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Abstract: The development of kesterite (Cu2ZnSn(S,Se)4, CZTSSe) thin films for photovoltaic applica-
tions is highly necessary, given their composition of Earth-abundant, environmentally friendly elements
and their compatibility with established photovoltaic technologies. This study presents a novel synthesis
approach for CZTSSe films with varied S/(S+Se) ratios, ranging from 0.83 to 0.44, by a two-step mag-
netron sputtering deposition/annealing process. The first step consists in an initial deposition of stacked
Mo/SnS2/Cu layers, which, upon thermal treatment in a sulfur atmosphere, were transformed into
Cu2SnS3 (CTS) films. In the second step, further deposition of ZnSe and subsequent annealing in a tin
and selenium atmosphere resulted in the formation of a CZTSSe phase. These processes were optimized
to fabricate high-quality and single-phase CZTSSe films, thereby mitigating the formation of secondary
phases. Characterization techniques, including scanning electron microscopy, demonstrated a clear
correlation between decreased S/(S+Se) ratios and enhanced film densification and grain size. Moreover,
grazing incidence X-ray diffraction and Raman spectroscopy confirmed a compositional and structural
transition from close to CZTS to nearly a CZTSe phase as the S/(S+Se) ratios decreased. This study
advances kesterite-based solar cell technology by enhancing the structural properties and crystallinity of
the absorber layer, necessary for improving photovoltaic performance.

Keywords: kesterite thin films; CZTSSe; magnetron sputtering

1. Introduction

Kesterite thin films have garnered significant attention in the field of photovoltaics due
to their potential as absorber layers in thin film solar cells (TFSC) [1]. These materials exhibit
advantageous properties such as Earth abundance, non-toxicity, and optimal bandgap
for solar energy conversion [2]. The kesterite structure, characterized by a tetragonal
crystal lattice belonging to the space group I-4, provides favorable electronic properties for
efficient photovoltaic performance [3]. The kesterite family of materials includes copper
zinc tin sulfide (Cu2ZnSnS4, CZTS) [4], copper zinc tin selenide (Cu2ZnSnSe4, CZTSe) [5],
and their mixed compound, copper zinc tin sulfoselenide (Cu2ZnSn(S,Se)4, (CZTSSe) [6].
CZTSSe combines both sulfur and selenium, offering a tunable composition that balances
the properties of CZTS and CZTSe, making it particularly attractive for photovoltaic
applications [7]. In the CZTSSe structure, Cu atoms occupy the 2a and 2c sites, Zn atoms
occupy the 2d sites, and tin (Sn) atoms are located at the 2b sites. The chalcogen atoms, S
and Se, are positioned at the 8 g sites, which are tetrahedrally coordinated by the metal
atoms [8].

Over the years, comprehensive research has been dedicated to the synthesis of CZTSSe
thin films, aiming to optimize their properties for enhanced solar cell efficiency. Various
deposition techniques have been employed to precisely control the sulfur to selenium
(S/Se) ratio in CZTSSe films [9], including vacuum-based methods such as magnetron
sputtering [10], thermal evaporation [11], and pulsed laser deposition [12], as well as
solution-based techniques like sol-gel [13], and electrodeposition [14]. These methods
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offer distinct advantages in terms of scalability, control over composition, and film quality,
contributing to the versatility and applicability of CZTSSe materials in photovoltaic devices.
Studies have shown that adjusting the S/Se ratio in CZTSSe films can significantly impact
their morphological, structural and optical properties, influencing overall solar device
performance [15]. For instance, higher sulfur content tends to increase the band gap,
which can improve open-circuit voltage but may reduce the absorption of lower energy
photons [16]. Conversely, increasing selenium content often enhances carrier mobility and
absorption but can lower the band gap [17]. The substitution of S with Se in the lattice
leads to an increase in lattice parameters due to the larger atomic radius of Se compared to
S, resulting in an expansion of the unit cell. This substitution also affects the bond lengths
within the lattice; Se forms longer bonds with the metal atoms compared to S, which
influences the overall structural and electronic properties of the material [18,19]. Precise
control over the S/Se ratio allows for enhanced photovoltaic performance by tailoring the
optical and electrical properties of CZTSSe. applications. Recently, CZTSSe solar cells have
been shown to achieve a power conversion efficiency of ~14.6% [20].

However, several issues were observed in previous studies on the synthesis of CZTSSe
thin films with a controlled S/Se ratio. One of the main difficulties is mitigating the forma-
tion of secondary phases such as ZnSe and intrinsic defects like CuSn, where copper atoms
occupy tin sites [14], which can significantly affect the electrical properties and stability
of the material. Additionally, achieving a uniform distribution of sulfur and/or selenium
throughout the film remains a significant challenge, often resulting in compositional inho-
mogeneity, as observed by Woo et al. [21]. In their study, irregularities in the distribution of
the elements arises from the inconstant Se vapor pressure during the selenization process,
leading to Se grading within the CZTSSe absorber layer which produces a high short-circuit
current density. Furthermore, Kim et al., in their study of CZTSSe films obtained from
DC-sputtered metallic precursors (Sn/Cu/Zn) on a molybdenum-coated soda-lime glass
substrate, reported the presence of non-uniform morphologies and secondary phases, in-
cluding the formation of a thick Mo(S,Se)2 layer at the interface of Mo/CZTSSe that leads
to poor carrier collection at the back contact [22]. Finding solutions to these issues is crucial
for advancing the development of high-performance CZTSSe thin films.

In this paper, we address the challenges in synthesizing CZTSSe thin films by using a
two-step magnetron sputtering deposition followed by a controlled annealing process. We
first prepared CTS precursor films from an annealed Cu/SnS2 stack in a sulfur atmosphere.
Then, ZnSe is deposited, and the films are further annealed in a tin and selenium atmosphere.
By varying the annealing parameters, we can precisely control the S/(S+Se) ratios, ensur-
ing uniform sulfur and selenium distribution and suppressing the formation of unwanted
secondary phases. This method overcomes the issues of previous techniques, leading to
improved film quality and advancing the potential of CZTSSe in photovoltaic applications.

2. Materials and Methods

The CZTSSe thin films were deposited onto molybdenum (Mo)-coated soda-lime
glass (SLG) substrates using magnetron sputtering. The first step started with four similar
Mo/SnS2/Cu stacks, where a SnS2 layer was initially sputtered, followed by a copper
film on top of the SnS2 layer. The stacks were prepared at room temperature using 3G
Circular Magnetrons (Gencoa, Liverpool, UK), and RF sources (T&C Power Conversion
AG 0313, Rochester, NY, USA) for both the SnS2 and Cu targets. The depositions used
2-inch diameter sputtering targets of SnS2 and Cu (99.99% purity, Mateck Gmbh, Jülich,
Germany). The chamber pressure was maintained at 1.1 × 10−5 Torr before deposition
and 5 × 10−3 Torr during deposition in an argon environment with a flow of 30 SCCM.
The deposition was performed without breaking the vacuum, with substrates placed 12 cm
from the sputtering targets and continuously rotated for uniform deposition. A 5-min
pre-sputtering was performed for each target to remove surface impurities. The sputtering
rates were optimized using Inficon Q-pod quartz crystal monitor (Bad Ragaz, Switzerland).
The power used to achieve a 0.51 Å/s rate was 19 W for SnS2, with a power of 31 W for
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Cu resulting in a rate of at 0.24 Å/s. The sputtering times were adjusted to achieve the
desired thicknesses: 400 nm for SnS2, and 100 nm for Cu. These deposition parameters
were carefully selected and optimized based on previous experiments. The rates used
ensured uniform film growth and good adhesion to the substrate, which are important for
obtaining high-quality films. Additionally, the thicknesses used in the stack were selected
in order to obtain the desired stoichiometry in the final CZTSSe films after the annealing
process. These values were optimized to provide the intended results in our specific setup
and conditions. The as-deposited stacked films were annealed in a quartz tube using a GSL
1600X tubular furnace with a 10 SCCM argon flow. CTS films with different compositions
were obtained by annealing the four stacks at a fixed temperature of 350 ◦C for 5 min,
using a boat with 3 g of sulfur powder for samples B1 and B2, with B1 placed closer to the
boat, and a boat with 2.5 g of sulfur powder for samples B3 and B4, with B3 placed closer
to the boat. The S/(S+Se) ratios were controlled based on the amount of sulfur used in
the first annealing process when the CTS precursors were synthesized. Post-annealing, a
150 nm ZnSe layer was sputtered onto the CTS thin films, applying 41 W for a deposition
rate of 0.50 Å/s. A second heat treatment (using the same annealing parameters for the
four samples) was conducted on the four Mo/CTS/ZnSe stacks with 0.5 g of Sn and 2 g
of Se powders at 550 ◦C for 30 min, using two boats of Sn and Se powders upstream in
the Ar flow. The final films were labeled B1, B2, B3, and B4 with a decreasing S/(S+Se)
ratios. A schematic of the deposition and annealing process is presented in Figure 1.
The crystalline structure of the thin films was analyzed using a Rigaku SmartLab X-ray
diffractometer (Tokyo, Japan) with an incidence angle of 0.75◦, Cu Kα (λ = 1.54187 Å)
radiation, and a HyPix-3000 2D Hybrid Pixel Array Detector (Rigaku Corporation, Tokyo,
Japan) in 0D mode for grazing incidence X-ray diffraction (GIXRD) measurements. The
LabRAM HR Evolution Raman spectrometer from HORIBA Jobin-Yvon (Palaiseau, France),
with a confocal Olympus 100× microscope (Tokyo, Japan) and a He–Ne laser (633 nm
excitation), was used to support the GIXRD results. Surface morphology and compositional
analysis were performed using a Gemini 500 Field Emission Scanning Electron Microscope
(FE-SEM) from Zeiss, Oberkochen, Germany provided with an energy dispersive X-ray
(EDX) spectrometer from Bruker (Billerica, MA, USA).
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3. Results

Figure 2 presents four scanning electron microscope (SEM) images of the CZTSSe samples,
providing insights into their surface morphology. A homogeneous surface morphology is
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observed in all samples, indicative of uniform film deposition and crystallization. Notably,
samples B3 and B4 exhibit larger grain sizes compared to the B1 and B2 films, suggesting a
potential correlation between the S/(S+Se) ratio and grain growth kinetics. The presence of
larger grains in samples B3 and B4 may indicate enhanced crystallinity, possibly influenced
by variations in the S/(S+Se) ratio [23]. Additionally, no cracks or voids were observed in any
of the films, indicating good film quality and adhesion to the Mo substrate.
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Figure 2. Surface morphology SEM images of the four (B1–B4) CZTSSe samples.

The elemental composition and atomic ratios of the CZTSSe films were analyzed
through energy-dispersive X-ray spectroscopy (EDS) measurements and are illustrated
in Figure 3 and Table 1. For each sample, EDS analysis was conducted on several areas,
typically three to five different zones, and then an average of the measured values was
calculated. The results from these areas showed very consistent elemental distributions.
This method ensures the homogeneity of the element distribution and composition within
the samples. The gray and dark gray bars in Figure 3 represent the ideal stoichiometry
for pure CZTSe and CZTS phases with the following elemental compositions: Cu = 25%,
Zn = 12.5%, Sn = 12.5%, and Se = 50% for CZTSe, and Cu = 25%, Zn = 12.5%, Sn = 12.5%,
and S = 50% for CZTS. These ideal compositions were included as references for comparison
with our CZTSSe samples. This allows for a clearer understanding of how the actual
compositions of the synthesized samples compare with the theoretical ideal compositions
of CZTSe and CZTS.

Table 1. Elemental composition ratios of the CZTSSe films.

Atomic Percentage (%)

Cu Zn Sn S Se S/(S+Se) Stoichiometry

B1 24.02 13.77 14.25 39.82 8.14 0.83 Cu1.92Zn1.10Sn1.14S3.18Se0.66
B2 23.51 12.16 12.59 32.15 19.59 0.62 Cu1.89Zn0.97Sn1.00S2.57Se1.57
B3 20.49 11.37 12.49 30.09 25.56 0.54 Cu1.65Zn0.91Sn1.00S2.40Se2.04
B4 22.13 12.33 12.72 23.35 29.46 0.44 Cu1.77Zn0.99Sn1.02S1.86Se2.36

All films exhibit a nearly stoichiometric composition closely resembling the expected
Cu2ZnSn(S,Se)4 compound. The atomic percentages of each element in the four samples
are close to the intended 25% of Cu, 12.5% of Zn, and 12.5% of Sn, and 50% for S+Se,
respectively. Notably, differences among the samples are primarily observed in the S/(S+Se)
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ratio. Sample B1 exhibits a S-rich composition, with the highest sulfur content and lowest
selenium content, which is close to the elemental composition of the CZTS phase [24]. The
S/(S+Se) ratio for B1 is 0.83, indicating a predominantly sulfur-rich environment. As we
progress through the samples, the sulfur content gradually decreases and selenium content
increases. Sample B2 has a ratio of 0.62, B3 has a ratio of 0.54, and B4 has a ratio of 0.44,
indicating a transition towards a selenium-rich composition, with sample B4 demonstrating
the highest selenium content and lowest sulfur content, close to the atomic percentages
characteristic of the CZTSe phase [18].
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To investigate the compositional homogeneity of the samples, we performed EDS
mapping. The results, shown in Figure 4, indicate that the distribution of Cu, Zn, Sn, S,
and Se elements is uniform in the B2 sample. Similar uniform distributions were observed
for samples B1, B3, and B4. Additionally, the detection of the Mo substrate during the
EDS measurements suggests that the entire CZTSSe film thickness was probed. These
results support our conclusion of a homogeneous and compact grain structure with well-
distributed elements.
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The X-ray diffraction (XRD) diffractograms of the four CZTSSe (B1, B2, B3, and B4)
samples with varying S/(S+Se) ratios reveal distinctive patterns indicative of single-phase
CZTSSe formation with no detectable secondary phases, as observed in Figure 5a. The
diffraction peaks corresponding to the kesterite phase are observed at consistent positions
across all samples, confirming the high crystallinity and purity of the CZTSSe films. The
intensity and width of the diffraction peaks may vary slightly among the samples, reflecting
differences in grain size and lattice strain resulting from variations in the S/(S+Se) ratio [8].
Overall, the XRD analysis provides evidence for the successful synthesis of single-phase
CZTSSe thin films across the range of S/(S+Se) ratios investigated. Figure 5b is an enlarged
view of the main CZTSSe peak, along with comparisons to ICDD cards of CZTS, CZTSe, and
CZTSSe with different stoichiometries (dashed lines). It reveals changes in the crystalline
structure of the CZTSSe samples. The diffraction patterns of the four samples fall within the
range delineated by the ICDD cards of CZTS (00-026-0575) and CZTSe (04-019-1866). The
shift in the 2θ peak suggests a continuous transition in the film composition as the sulfur
to selenium ratio changes [25]. Sample B1, with x = 0.83, closely matches the ICDD card
for Cu2ZnSnS3Se (04-023-9215), indicating a composition with a higher sulfur content and a
lesser amount of selenium [26]. This composition leans toward the CZTS side of the range
and suggests a structure that is rich in sulfur. Sample B2, with a S/(S+Se) = 0.62, aligns
with the ICDD card for Cu2ZnSnS2Se2 (04-019-1851), showing a balance between sulfur and
selenium [27]. This composition is closer to the middle of the CZTSSe range, reflecting a
greater incorporation of selenium compared to B1. Sample B3, with a S/(S+Se) = 0.54, closely
resembles the ICDD card for Cu2ZnSnS1.6Se2.4 (04-019-1850). This composition signifies a shift
toward a higher selenium content and reduced sulfur content [28]. Finally, sample B4, with a
S/(S+Se) = 0.44, approaches the ICDD card for Cu2ZnSnS1.2Se2.8 (04-019-1849), representing
the film with the highest selenium content in the series. This composition is close to CZTSe,
reflecting a shift toward a more selenium-rich structure. However, this specific structure was
not reported in the literature, with few studies discussing similar Se-rich structures such as
Cu2ZnSnSSe3 or Cu2ZnSnS0.8Se3.2 [29–32]. This observation suggests that there is still much
to explore in the structural properties of CZTSSe films with varying S/(S+Se) compositions.
This alignment with the various CZTSSe ICDD cards highlights the systematic control of film
composition across the series, providing a basis for further investigation into the impact of
varying the sulfur to selenium ratio on the physical and electronic properties of the films.
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Figure 5. X-ray diffractograms of (a) CZTSSe films with different x = S/(S+Se) ratios, and (b) enlarged
view of the main CZTSSe (112) peak of the four films. The dashed lines represent the ICDD cards of
CZTSe phase (gray), Cu2ZnSnS1.2Se2.8 (green), Cu2ZnSnS1.6Se2.4 (yellow), Cu2ZnSnS2Se2 (orange),
Cu2ZnSnSSe3 (red), and CZTS (black).

The average crystallite size of CZTS in each sample was calculated using the Scherrer
equation. This estimation was based on the most intense (112) peak, taking into account
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the instrumental broadening [33]. Figure 6 presents the crystallite size of the four CZTSSe
samples (B1, B2, B3, and B4), highlighting variations in the average crystallite size across the
different compositions. Sample B1, with a S/(S+Se) value of 0.83, exhibits a crystallite size
of 14.03 nm. This relatively lower size may be due to the higher sulfur content, which can
result in more frequent nucleation sites and thus smaller crystallite sizes. In contrast, sample
B2 (S/(S+Se) = 0.62) shows a higher crystallite size of 16.41 nm, indicating that the reduced
sulfur content may allow the crystallites to grow larger due to less frequent nucleation.
Sample B3, with an x value of 0.54, has a crystallite size of 14.32 nm, slightly smaller than
B2. This suggests a balance between the effects of reduced sulfur and increased selenium
content on crystallite growth. Finally, sample B4 (S/(S+Se) = 0.44) exhibits the largest
crystallite size of 17.77 nm. This increase may be attributed to the significant reduction
in sulfur content and corresponding increase in selenium content, which could facilitate
larger crystallite growth due to fewer nucleation sites and potentially different growth
dynamics in the film. Therefore, the fluctuations in crystallite size across the four samples
may not be influenced by the varying proportions of sulfur and selenium solely; other
factors likely contribute to the observed variations. Additionally, similar observations of
crystallite size not strictly correlating with varying S/(S+Se) ratios have been reported in
other studies [28,34], indicating that parameters beyond composition may contribute to the
observed variations.
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The Raman spectroscopy analysis of the four CZTSSe samples represented in Figure 7a
shows a distinct trend in the shift and intensity of the two main peaks, reflecting changes in
the composition of the films due to varying x = S/(S+Se) ratios. The Raman spectra display
two distinct modes due to the existence of both S and Se atoms in the CZTSSe samples [35].
The first peak, observed around 220 cm−1, is related to the A1 mode of the CZTSe phase,
which is known to have a prominent Raman peak at 196 cm−1 [36]. The second peak is
located around 330 cm−1, which is characteristic of the A1 mode of the CZTS phase [37].
In sample B1, where x = 0.83, the first peak is observed at 223 cm−1 and a higher peak at
327 cm−1, indicating a composition closer to the CZTS end of the spectrum with a small
initial peak and a dominant higher peak. As the x ratio decreases and the composition shifts
towards a more selenium-rich phase, the intensity of the first peak increases, and its position
shifts to lower values (Figure 7b), while the intensity of the second peak decreases [38].
This trend is observed in samples B2, B3, and B4, which show a continuous shift and
increase in intensity of the first peak, while the second peak decreases in intensity. In
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sample B4, where x = 0.44, the first peak reaches its highest intensity and shifts towards
204 cm−1, while the second peak remains with low intensity. This progression in the
Raman spectra suggests that as the x ratio decreases and the composition becomes richer
in selenium, the vibrational modes associated with selenium-rich phases become more
pronounced, resulting in the shift of the first peak to lower wavenumbers [19]. Meanwhile,
the sulfur-rich phases become less prominent, as indicated by the decrease in intensity
of the second peak. This trend is consistent with the samples transitioning from a S-rich
to a Se-rich CZTSSe as the S/(S+Se) ratio changes. Additionally, it is noteworthy that no
peaks corresponding to secondary phases were observed in the Raman spectra, affirming
the high purity and single-phase nature of the CZTSSe thin films across all samples. The
consistency between the Raman and XRD results reinforces the reliability of the structural
characterization and provides evidence for the successful synthesis of CZTSSe thin films
with precise compositional control.
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Figure 8 presents a comparative analysis of the four CZTSSe samples (B1, B2, B3, and
B4) illustrating the shifts in the most prominent XRD and Raman peaks. For the XRD
112 peak, in sample B1, the main peak is observed at 2θ = 28.17◦, while in B2, it shifts
slightly to 2θ = 27.81◦. The trend continues with samples B3 and B4, where the main
peak is observed at 2θ = 27.59◦ and 2θ = 27.47◦, respectively. The progression across these
samples shows a clear relationship between the S/(S+Se) ratio and the structural properties
of the films [39]. As the selenium content increases (and the sulfur content decreases),
the samples show a trend toward the CZTSe pattern. This trend reflects the transition
from a sulfur-rich composition (higher x value) to a selenium-rich composition (lower x
value), indicating lattice parameter expansion due to the larger atomic radius of selenium
compared to sulfur [40]. Similarly, the Raman peak shift follows a parallel trend. As the
sulfur content decreases from B1 to B4, the Raman peak also shifts to lower values [41].
This behavior can be attributed to the changes in the vibrational modes of the crystal lattice
caused by the increasing selenium content, which affects the phonon frequencies [42]. The
systematic decrease in the peak positions with increasing selenium content provides clear
evidence of the structural and compositional changes occurring within the material, thus
confirming the successful synthesis and varying compositions of the CZTSSe thin films.
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4. Conclusions

In summary, a successful magnetron sputtering method was used to synthesize
CZTSSe thin films with varying S/(S+Se) ratios through a two-step deposition and anneal-
ing process. SEM and EDS analyses revealed a homogeneous and compact grain structure
with well-distributed elements. The S/(S+Se) ratios computed from EDS measurement
exhibited an elemental composition variation from B1 (S-rich) to B4 (Se-rich). XRD analysis
showed that the main peaks shifted systematically with increasing selenium content, indi-
cating the incorporation of Se into the CTS lattice and the formation of a CZTSSe phase.
Crystallite size calculations indicated that the S/(S+Se) ratio influences grain growth, with
smaller crystallite sizes for B1 and B3 compared to B2 and B4. Raman spectroscopy sup-
ported these findings, confirming the formation of the CZTSSe phase in four samples and
showing peak shifts consistent with the changes in S/(S+Se) ratios, indicating phase purity
and compositional variations. The combined analyses suggest that the controlled adjust-
ment of the sulfur to selenium ratio in CZTSSe films significantly influences their structural
and morphological properties. This research demonstrates that tuning the S/(S+Se) ratio
in CZTSSe films significantly affects their structural, morphological, and compositional
properties, which is crucial for optimizing the performance of CZTSSe-based solar cells.
Future work should focus on further characterization such as the optical, electrical, and
photovoltaic performance of these films.
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32. Pakštas, V.; Grincienė, G.; Selskis, A.; Balakauskas, S.; Talaikis, M.; Bruc, L.; Curmei, N.; Niaura, G.; Franckevičius, M. Improve-
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