modeling and optimal sizing of autonomous hybrid microgrid renewable energy system for rural electrification sustainability using HOMER and grasshopper optimization algorithm. Renew. Energy 2024, 229, 120712. [Google Scholar] [CrossRef]
- Hernández-Mayoral, E.; Madrigal-Martínez, M.; Mina-Antonio, J.D.; Iracheta-Cortez, R.; Enríquez-Santiago, J.A.; Rodríguez-Rivera, O.; Martínez-Reyes, G.; Mendoza-Santos, E. A comprehensive review on power-quality issues, optimization techniques, and control strategies of microgrid based on renewable energy sources. Sustainability 2023, 15, 9847. [Google Scholar] [CrossRef]
- Khadanga, R.K.; Das, D.; Kumar, A.; Panda, S. Sine Augmented Scaled Arithmetic Optimization Algorithm for Frequency Regulation of a Virtual Inertia Control Based Microgrid. ISA Trans. 2023, 138, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.H.H.; Ali, A.; Shaaban, M.F.; Ismeil, M.A. Optimal allocation of multiple capacitors in a hybrid ac/dc microgrid for power quality improvement. SN Appl. Sci. 2023, 5, 362. [Google Scholar] [CrossRef]
- Alzahrani, A.; Sajjad, K.; Hafeez, G.; Murawwat, S.; Khan, S.; Khan, F.A. Real-time energy optimization and scheduling of buildings integrated with renewable microgrid. Appl. Energy 2023, 335, 120640. [Google Scholar] [CrossRef]
- Tooryan, F.; HassanzadehFard, H.; Collins, E.R.; Jin, S.; Ramezani, B. Optimization and energy management of distributed energy resources for a hybrid residential microgrid. J. Energy Storage 2020, 30, 101556. [Google Scholar] [CrossRef]
- Majeed, M.A.; Phichisawat, S.; Asghar, F.; Hussan, U. Optimal energy management system for grid-tied microgrid: An improved adaptive genetic algorithm. IEEE Access 2023, 11, 117351–117361. [Google Scholar] [CrossRef]
- Dey, B.; Raj, S.; Mahapatra, S.; Márquez, F.P.G. Optimal scheduling of distributed energy resources in microgrid systems based on electricity market pricing strategies by a novel hybrid optimization technique. Int. J. Electr. Power Energy Syst. 2022, 134, 107419. [Google Scholar] [CrossRef]
- Sowmiya, T.; Venkatesan, T. Energy management system in smart microgrid using multi objective grey wolf optimization algorithm. Int. Res. J. Eng. Technol. 2022, 9, 3426. [Google Scholar]
- Li, N.; Su, Z.; Jerbi, H.; Abbassi, R.; Latifi, M.; Furukawa, N. Energy management and optimized operation of renewable sources and electric vehicles based on microgrid using hybrid gravitational search and pattern search algorithm. Sustain. Cities Soc. 2021, 75, 103279. [Google Scholar] [CrossRef]
- Shezan, S.A.; Kamwa, I.; Ishraque, M.F.; Muyeen, S.M.; Hasan, K.N.; Saidur, R.; Rizvi, S.M.; Shafiullah, M.; Al-Sulaiman, F.A. Evaluation of different optimization techniques and control strategies of hybrid microgrid: A review. Energies 2023, 16, 1792. [Google Scholar] [CrossRef]
- Repalle, N.B.; Sarala, P.; Mihet-Popa, L.; Kotha, S.R.; Rajeswaran, N. Implementation of a novel tabu search optimization algorithm to extract parasitic parameters of solar panel. Energies 2022, 15, 4515. [Google Scholar] [CrossRef]
- Liu, G.; Ollis, T.B.; Ferrari, M.F.; Sundararajan, A.; Tomsovic, K. Robust scheduling of networked microgrids for economics and resilience improvement. Energies 2022, 15, 2249. [Google Scholar] [CrossRef]
- Ullah, K.; Jiang, Q.; Geng, G.; Rahim, S.; Khan, R.A. Optimal power sharing in microgrids using the artificial bee colony algorithm. Energies 2022, 15, 1067. [Google Scholar] [CrossRef]
- Nallolla, C.A.; Vijayapriya, P.; Chittathuru, D.; Padmanaban, S. Multi-objective optimization algorithms for a hybrid ac/dc microgrid using res: A comprehensive review. Electronics 2023, 12, 1062. [Google Scholar] [CrossRef]
- Twaisan, K.; Bar, N. Integrated Distributed energy resources (DER) and microgrids: Modeling and optimization of DERs. Electronics 2022, 11, 2816. [Google Scholar] [CrossRef]
- Wang, S.; Tan, Q.; Ding, X.; Li, J. Efficient microgrid energy management with neural-fuzzy optimization. Int. J. Hydrogen Energy 2024, 64, 269–281. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning: A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [Google Scholar] [CrossRef]
- Güven, A.F.; Yörükeren, N.; Samy, M.M. Design optimization of a stand-alone green energy system of university campus based on jaya-harmony search and ant colony optimization algorithms approaches. Energy 2022, 253, 124089. [Google Scholar] [CrossRef]
- Eluri, H.; Naik, M.G. Challenges of RES with integration of power grids. Int. J. Renew. Energy Res. 2021, 11, 8104. [Google Scholar]
- Fathy, A. Bald Eagle Search Optimizer-Based Energy Management Strategy for Microgrid with Renewable Sources and Electric Vehicles. Appl. Energy 2023, 334, 120688. [Google Scholar] [CrossRef]
- Ileberi, G.R.; Li, P. Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis. Energies 2023, 16, 3403. [Google Scholar] [CrossRef]
- Recioui, A.; Dekhandji, F.Z. Technical and Economic Feasibility Study of a Hybrid Hydrogen-based Renewable Energy System. Alger. J. Signals Syst. 2023, 8, 41–54. [Google Scholar] [CrossRef]
- Abeg, A.I.; Islam, M.R.; Hossain, M.A.; Ishraque, M.F.; Islam, M.R.; Hossain, M.J. Capacity and Operation Optimization of Hybrid Microgrid for Economic Zone Using a Novel Meta-Heuristic Algorithm. J. Energy Storage 2024, 94, 112314. [Google Scholar] [CrossRef]
- Li, D.; Feng, W.; Fathi, M. Microgrids efficiency improvement for national electricity network leveraging beluga whale optimization. Heliyon 2024, e30018, in press. [Google Scholar] [CrossRef]
- Gholami, M.; Muyeen, S.M.; Lin, S. Optimizing microgrid efficiency: Coordinating commercial and residential demand patterns with shared battery energy storage. J. Energy Storage 2024, 88, 111485. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.; Yuan, K.; Khayatnezhad, M.; Ghadimi, N. Efficient design of energy microgrid management system: A promoted remora optimization algorithm-based Approach. Heliyon 2024, 10, e23394. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadis, A.G.; Lekidis, A.; Pierros, I.; Polyzakis, A.; Vokas, G.A.; Papageorgiou, E.I. Energy Cost Optimization for Incorporating Energy Hubs into a Smart Microgrid with RESs, CHP, and EVs. Energies 2024, 17, 2827. [Google Scholar] [CrossRef]
- Kazemtarghi, A.; Mallik, A. Techno-economic microgrid design optimization considering fuel procurement cost and battery energy storage system lifetime analysis. Electr. Power Syst. Res. 2024, 235, 110865. [Google Scholar] [CrossRef]
- Xiong, B.; Guo, Y.; Zhang, L.; Li, J.; Liu, X.; Cheng, L. Optimizing electricity demand scheduling in microgrids using deep reinforcement learning for cost-efficiency. IET Gener. Transm. Distrib. 2023, 17, 2535–2544. [Google Scholar] [CrossRef]
- Liang, Z.; Dong, Z.; Li, C.; Wu, C.; Chen, H. A data-driven convex model for hybrid microgrid operation with bidirectional converters. IEEE Trans Smart Grid 2023, 14, 1313–1316. [Google Scholar] [CrossRef]
- Us Salam, I.; Yousif, M.; Numan, M.; Billah, M. Addressing the challenge of climate change: The role of microgrids in fostering a sustainable future—A comprehensive review. Renew. Energy Focus 2024, 48, 100538. [Google Scholar] [CrossRef]
- Akter, A.; Zafir, E.I.; Dana, N.H.; Joysoyal, R.; Sarker, S.K.; Li, L.; Muyeen, S.M.; Das, S.K.; Kamwa, I. A review on microgrid optimization with meta-heuristic techniques: Scopes, trends and recommendation. Energy Strategy Rev. 2024, 51, 101298. [Google Scholar] [CrossRef]
- Tariq, A.H.; Kazmi, S.A.A.; Hassan, M.; Muhammed Ali, S.A.; Anwar, M. Analysis of fuel cell integration with hybrid microgrid systems for clean energy: A comparative review. Int. J. Hydrogen Energy 2024, 52, 1005–1034. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, P.; Kar, S. A review of microgrid protection for addressing challenges and solutions. Renew. Energy Focus 2024, 49, 100572. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Hossain, M.J.; Alam, M.M. Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects. Renew. Sustain. Energy Rev. 2024, 190, 114088. [Google Scholar] [CrossRef]
- Abbassi, A.; Mehrez, R.B.; Abbassi, R.; Jerbi, H.; Saidi, S.; Jemli, M. Eco-feasibility study of a distributed power generation system driven by renewable green energy sources. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 3981–3999. [Google Scholar] [CrossRef]
Ref | Control Type | Operating Principle | Advantages |
---|---|---|---|
[33] | Closed Loop Control with PI Controllers | Adjustment based on the difference between desired and actual states, using PI controllers for voltage and current stability. | Precise and stable adjustment, maintaining system stability. |
[34] | Switching Mode Control | Control of power flow in both directions by switching switches. | High conversion gain, less stress on switches. |
[35] | Linear Feedback Control | Linear feedback control to regulate voltage and currents, avoiding magnetic saturation. | Stability, robustness and prevention of damage due to magnetic saturation. |
[36] | Centralized Control | Centralized algorithm to coordinate converters and manage power flow and voltage/frequency restoration. | Accuracy in power control and restoration of network parameters. |
[37] | Hybrid Sliding Mode and PI control | Combination of ISM and PI controllers for voltage balancing in DC-DC converters. | Improved transient voltage balancing. |
[38] | Decentralized Control | Specific techniques for handling zero sequence currents and active-reactive disturbances. | Suppression of unwanted currents and improvements in power quality. |
[39] | Adaptive Admittance Control | Virtual admittance adjustment to improve voltage ripple suppression. | Improved ripple suppression and fine adjustment of the compensation current. |
[40] | Distributed Cooperative Control | Cooperative control that facilitates power exchange and voltage regulation between MGs. | Allows power sharing, achieves precise voltage regulation. |
Ref. | Results | Methods and Applications | Challenges and Limitations | Contributions and Efficiency |
---|---|---|---|---|
[70] | Detail of advanced control techniques for bidirectional DC-DC converters in DC microgrids. Exploration of techniques such as MPC, SMC, PBC, backstepping and intelligent control. | Use of model predictive control, sliding mode control, backtracking, and more. Applications in DC-DC converters in DC microgrids, improving performance and stability. | Need for advanced technologies to improve converter performance. | Introduction of advanced strategies for converter stabilization in MGs. Significant efficiency improvement through advanced control technologies. |
[71,77,81] | Power quality control in smart hybrid AC/DC microgrids. Primary and secondary control strategies for power quality compensation. | Real-time calculation methods and multi-frequency sampling. Improving cost-effectiveness and power quality in hybrid MGs. | Challenges such as low switching frequency and communication problems. | Focus on intelligent interface converters and their role in quality compensation. Improved efficiency through coordination of power converters. |
[5,81] | Power electronics integrate distributed generation and MGs, improving efficiency, power quality and reducing costs. | Review of power electronics applications in systems such as wind turbines and photovoltaic systems. Functional analysis of MGs. | Problems such as harmonic injection and voltage drops. Limitations in microgrid protection systems. | Importance of static converters in improving the performance of distributed generation sources. Methodology for MG management. Significant improvements in efficiency and power quality. |
[67,78,80] | Control methods for power converters in microgrids. Evaluation of control schemes such as concentrated and master–slave. | Concentrated control analysis, virtual synchronous generators, and others. Need for intelligent converters to improve power quality and stability. | Challenges due to the rapid growth of distributed energy resources. | Focus on advanced control methods to optimize energy efficiency in microgrids. Improved efficiency through advanced and predictive control schemes. |
[67,68,83] | Analysis of the functionalities of microgrids in energy management. MG functions for efficient energy management. | Functional analysis of MGs. Improvement in the efficiency of MG management. | Limitations in MG protection systems. | Methodology for microgrid management. Efficiency in MG management. |
Ref. | Optimization Model | Function Objective | Key Variables | Restrictions | Results |
---|---|---|---|---|---|
Metaheuristic | |||||
[138] | Genetic Algorithm (GA) | Minimize Total Net Present Cost (TNP) | Sizing of solar panels, wind turbines, batteries, etc. | Generation capacity, demand, resource availability | Optimal hybrid system configuration |
[139] | PSO (Particle Swarm Optimization), Cuckoo Search | Minimizes total costs | Capacity of solar panels, wind turbines, batteries, etc. | Budget, storage capacity, available resources | Optimal configurations, reduced costs and improved efficiency |
[140] | Mixing and Exploring Algorithm (MEXA) | Weighted combination of objectives (cost and efficiency) | Costs, efficiency, storage | Minimization of costs, maximization of efficiency factors | Improved efficiency and effectiveness |
[141] | Optimized Beluga Whale Algorithm (Boosted WOA) | Minimize total operating costs | Battery charging/discharging operations, power management | Charging/discharging operations, energy management | Significant reduction in operating costs |
Heuristic | |||||
[142] | Firefly Algorithm | Minimize total cost of microgrids | Storage capacity, generation costs | Load balancing, storage, network limits | Reduced costs, improved load balancing |
[117] | Grasshopper Optimization Algorithm (GOA) | Minimize Total Net Present Cost | Components, demand, renewable generation | Component capacity, budget, demand | Optimal configuration, economic and environmental feasibility |
[143] | Promoted Remora (PRO) Algorithm | Minimize costs of cargo operations | Generation, load, network capacity | Generation capacity, power balance | Efficiency and profitability in cargo operations |
Hybrid | |||||
[126] | Hybrid gravitational search and pattern search algorithm (GSA-PS). | Minimize total costs | Energy management, storage, renewable generation | Optimal management of RESs, plug-in hybrid electric vehicles (PHEVs), storage, generation | Considerable reduction in generation costs |
[133] | Fuzzy neural networks + Modified PSO | Minimizing the value of a multi-functional target | Generation, storage, demand | Time-dependent, adaptability, generation | Superior energy savings |
[144] | Particle Swarm, Search for Harmony | Minimize total operating costs | Energy demand, renewable generation, grid capacity, etc. | Generation capacity, demand, network limits | Cost reduction, energy distribution optimization |
Analytical | |||||
[145] | Integer Linear Programming (ILP) | Minimize total operating costs | Costs, generation, demand | Energy balance, asset operations, network capacity, etc. | Optimal asset selection, efficient dispatch |
Deep learning reinforcement | |||||
[146] | Deep Q-Learning | Minimize electricity costs | Load capacity, quality of service requirements | Discharge capacity, waiting times, accuracy | Improved costs and response times |
Ref. | Future Perspectives | Experimental Prototypes and Challenges |
---|---|---|
[116] | Future extension with type-3 controller and P&O-based MPPT algorithm in DC MGs. | High-efficiency converters in DC MG operations. |
[117] | Reactive power compensation using STATCOM, DSTATCOM, CPD, UPQC, and UPFC devices for power system stability and quality. | Application CPDs in power quality improvements. |
[118] | Optimization of MGs through hybridization of optimization algorithms and development of distributed algorithms. | Hybridization of multiple optimization algorithms for efficient MG operation. |
[119] | Evaluation of fuel cell performance and utilization of generated heat through exergoeconomic analysis and multiobjective algorithms. | Exergoeconomic analysis for efficient and cost-effective MG systems. |
[120] | Implementation of ML for predictive maintenance and fault detection in MGs. | ML-based predictive maintenance techniques for improved reliability and efficiency. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña, D.; Arevalo, P.; Ortiz, Y.; Jurado, F. Survey of Optimization Techniques for Microgrids Using High-Efficiency Converters. Energies 2024, 17, 3657. https://doi.org/10.3390/en17153657
Peña D, Arevalo P, Ortiz Y, Jurado F. Survey of Optimization Techniques for Microgrids Using High-Efficiency Converters. Energies. 2024; 17(15):3657. https://doi.org/10.3390/en17153657
Chicago/Turabian StylePeña, Diego, Paul Arevalo, Yadyra Ortiz, and Franciso Jurado. 2024. "Survey of Optimization Techniques for Microgrids Using High-Efficiency Converters" Energies 17, no. 15: 3657. https://doi.org/10.3390/en17153657
APA StylePeña, D., Arevalo, P., Ortiz, Y., & Jurado, F. (2024). Survey of Optimization Techniques for Microgrids Using High-Efficiency Converters. Energies, 17(15), 3657. https://doi.org/10.3390/en17153657