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Abstract: Being multivariable in nature, voltage and current control loops have controllers in the
forward and cross-coupling paths. Most methods discussed in the literature focus on tuning the
controllers in the forward paths to reduce the dq coupling. A modified pole-zero cancellation (MPZC)
technique has recently been discussed, which uses the concepts of pole-zero cancellation and particle
swarm optimization to effectively tune the forward path controllers. However, given the fixed gains in
the cross-coupling paths, it is not possible to realize a superior transient response from this technique.
Therefore, to achieve enhanced vector control of VSIs under transient conditions, this paper proposes
a hybrid MPZC (HMPZC) method, which incorporates multivariable control along with the MPZC
technique for both voltage/current control loops. In the proposed HMPZC method, the MPZC
method is used to tune the forward path controllers, and multivariable control-based PI controllers
are assigned in the cross-coupling paths of dq-axes loops rather than fixed gains. In this paper, these
multivariable control-based PI controllers are designed using direct synthesis method-based internal
model control (IMC). From the simulation results, it is verified that the proposed HMPZC method
has reduced the coupling between the d- and q-axes loops of the current/voltage, leading to the
improved transient response and power delivery capability of VSIs.

Keywords: dq decoupling; pole-zero cancellation; power delivery; microgrids; multiloop control;
multivariable control; transient response; vector control; voltage and current control loops

1. Introduction

The primary objective of microgrids is to deliver the required active power (P) and
reactive power (Q), while maintaining the voltage and frequency. The guidelines to attain
these objectives are based on the IEEE 1547-2018 standard [1]. Most of the DERs in mi-
crogrids are driven by power electronic converters. Voltage source inverters (VSIs) are a
common type of power electronic converter to interface with the DERs in AC microgrids.
VSIs with proper control help (i) in achieving a better transient response, i.e., maintaining
the voltage and frequency within limits, and (ii) in improving stability by achieving a
better power-handling capability. A VSI with a power–voltage–current control structure
which allows operation in off-grid and grid-tied modes is chosen for the proposed work
in this paper. The role of the power controller is vital in upholding the stability of the
system (power-handling capability) under sudden power demands (transient conditions).
A conventional droop control-based power controller regulates the P through the active
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power loop (APL), which is based on P-ω droop control logic. Similarly, Q is regulated
through the reactive power loop (RPL), which is based on Q-v droop control logic [2].
The major limitation of this conventional droop control is its operation during islanded
mode. The impact of power demands on the movement of low-frequency dominating
modes and the impact of droop gains in ensuring system stability are discussed in [3]. It is
identified in [4] that adaptive droop control, rather than fixed droop, enhances the transient
response/stability. The proposed method in this paper deploys adaptive droop control for
the power controller.

The multivariable nature of VSIs, which causes the coupling between the P and Q, is a
major cause of poor power-handling capability and transient response with VSIs, especially
under an islanded mode of operation and transient conditions [5]. Several methods were
discussed in the literature that focused on reducing the coupling in multivariable control
systems [6,7]. From this, it is understood that two possible approaches are available in
the literature which can reduce the coupling. These approaches are based on trying to
decouple the (i) APL and RPL of the power controller and (ii) the d- and q-axes loops of
inner control loops. In the direction of the first approach, the most generic way of reducing
the coupling between the APL and RPL of the power controller is achieved by introducing
a virtual impedance loop [8,9]. Recently, a multivariable controller-based decoupling of
the APL and RPL of power controllers has been discussed in [10]. However, the dynamics
of either the virtual impedance loop or power loop are slower than the dynamics of the
inner voltage control loop (VCL) and current control loop (CCL). Thus, the VCL and CCL
can significantly impact the transient response and power-handling capability [11]. This
provided the necessary motivation for the authors to take up a second approach to modify
the inner VCL and CCL. Moreover, as far as the authors are aware, the scope of the inner
VCL and CCL in providing a decoupled control of P and Q has not been explored.

The necessary background and developments connected with the second approach
are described as follows. The vector control of the VSI allows a decoupled control of active
and reactive powers in a steady state [12]. P is regulated by the d-axis components of
the output voltage and output current, while Q is regulated by the d-axis component of
the output voltage and q-axis component of the output current. This signifies the role
of the VCL and CCL in providing a decoupled control of P and Q and thereby in the
power-handling capacity of the power controller [13]. An analytical representation of a
VSI in dq coordinates in relation to the AC and load dynamics identifies the multivariable
(multi-input multi-output) nature of VSIs with reference to the inner voltage and current
controllers [14]. Even though vector control of VSIs provides a decoupled control under a
steady state, the presence of an LC filter causes an increased coupling between the dq loops
of the VCL and CCL under transient conditions. This leads to poor transient response and
limited power-handling capability [15].

Being multivariable in nature, the VCL and CCL have controllers in the forward
and cross-coupling paths. Most methods discussed in the literature focus on tuning the
controllers in the forward paths to reduce the dq coupling. Internal model control (IMC)-
based methods of tuning the voltage and current controllers are discussed in [16]. However,
the presence of a derivative in the controller of the forward path hampers the applicability
of this scheme [17]. The pole-zero cancellation-based method of tuning the voltage and
current controllers does not require a derivative in the controllers and so can address
this drawback. However, as the voltage controller’s integral gain in this method is fixed
to zero, the advantage of this technique under transient conditions is limited [18]. To
address this issue and achieve a better controller in the forward paths of both the VCL
and CCL, a modified pole-zero cancellation method (MPZC) is presented in [19]. Here, the
integral coefficient of the voltage controller is tuned with particle swarm optimization to
replace the zero value of the integral coefficient with a more reliable value. However, this
method suffers from fixed gains in the cross-coupling paths which cannot provide a better
decoupling, especially under transients. Therefore, a better decoupling can be achieved by
employing multivariable control rather than focusing only on tuning the controllers in the
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forward paths. The description provided in Section 3.5 justifies the limitations of MPZC
and the effect of coupling.

The method of providing decoupling in VSIs by introducing a separate decoupler
whose inputs are tuned through PID controllers in the feed-forward paths is discussed
in [20]. The design of these decouplers for VSIs, which are mainly based on predictive
control, is widely discussed in the literature [21,22]. Even though a good performance
can be achieved, these decouplers increase the complexity of the control structure and
the computational burden [23]. Thus, this paper employs the other way of providing
multivariable control, without the need for a separate decoupler. Conventionally, in
this method, the coupling terms are used as feed-forward signals to nullify the coupling
effect [24]. However, this requires the exact determination of the coupling terms, which is
commonly impossible [25]. So, this kind of multivariable control approach of VSIs is not
effective, especially during transient conditions. This method of multivariable control is
equivalent to introducing simple proportional gains in the cross-coupling paths, which
cannot address steady-state error issues effectively [26]. To reduce the steady-state error
effects that may occur due to an improper estimation of terms in the cross-coupling paths,
the literature has suggested introducing a simple integrator in cross-coupling paths [27,28].
However, the tuning of the integral gains of the cross-coupling paths may not be easy
and straightforward. Further, a simple integrator may not be sufficient in enhancing the
performance of a VSI’s vector control under transient conditions [29].

Based on the summary of the aforesaid literature review, the identification of the
research gap and its solution in the form of the proposed method is described as follows.
Several PID tuning methods were discussed in the literature to provide decoupling in
multivariable control [30–36]. These methods can be used for the design of controllers
in the cross-coupling paths. However, a better transient response cannot be expected
if the design of these controllers is carried out by neglecting a dynamic model of VSIs.
Amongst various methods discussed in the literature to provide decoupling from cross-
coupling paths, IMC control is popular as this takes the system model into account for
its implementation [33–36]. The synthesis of IMC in these works is accomplished with
triangular decoupling [33], inverted decoupling [34], fractional order models [35], and
direct synthesis [36]. However, the procedure described [33–35] for the design of IMC-
based controllers in cross-coupling paths is complex for application to the VCL and CCL.
This is because the plant model considered in the design of the VCL and CCL for VSIs is the
minimum phase. The direct synthesis procedure [36] of deriving the IMC-based controller
for a typical feedback control system that is discussed in [37] offers a reduced complexity
that is more compatible with the VCL and CCL. Therefore, to achieve the reduced coupling,
improved transient response, and increased power-handling capability of microgrids, this
paper proposes a hybrid MPZC method for the VCL and CCL. Here, the MPZC method is
used to tune the forward path controllers, and an IMC-based multivariable control designed
with a direct synthesis method is adopted for the design of controllers in the cross-coupling
paths. As far as the authors are aware, the proposed method in the context of VCL and
CCL is not yet explored in the literature.

The subsequent sections of this article are structured in the following manner. In
Section 2, an analytical representation of the studied microgrid is discussed. Further, the
problem identification, followed by the proposed solution, is also discussed in this section.
Section 3 discusses the mathematical background and implementation of the proposed
methodology in depth. Based on the results obtained from a simulation conducted in
MATLAB (9.9)/Simulink (10.2) of R2020b software, the performance of the proposed and
the conventional schemes are discussed in Section 4. In Section 5, the conclusion of this
work is presented, based on the salient outcomes of the proposed research.

2. Mathematical Model of VSI and MPZC Description

A layout diagram representing the investigated three-phase AC microgrid model
is shown in Figure 1. The model is driven by a DER of 25 kW + j25 kVar capacity. The
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DER’s output DC voltage (540 V rated) is inverted to AC by a VSI which acts as an
interface between the DER and the loads. An LC filter is provided on the AC side of the
VSI, whose ratings are given as R = 0.1 mohm, L = 1 mH, and C = 5 µF, where R is the
associated resistance of the filter inductor. Two loads are connected to the system after
the LC filter. Load1 draws the power from the system continuously, and load2 draws the
power momentarily, as long as the associated breaker is kept on. With the help of the
controller, the VSI regulates the power, voltage, and current that are supplied to the load.
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Figure 1. Layout diagram of the microgrid model under study.

An outline of the multiloop control structure that is employed in this work for the
studied microgrid is depicted in Figure 2. In this control structure, the VCL and CCL
provide voltage and current control, while the outermost loop handles power regulation.
The CCL operates to regulate the inverter current ii with respect to the VSI terminal voltage
vt. The voltage loop regulates the load voltage vl based on the load current il. The power
loop through the APL and RPL regulates P and Q respectively based on vl and il.
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Figure 2. Model of the multiloop control structure.

The given multiloop structure is cascaded in nature. The outer power loop based
on the active power reference (P*) provides the reference angular frequency reference ω∗

o
and that, based on the reactive power reference (Q*), provides the reference load voltage
v∗l . While ω∗

o is provided as input signals to both the VCL and CCL, v∗l is provided as the
reference signal to the VCL. Next, the VCL based on v∗l generates the reference inverter
current i∗i to the CCL, which in turn generates the reference signal e∗ to the PWM generator.
The PWM generator based on e∗ will generate the necessary gate signals to the VSI.

2.1. Mathematical Model of VSI

The analytical representation of the investigated three-phase AC microgrid is conven-
tionally expressed in abc coordinates [38]. To apply vector control, the model is expressed
in the dq frame. The behavior of the VSI, whose terminal output variables (vt and il) are
in association with the LC filter, and the load are expressed through (1) and (2) in the
combined dq frame.

vtdq = Riidq + L
diidq

dt
+ jωLiidq + vldq (1)

iidq = ildq + C
dvldq

dt
+ jωCvldq (2)
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Based on (1), the dynamical equations of the VSI with respect to the ac dynamics that
are expressed in their individual d- and q-axes loops are shown in (3) and (4), respectively.
Similarly, based on (2), the equations of the VSI with respect to the load dynamics that are
expressed separately in the d- and q-axes loops are shown in (5) and (6), respectively. It is
seen from (3)–(6) that d-axis equations contain q-axis terms and q-axis equations contain
d-axis terms. The presence of these terms, which are referred to as cross-coupling terms,
confirms the multi-input multi-output nature of the considered microgrid under study.

vtd = Riid + L
diid
dt

− ωLiiq + vld (3)

vtq = Riiq + L
diidq

dt
+ ωLiid + vlq (4)

iid = C
dvld
dt

− ωCvlq + ild (5)

iiq = C
dvlq

dt
+ ωCvld + ilq (6)

Applying Laplace transform to (1) and (2) yields (7) and (8), respectively. These
equations help in the design of the necessary controllers required for the VCL and CCL.

Vtdq(s) = RIidq(s) + sLIidq(s) + jωLIidq(s) + Vldq(s) (7)

Iidq(s) = Ildq(s) + sCVldq(s) + jωCVldq(s) (8)

The design of the VCL and CCL is shown in Figure 3. The model of the CCL is
described in Figure 3a and that of the VCL is shown in Figure 3b. With vt as the input and
ii as the output, the plant in Figure 3a is represented with VSI dynamics that are expressed
through (3) and (4).
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To regulate ii in a closed loop, a current controller (since it is intended to regulate the
current in this case) is required to be introduced in the d- and q-axis forward paths. The
current controller will deliver a controlled output uI with respect to the error signal eI it
receives. However, due to the presence of cross-coupling terms, coupling is seen between
the d-axis and q-axis of the CCL. To eliminate the effect of this coupling, the cross-coupling
terms of a particular axis ∓ωLiidq are added as feed-forward signals to the respective
controller outputs uIdq. Further, to compensate for the disturbances in load voltages, vldq is
added as a feed-forward signal to the controller output. The resulting controlled input vtdq
to the plant is shown in (9) and (10), respectively.

vtd = uId − ωLiiq + vld (9)
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vtq = uIq + ωLiid + vlq (10)

With ii as the input and vl as the output, the plant in Figure 3b is represented with VSI
dynamics that are expressed through (5) and (6). As the VCL contains the CCL within it, the
model of the CCL can be seen as providing the input ii to the plant. To regulate vl in a closed
loop, a voltage controller (since it is intended to regulate the voltage in this case) is required
to be introduced in the d- and q-axis forward paths. The voltage controller will deliver a
controlled output uV with respect to the error signal eV it receives. However, due to the
presence of cross-coupling terms, coupling is seen between the dq loops of the CCL. To
eliminate the effect of this coupling, the cross-coupling terms of a particular axis ∓ωCvldq
are added as feed-forward signals to the respective controller outputs uVdq. Further, to
compensate for the disturbances in load voltages, ildq is added as a feed-forward signal to
the controller output. Under the assumption that the time delay of the CCL is negligible,
i∗idq can be approximated to iidq. With such an assumption, the resulting controlled input
iidq to the plant in the d- and q-axes of the VCL is shown in (11) and (12), respectively.

iid = uVd − ωCvlq + ild (11)

iiq = uVq + ωCvld + ilq (12)

2.2. MPZC Description

With the conventional PZC method, the tuning of the forward controllers in the CCL
is satisfactory. Thus, the proportional and integral coefficients of these controllers are fixed
based on the conventional PZC method. However, when conventional PZC is applied to
design the forward controllers of the VCL, its integral constant (KVi,f) is obtained as zero.
This hampers the applicability of PZC for tuning VCL and CCL. Therefore, to obtain an
optimal and reliable value for KVi,f, the PSO is used in the MPZC method. The objective
of the PSO in this case is to minimize the objective function ‘Z’, which is the integral
time absolute error of V∗

ldq and Vldq as shown in (13). In view of this, the corresponding
optimization problem is described as shown in (14), where Z(x) represents the fitness
function with respect to the design variable ‘x’, which is KVi,f in this case. Further, the value
of KVi,f is restricted between the lower bound ‘xlb’ and upper bound ‘xub’.

Z = t
ts∫

0

∣∣∣v∗ldq − vldq

∣∣∣ dt (13)

Minimize Z(x)
x = KVi, f
subject to xlb ≤ x ≤ xub

 (14)

A flow chart which depicts the procedure involved in finding the optimum KVi,f using
the PSO in MPZC is shown in Figure 4. In this process, to begin with, initial values are
assigned for population size and the decision variable. This is followed by initializing the
velocity and position of each particle in the population.

A value for the maximum number of iterations ‘n’ is assigned, and the iteration count
‘i’ is initialized to 1. With this, the process begins, and a trigger signal is provided to
simulate the model. As this simulation will continue to execute in the loop for the entire
simulation time of ts seconds uninterruptedly, this is referred to as a while loop in the flow
chart. After ts seconds, the best fitness of any particle is assigned for Gbest. Next, the value
of i is incremented by 1, and the condition, if i > n has occurred, will be checked. If the
condition is not met, then it prompts the triggering of the while loop of the simulation
model for one more time. The repetition of this cycle continues till the condition i > n is
reached. Once the condition is satisfied, the algorithm assigns the final updated value of
Gbest as the optimum value of KVi,f.
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Figure 4. Flow chart for finding the optimum integral constant of the forward path controller in the
VCL using the PSO.

3. Proposed Methodology: Overview and Implementation

The details of the power, voltage, and current controllers for both the conventional
and proposed control schemes are described in Figure 5. In this figure, the difference be-
tween the conventional and proposed methods is highlighted in the proposed methodology
for a quick understanding of the proposed changes. In the proposed methodology, the
performance of the MPZC-tuned forward controllers is enhanced with the performance
of IMC-based multivariable controllers in the cross-coupling paths. This methodology is
implemented for both the voltage and current controllers. The necessary details required
for the implementation of the proposed methodology are discussed in the following subsec-
tions. In this work, an adaptive droop control that is implemented through fuzzy logic [39]
is deployed for the power control loop. To avoid repetition, the details pertaining to its
implementation are not furnished in this paper. So, this paper provides the modeling of the
proposed CCL and VCL as follows.

3.1. Overview of Direct Synthesis Method

Consider the model of a typical feedback control system as depicted in Figure 6. With
R(s) and Y(s) as the Laplace transform of the input and output, the closed-loop transfer
function is expressed as shown in (15), where G(s) is the plant transfer function that
represents the process to be controlled and C(s) is the controller transfer function. In the
direct synthesis method, C(s) is solved by specifying the desired closed-loop response to
obtain the required controller, as shown in (16).

Y(s)
R(s)

=
G(s)C(s)

1 + G(s)C(s)
(15)

C(s) =
1

G(s)
× 1

1
Y(s)/R(s)|desired

− 1
(16)
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+
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Figure 6. Typical feedback control system.

3.2. IMC Model Design Based on Direct Synthesis

Here, the direct synthesis procedure of deriving the IMC-based controller for a typical
feedback control system is discussed. The conventional block diagram model for the design
of the IMC controller for this case is depicted in Figure 7.
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G̃(s) is an exact or approximate representation of the process model G(s) to be con-
trolled. Importantly, the IMC ensures system stability only when both G(s) and C(s) remain
stable, assuming that the process model G̃(s) accurately represents the underlying process.
Hence, the design of the IMC system is uncomplicated when the process model is both
exact and minimum-phase. In such a case, G(s) and G̃(s) are equal and can be used for
using the direct synthesis method. The plant model can be segregated into invertible and
non-invertible parts, as shown in (17), where G̃i(s) is the invertible part and G̃ni(s) is the
non-invertible part. In the IMC method, the primary target of the feedback controller is to
follow the desired closed-loop response that is depicted in (18), where “f (s)” is the low-pass
filter as shown in (19).

G(s) = G̃(s) = G̃i(s) · G̃ni(s) (17)

Y(s)
R(s)

∣∣∣∣
desired

= G̃ni(s). f (s) (18)

f (s) =
1

(λs + 1)n (19)

To guarantee that the IMC controller is proper, the choice of “λ” and “n” in (19) is
crucial. After deriving the desired closed-loop response as given in (18), the direct synthesis
method shown in (16) is applied to derive the IMC controller as shown in (20).

1
G(s) =

1
G̃i(s)·G̃ni(s)

=
G̃−1

i (s)
G̃ni(s)

1
1

Y(s)/R(s)|desired
−1

= 1
1

G̃ni(s)· f (s)
−1

C(s) = G̃−1
i (s) · f (s)

1−[G̃ni(s)· f (s)]
= G̃−1

i (s) · 1
(1/ f (s))−G̃ni(s)

 (20)

3.3. Multivariable Inner CCL Design for VSI

Here, the direct synthesis way of designing an IMC control for designing the controllers
in the cross-coupling paths of the CCL is discussed. The corresponding model of the inner
CCL is depicted in Figure 8. The plant transfer function that is shown in (21) is based on
(7). The time delay associated with the PWM is modeled as shown in (22). The effective
overall plant transfer function GI(s) in the CCL that is based on (21) and (22) is expressed as
shown in (23).

Vtdq(s)− Vldq(s) = R
(

1 + L
R (s + jω)

)
Iidq(s)

GIplant(s) =
Iidq(s)

Vtdq(s)−Vldq(s)
= K

1+(s+jω)TI


where K = 1/R and TI = L/R

(21)

GPWM(s) =
1

1 + (s + jω)TPWM
(22)

GI(s) =
K

[1 + (s + jω)TI ][1 + (s + jω)TPWM]
(23)
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As described in (17), the plant model can be segregated into invertible part GI(s) and 
non-invertible part ( )IniG s  as shown in (24). GI(s) is the minimum phase and has no zeros 

in the right half of the s-plane. In such a case, ( ) 1IniG s = . Considering n = 1 in (19), f(s) in 
this case is expressed as shown in (25). In such a case, the desired closed-loop response 
can be expressed as shown in (26). Thus, the effective controller is obtained in (27). 
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CI(s)+

_
Σ GPWM(s) GIplant(s)

RI(s) YI(s)
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Figure 8. Model for design of CCL.

As described in (17), the plant model can be segregated into invertible part GI(s) and
non-invertible part G̃Ini(s) as shown in (24). GI(s) is the minimum phase and has no zeros
in the right half of the s-plane. In such a case, G̃Ini(s) = 1. Considering n = 1 in (19), f (s) in
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this case is expressed as shown in (25). In such a case, the desired closed-loop response can
be expressed as shown in (26). Thus, the effective controller is obtained in (27).

GI(s) = G̃Ii(s) · G̃Ini(s) (24)

f (s) =
1

λIs + 1
(25)

YI(s)
RI(s)

∣∣∣∣
desired

=
1

λIs + 1
(26)

CI(s) = G̃−1
Ii (s) · 1

λI s = [1+(s+jω)TI ][1+(s+jω)TPWM ]
KλI s

=
s2TI TPWM + s(TPWM + TI)− TI TPWMω2 + 1

KλIs︸ ︷︷ ︸
CIreal(s)

+ j
ω[(TPWM + TI) + 2TI TPWMs]

KλIs︸ ︷︷ ︸
CIimag(s)

 (27)

Segregating the real and imaginary parts as CI(s) = CIreal(s) + jCIimag(s), the real
part of (27) defines the controller in the forward path and the imaginary part will define the
controller in the cross-coupling paths. As the controllers in the forward paths are designed
through MPZC, we neglect the real part of CI(s). Therefore, we consider only the imaginary
part that refers to the controllers in the cross-coupling paths, which is expressed as shown
in (28).

CIimag(s) = CI,cc(s) =
ω[(TPWM + TI) + 2TI TPWMs]

KλIs
(28)

By equating (28) with the parallel structure of the PID controller that is expressed as
CI,cc(s) = KIp,cc +

KIi,cc
s + sKId,cc, the corresponding proportional, integral, and derivative

coefficients are obtained as shown in (29).

KIp,cc =
2ωTI TPWM

KλI

KIi,cc =
ω(TPWM+TI)

KλI
KId,cc = 0

 (29)

3.4. Multivariable Outer VCL Design for VSI

Here, the direct synthesis way of designing an IMC control for designing the controllers
in the cross-coupling paths of the VCL is discussed. The corresponding model of the VCL
is depicted in Figure 9. The plant transfer function that is shown in (30) is based on (8).
As the CCL is inside the VCL, the desired response of the CCL, as shown in (26), is also
included. Thus, the overall plant transfer function GV(s) in the VCL is obtained as (31).

GVplant(s) =
1

C(s + jω)
(30)

GV(s) =
YI(s)
RI(s)

∣∣∣∣
desired

· GVplant(s) =
1

λIs + 1
· GVplant(s) =

1
C(s + jω)(λIs + 1)
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Σ Eq. (24) GVplant(s)

Figure 9. Model for design of VCL.
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As described in (17), the plant model can be segregated into an invertible part G̃Vi(s)
and a non-invertible part G̃Vni(s) as shown in (32). Considering n = 1 in (19), f (s) in this
case is expressed as (33).

GV(s) = G̃Vi(s) · G̃Vni(s) (32)

f (s) =
1

λVs + 1
(33)

In such a case, the desired closed-loop response can be expressed as shown in (34).
Thus, the effective controller is obtained as shown in (35).

YV(s)
RV(s)

∣∣∣∣
desired

=
1

λVs + 1
(34)

CV(s) = G̃−1
Vi (s) ·

1
λVs

=
C(s + jω)(λIs + 1)

λVs
(35)

Segregating the real and imaginary parts as CV(s) = CVreal(s) + jCVimag(s), the real
part of (35) defines the controller in the forward path and the imaginary part will define the
controller in the cross-coupling paths. As the controllers in the forward paths are designed
through MPZC, we neglect the real part of CV(s). Therefore, we consider only the imaginary
part that refers to the controllers in the cross-coupling paths, which is expressed as shown
in (36).

CVimag(s) = CV,cc(s) =
ωCλI

λV
+

ωC
λVs

(36)

By equating (36) with the parallel structure of the PID controller that is expressed
as CV,cc(s) = KVp,cc + (KVi,cc/s) + sKVd,cc, the corresponding proportional, integral, and
derivative coefficients are obtained as shown in (37).

KVp,cc =
ωCλI

λV

KVi,cc =
ωC
λV

KVd,cc = 0

 (37)

3.5. Rationale of Proposed HMPZC

As the CCL is the innermost control loop, its dynamics primarily affect the transient
response of the overall system. In view of this, here the performance of the conventional
MPZC and proposed HMPZC methods are compared based on the response of the CCL
with these methods. As the analysis with the VCL will follow similar steps, in order to
avoid repetition, the discussion will be limited to the CCL only.

The complete implementation of the CCL model shown in Figure 8 is represented in
Figure 10, where the CCL design for conventional MPZC is shown in Figure 10a while
the CCL for the proposed HMPZC is shown in Figure 10b. Both the models have two
inputs I∗id, I∗iq and two outputs Iid, Iiq. Here, the procedure is discussed to study the effect
of I∗id on Iid or on Iiq. For this purpose, the other input I∗iq is made zero, and thereafter the
closed-loop response is obtained. Whereas, for an open-loop response, the feedback path is
removed and the response is recorded. After substituting the controller parameter values
that are available in Section 4, the overall open-loop and closed-loop transfer functions
of the conventional MPZC and proposed HMPZC are expressed as shown in (38)–(41).
The reader can use either the block diagram model or transfer functions to reproduce the
obtained Bode plots and step responses.

Iid(s)
I∗id(s)

∣∣∣∣MPZC

OpenLoop
=

0.001435s4 + 140.6s3 + 9.022 × 105s2 + 2.876 × 108s + 6.469 × 1011

s4 + 321.2s3 + 7.303 × 105s2 + 8.079 × 107s
(38)

Iid(s)
I∗id(s)

∣∣∣∣MPZC

ClosedLoop
=

0.001433s4 + 140.4s3 + 9.009 × 105s2 + 2.872 × 108s + 6.46 × 1011

s4 + 461.1s3 + 1.63 × 106s2 + 3.679 × 108s + 6.46 × 1011 (39)
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Iid(s)
I∗id(s)

∣∣∣∣HMPZC

OpenLoop
=

0.001322s6 + 139.1s5 + 8.933 × 105s4 + 2.848 × 108s3 + 6.406 × 1011s2 + 0.0001826s + 4.219 × 10−20

s6 + 320.1s5 + 8.219 × 105s4 + 7.999 × 107s3 − 2.349 × 10−10s2 (40)

Iid(s)
I∗id(s)

∣∣∣∣HMPZC

ClosedLoop
=

0.0013s6 + 138.9s5 + 892120s4 + 2.844 × 108s3 + 6.398 × 1011s2 + 0.0001824s + 4.213 × 10−20

s6 + 458.6s5 + 1.713 × 106s4 + 3.643 × 108s3 + 6.398 × 1011s2 + 0.0001824s + 4.213 × 10−20 (41)
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The open-loop and closed-loop Bode plots obtained for the conventional and proposed
methods are given in Figures 11 and 12, respectively. From the open-loop Bode plots in
Figure 11a,b, it is seen that the conventional method shows a gain crossover frequency of
900 rad/s, while the proposed method shows 1000 rad/s. From the closed-loop Bode plots
in Figure 12a,b, it is seen that both methods show a bandwidth of ≈2000 rad/s. However,
the peak gain of HMPZC is lesser than that of MPZC, which leads to better damping with
HMPZC. The effect of this peak gain on the transient response of the conventional and
proposed methods is seen in the step responses.
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The performance of the conventional MPZC and proposed HMPZC methods are
compared based on their individual step responses. For this purpose, step inputs are
provided to the d-axis, and the corresponding outputs are recorded in the d- and q-axes.
Figure 13a,b show the output response of the MPZC and HMPZC methods in the d-axis
(forward path). With HMPZC, the output settled within 0.03 s, whereas with MPZC, the
output took around 0.14 s to settle.
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From these figures, it is to be noted that even though the controller parameters in the
forward paths of both HMPZC and MPZC are the same, the responses are different. The
possible cause for this can be attributed to the differences in the cross-coupling paths. The
following discussion confirms the aforesaid hypothesis. For the input I∗id, its effect on Iiq
(the cross-coupling path) was studied based on the step responses obtained, as shown in
Figure 14. It is noticed from these results that by 0.02 s, the impact of the cross-path is almost
nullified in the proposed method (Figure 14b). Whereas, oscillations with a substantial
amplitude continued to exist with the conventional method up to 0.1 s (Figure 14a). This
confirms that the superior performance of the proposed method over the conventional
method is due to reduced coupling between the d- and q-axes loops with the proposed
HMPZC method.
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4. Simulation Results and Discussion

Here, the response of the proposed hybrid MPZC (HMPZC) is analyzed and evaluated
under three different test cases, T1, T2, and T3. In all the test cases, load 1 receives
power during the entire time, while load 2 receives power from 80–90 s. The reactive load
component of load 2 is gradually increased from T1 to T3. During the design of these test
cases, the selection of load 2 is selected carefully to create the conditions of extremely poor
power factor loadings during 80–90 s. A summary of the various test cases that are used
for the evaluation of this work is shown in Table 1. The frequency, active power, voltage,
and voltage total harmonic distortion (THD) results under various test cases are compared
to analyze the performance of the HMPZC and MPZC schemes.

Table 1. Summary of different test cases.

Test Case
Load 1

(kW + jkVar)
Load 2

(kW + jkVar)
Operating Power Factor

0–80 s 80–90 s 90–160 s

T1 1.2 + j0.3 0.3 + j3.5 0.97 0.37 0.97
T2 1.2 + j0.3 0.3 + j5.0 0.97 0.27 0.97
T3 1.2 + j0.3 0.3 + j8.0 0.97 0.18 0.97

The maximum P-ω and Q-v droop coefficient values that are used in the development
of an adaptive fuzzy logic-based droop control for the APL and RPL are provided in Table 2.
Further, from the system parameters mentioned in Section 2, and depending on the method
described in Section 3, various gain coefficients of the voltage and current controllers in the
forward and cross-coupling paths are provided in Table 2. In the same table, “NA” refers
to not applicable.

The performance of the proposed method can be analyzed with reference to similar
works [4,18,19,39], and [40]. Among these, refs. [4,40] are the works of other authors. As
the present work is an extension of [19], this study will be credible if the performance of the
proposed method is analyzed with reference to [4,19], and [40]. These methods are tested
under a common test case, T1. The maximum value of frequency due to the load switch
being on is 50.4 Hz with [4], 58.6 Hz with [40], and ≈50 Hz with [19] and the proposed
HMPZC. The minimum frequency due to the load switch being off is 49.6 Hz with [4],
40 Hz with [40], and ≈50 Hz with [19] and the proposed HMPZC. Thus, with respect to
frequency, stable performance is achieved with [19] and the proposed method. However,
unacceptable deviations in frequency are noticed in [4,40]. Further, refs. [4,40] have failed to
maintain power stability, while [19] and the proposed method have successfully maintained
stability in delivering the required power during load switching. Similarly, voltage stability
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is lost with [4,40], whereas in the case with [19] and the proposed method, the voltage
stability is maintained with a THD less than 5%. Thus, the performance of the proposed
HMPZC method can be analyzed with the MPZC method of [19] only under T2 and T3. It
is to be noted that the results and discussions, as provided in Sections 4.1–4.3, describe the
performance of the conventional MPZC and HMPZC methods.

Table 2. Summary of various control parameters and their values.

Parameter Description MPZC HMPZC

TI Time constant of GIplant(s) 10 × 10−3 10 × 10−3

TPWM 1/switching frequency 5 × 10−4 5 × 10−4

Dp Maximum P-ω droop gain of the APL 1 × 10−4 1 × 10−4

Dq Maximum Q-v droop gain of the RPL 1.48 × 10−3 1.48 × 10−3

KIp,f Proportional gain in the forward path of the CCL’s PI controller 0.12 0.12
KIi,f Integral gain in the forward path of the CCL’s PI controller 0.8 × 103 0.8 × 103

KVp,f Proportional gain in the forward path of the VCL’s PI controller 5.65 × 10−4 5.65 × 10−4

KVi,f Integral gain in the forward path of the VCL’s PI controller 0.248 0.248
KIp,cc Proportional gain in the cross-coupling path of CCL’s PID controller 0.314 (ωoL) 31.42 × 10−5

KIi,cc Integral gain in the cross-coupling path of the CCL’s PID controller NA 0.3142
KId,cc Derivative gain in cross-coupling path of CCL’s PID controller NA 0
KVp,cc Proportional gain in the cross-coupling path of VCL’s PID controller 0.0016 (ωoC) 15.7
KVi,cc Integral gain in cross-coupling path of VCL’s PID controller NA 7.85 × 103

KVd,cc Derivative gain in cross-coupling path of VCL’s PID controller NA 0

4.1. Results and Discussion Corresponding to Test Case T1

Here, the performance of the HPMZC and MPZC schemes under test case T1 are
compared and discussed. The frequency results (Figure 15a,b) identify that both schemes
are stable. The deviation in the frequency under load 2 switch ON (shown by Figure 15c) is
0 Hz with MPZC and HMPZC. In the case of load 2 switch OFF (shown by Figure 15d), it
is identified that the deviation in the frequency is 0.015 Hz and 0.01 Hz with MPZC and
HMPZC, respectively. Thus, the frequency is the stable response of both schemes, but the
transient response of HMPZC is a little better than MPZC.

As the nature of load 2 is reactive, its effect on active power results as shown in
Figure 16 is used to identify the dq-coupling aspect. Corresponding to the load switch ON
at t = 80 s, it is seen from Figure 16a that the overshoot seen at 80 s with the proposed scheme
delivers an extra burden of 1308 W. However, as seen in Figure 16b, the conventional
scheme delivers an extra burden of 1529 W, which is higher than that of the proposed
scheme. Further, due to load switch OFF at t = 90 s, MPZC has caused an extra burden of
851 W, while HMPZC has caused 613 W. Thus, under load switch ON and switch OFF, the
proposed scheme provides a better transient response by reducing the coupling.

The voltage results of the proposed and conventional schemes are provided in
Figures 17a and 17b, respectively. The zoomed-in results seen in Figure 17c,d identify
the similar voltage responses of both schemes. This is further confirmed by the THD
plots depicted in Figure 18. The THD result of HMPZC is 3.08% (Figure 18a), which is
slightly less than the conventional scheme’s 3.49% (Figure 18b). However, this cannot be
claimed as an improvement, as both the values fall below the permissible 5%.
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4.2. Results and Discussion Corresponding to Test Case T2

Here, the performance of the HPMZC and MPZC schemes under test case T2 are
compared and discussed. The frequency results (Figure 19a,b) identify that both schemes
are stable. The deviation in the frequency under load 2 switch ON (shown by Figure 19c) is
0 Hz with MPZC and HMPZC. In the case of load 2 switch OFF (shown by Figure 19d), it is
identified that the deviation in the frequency is 0.02 Hz with both MPZC and HMPZC. Thus,
the frequency is the stable response of both schemes, but the transient response of both
HMPZC and MPZC is the same. The effect of load 2 on the active power results (Figure 20)
confirms that the overshoot seen at 80 s with the proposed scheme (Figure 20a) is lesser than
the conventional scheme (Figure 20b). Corresponding to the load switch ON at t = 80 s, it is
seen from Figure 20a that the overshoot seen at 80 s with the proposed scheme delivers an
extra burden of 1914 W. However, as seen in Figure 20b, the conventional scheme delivers
an extra burden of 2307 W, which is higher than that of the proposed scheme. Further, due
to the load switch OFF at t = 90 s, MPZC has caused an extra burden of 1114 W, while
HMPZC has caused 928 W. This confirms that the proposed scheme has reduced the dq
coupling comparatively.
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The voltage results of HMPZC are provided in Figure 21a and those of MPZC are pro-
vided in Figure 21b. The zoomed-in voltage results (Figure 21c,d), confirm that the voltage
response of HMPZC is smoother than that of the MPZC scheme. Further, a distortion of
voltage is also identified with conventional MPZC at the instant of load removal (at 90 s),
as indicated with an arrow mark in Figure 21d. This is further confirmed by the THD plots
shown in Figure 22. The THD of the proposed and conventional schemes are noted as 3.33%
(Figure 22a) and 5.62% (Figure 22b). Thus, the frequency and THD results confirm that the
proposed HMPZC exhibits a better transient response than the conventional MPZC.
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4.3. Results and Discussion Corresponding to Test Case T3

Here, the performance of the HPMZC and MPZC schemes under test case T3 are
compared and discussed. The frequency results of the HMPZC and MPZC schemes
are depicted in Figures 23a and 23b, respectively. From the frequency results shown in
Figure 23b, it is noticed that after load removal at 90 s, the conventional scheme produced a
maximum deviation of 0.4 Hz, which is greater than the permissible limit of 0.05 Hz, and it
has failed to maintain stability in frequency. Whereas, the proposed scheme (Figure 23a),
with a deviation of 0.017 Hz, has successfully maintained a stable frequency. The effect of
load 2 on the active power results that are shown in Figure 24 confirms that the overshoot
of 4751 W seen at 80 s with the proposed scheme (Figure 24a) is less than that of the
conventional scheme (Figure 24b), whose value is 6083 W. This confirms that the proposed
scheme has reduced the dq coupling. Moreover, after 90 s, it is observed from Figure 24b
that the conventional scheme has failed to maintain stability in delivering the required
power to the loads. The voltage results of the HMPZC and MPZC schemes are depicted in
Figures 25a and 25b, respectively.
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From the zoomed-in aspect of the voltage results, the voltage response of the conven-
tional scheme (Figure 25d) is completely distorted, while that of the proposed scheme as
seen in Figure 25c is satisfactory. This voltage response is further confirmed by the THD
plots provided in Figure 26. From Figure 26, the THD result of the proposed scheme is
3.39% (Figure 26a), while that of the conventional scheme is 20.20% (Figure 26b). Thus, the
voltage profile of HPMZC is satisfactory in its transient response and stability.
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4.4. Summary of Discussions

A cumulative comparison of the frequency, active power, voltage, and voltage total
harmonic distortion (THD) results under various test cases is presented in Table 3.

From this table, the following aspects are analyzed: namely, power delivery capability,
transient response, and coupling between dq loops. In this table, T80 and T90 refer to
instances of switch ON and switch OFF of load 2, respectively.

• The highlighted values in the table specify an intolerable deviation regarding their
characteristics.

• From the frequency characteristics, a small deviation in overshoot or undershoot is
the desired criterion to verify an improvement in transient response.

• From the power characteristics, “stable” in the stability criteria is the desired outcome
to verify power delivery capability.

• From the power characteristics, a smaller value in extra burden is used to verify a
reduction in dq coupling.
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• From the voltage characteristics, the THD value is used to verify transient response
improvement. “NC” in the same characteristics indicates not considered.

Table 3. Transient response comparison of the proposed HMPZC and conventional MPZC schemes.

Performance Characteristics Test Case
Corresponding to Load Switching at t = 80 s Corresponding to Load Switching at t = 90 s

Conv. MPZC
[18,19] Prop. HMPZC Superior

Method
Conv. MPZC

[18,19] Prop. HMPZC Superior Method

Frequency characteristics
Desired:

• Deviation: ≤0.05 Hz
(IEEE 1547)

Max. deviation
during overshoot

(Hz)

T1 0 0 Both 0.015 0.010 HMPZC
T2 0.001 0 Both 0.020 0.020 Both
T3 0.005 0.004 HMPZC 0.400 0.025 HMPZC

Max. deviation
during undershoot

(Hz)

T1 0.002 0.002 Both 0.040 0.007 HMPZC
T2 0.002 0.002 Both 0.050 0.009 HMPZC
T3 0.003 0.003 Both 0.400 0.017 HMPZC

Power characteristics
Desired:

• System stability: Stable
• Extra burden: low

System stability
(Stable/Unstable)

T1 Stable Stable Both Stable Stable Both
T2 Stable Stable Both Stable Stable Both
T3 Stable Stable Both Unstable Stable HMPZC

Extra burden (Watts)
T1 1529 1308 HMPZC 851 613 HMPZC
T2 2307 1914 HMPZC 1114 928 HMPZC
T3 6083 4751 HMPZC 1952 1845 HMPZC

Voltage characteristics

• Desired THD: <5%
THD (%)

T1 NC NC -- 3.49 3.08 HMPZC
T2 NC NC -- 5.62 3.33 HMPZC
T3 NC NC -- 20.2 3.39 HMPZC

5. Conclusions

In this paper, the HMPZC method, which combines multivariable control with the
MPZC method, is proposed. For this purpose, the proposed IMC-based multivariable PI
controllers are realized using the direct synthesis method. This helps to improve the vector
control of VSIs by reducing the coupling between the d- and q-axes loops of current/voltage
in the VSI’s multiloop control structure, thereby enhancing the transient response and
power delivery capability. The influence of dq coupling is inferred from the extra burden
aspect of the active power results, and the quality of the transient response is inferred
from the frequency and voltage characteristics. Similarly, the power loop’s power delivery
capacity is inferred from the system stability aspect of the power characteristics. Based on
these three key performance indices, the performance of the proposed HMPZC method
and conventional MPZC method under various test cases is summarized as follows.

Under test case T1:

• The overshoot seen in the active power is 1308 W with the HMPZC method and
1529 W with the conventional MPZC method. This confirms that a reduced coupling
is achieved with the proposed HMPZC method.

• An improvement in transient response cannot be inferred, because the deviation in
frequency is the same, and the voltage THD values are less than 5% with both methods.

• As both methods ensured system stability, an improvement in power delivery capabil-
ity cannot be inferred.

Under test case T2:

• The overshoot seen in the active power is 1914 W with the HMPZC method and
2307 W with the conventional MPZC method. This confirms that a reduced coupling
is achieved with the proposed HMPZC method.

• The voltage THD with the HMPZC and MPZC methods is 3.33% and 5.62%. Unlike
T1, the THD results confirm the ability of the proposed HMPZC method to improve
the transient response.

• Similar to T1 in this test case also, an improvement in power delivery capability cannot
be inferred, as both methods maintained the stability of the system.

Under test case T3:

• The overshoot seen in the active power is 4751 W with the HMPZC method and
6083 W with the conventional MPZC method. This confirms that a reduced coupling
is achieved with the proposed HMPZC method.

• The maximum deviations during overshoot and undershoot with the HMZC method
are 0.025 Hz and 0.017 Hz, respectively. On the other hand, the maximum deviation
during overshoot and undershoot with the MPZC method is 0.4 Hz. The voltage THD
with the HMPZC and MPZC methods are 3.39% and 20.2%, respectively. Thus, based
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on the frequency and voltage results, the ability of the proposed HMPZC method to
improve the transient response is confirmed.

• From the power, frequency, and voltage characteristics, it is identified that stability
is maintained with the HMPZ method, whereas MPZC failed to maintain stability.
Unlike T2, this analysis confirms that the HMPZC method has a better chance of
enhancing the power delivery capability of the power loop than the conventional
MPZC method.

Thus, it is concluded that the proposed HMPZC method has successfully reduced
the dq coupling, thereby achieving the enhanced transient response and power delivery
capability of the inverters of microgrids.
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