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Abstract: The rapid development of industrial and information technology is driving the demand to
improve the applicability and hydraulic performance of centrifugal pumps in various applications.
Enhancing the rotational speed of pumps can simultaneously increase the head and reduce the im-
peller diameter, thereby reducing the pump size and weight and also improving pump efficiency. This
paper reviews the current application status of high-speed pumps using low-temperature thermosen-
sitive fluids, which have been applied in fields such as novel energy-saving cooling technologies,
aerospace, chemical industries, and cryogenic engineering. Due to operational constraints and ther-
mal effects, there are inherent challenges that still need to be addressed for high-speed pumps. Based
on numerical simulation and experimental research for different working fluids, the results regarding
cavitation within the inducer have been categorized and summarized. Improvements to cavitation
models, the mechanism of unsteady cavity shedding, vortex generation and cavitation suppression,
and the impact of cavitation on pump performance were examined. Subsequently, the thermal
properties and cavitation thermal effects of low-temperature thermosensitive fluids were analyzed. In
response to the application requirements of pump-driven two-phase cooling systems in data centers,
a high-speed refrigerant pump employing hydrodynamic bearings has been proposed. Experimental
results indicate that the prototype achieves a head of 56.5 m and an efficiency of 36.1% at design
conditions (n = 7000 rpm, Q = 1.5 m3/h). The prototype features a variable frequency motor, allowing
for a wider operational range, and has successfully passed both on/off and continuous operation tests.
These findings provide valuable insights for improving the performance of high-speed refrigerant
pumps in relevant applications.

Keywords: high-speed centrifugal pump; thermosensitive fluid; cavitation; thermal effect; hydrodynamic
bearing

1. Introduction

Centrifugal pumps are the most prevalent type of pump due to their stable output,
compact structure, and high reliability. These characteristics make them widely used in
many applications such as industrial, agricultural, military, and domestic fields [1,2]. To
achieve the demands of complex operating environments and conditions, there is a growing
need for centrifugal pumps to develop in the direction of miniaturization, having a high
head and high efficiency, and being lightweight. This is particularly critical in military
applications [3] and aerospace systems [4], where equipment must reliably operate under
all or specific operating conditions.

By increasing the pump rotational speed under identical inlet conditions, it is pos-
sible to achieve a higher head and simultaneously reduce the impeller diameter, overall
dimension, weight, and manufacturing costs. The specific speed, nq = nQ0.5/H0.75, is
a dimensionless parameter that evaluates a pump’s performance across different design
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conditions, which depends on the flow rate Q, head H, and rotational speed n. When the
flow rate and head are constant, increasing the rotational speed enhances the specific speed
nq. For low-specific-speed centrifugal pumps, a higher specific speed number usually leads
to better impeller efficiency. In multistage centrifugal pumps, increased speed can augment
the pressure-boosting capacity of each stage, thereby minimizing interstage losses and
enhancing pump efficiency [5].

As fluid machinery used for liquid transport or pressurization, centrifugal pumps are
applicable not only for water and aqueous solutions [6–12] but also for low-temperature
thermosensitive fluids such as refrigerants and cryogens. In fields such as new energy-
saving cooling technologies, aeronautics and astronautics industries, chemical industries,
and cryogenic engineering, centrifugal pumps designed for thermosensitive fluids play
an essential role. Typical engineering application situations are shown in Figure 1. In
most of these applications, there are high standards for pump performance and reliability.
Increasing the pump rotational speed emerges as an effective strategy to fulfill these
stringent requirements.
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However, several engineering challenges must be addressed before high-speed pumps
can be widely applied, especially as rotational speeds increase. One significant issue is
cavitation, which occurs when the liquid pressure drops below the local saturation pressure.
The rapid expansion of vaporized working fluid blocks the flow passages, significantly
reducing the hydraulic performance of the equipment. The shock waves generated by
collapsing vapor bubbles damage the impeller surface material and ultimately lead to
pump failure or malfunction [13]. Additionally, flow-induced vibration and noise from
cavitation exacerbate recirculation and vortices within the impeller, causing operational
instability and increased energy losses [14]. Under the combined effects of these external
working environments and operating conditions, the dynamic characteristics and energy
efficiency of the hydraulic system are significantly impacted [15].

The cavitation phenomena and their impacts on pumps differ with various fluid
media [16,17]. For instance, heat transfer during cavity growth in room-temperature water
is negligible; thus, it is considered as an isothermal fluid. In contrast, the physical properties
of thermosensitive fluids such as high-temperature water, Freon refrigerants, and cryogens
can change greatly depending on temperature. The temperature drop in the fluid phase
transition region leads to a decrease in the saturation pressure, which suppresses the phase
transition process. This characteristic is known as the thermal effect [18]. When pumping
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low-temperature thermosensitive fluids, the inlet pressure of pumps is often near the
saturation pressure. In practical applications, an inducer is often used to improve the flow
state within the impeller, thus enhancing the pump performance.

Although high-speed centrifugal pumps using water as a medium have been widely
applied, with extensive and in-depth studies on water cavitation, the application of high-
speed centrifugal pumps for low-temperature thermosensitive fluids still requires further
technical breakthroughs due to differences in thermal properties and pump operating
conditions. Research on cavitating flow for refrigerants is also limited. Thus, establishing a
deep and comprehensive understanding of the cavitation characteristics and mechanisms of
low-temperature thermosensitive fluids is crucial. It is necessary to combine experimental
research and numerical simulations to establish a deep and comprehensive understanding
of the cavitation characteristics and mechanisms of low-temperature thermosensitive fluids.

This paper reviews the current applications and challenges of high-speed pumps
using low-temperature thermosensitive fluids. It proposes a high-speed refrigerant pump
solution with hydrodynamic bearings for data center cooling systems, providing guidance
for the further development and application of high-speed centrifugal pumps.

2. Applications Status of High-Speed Pumps
2.1. Cryogenic Liquid

Cryogenic pumps often have stringent requirements for weight and volume, and in
certain conditions, the flow rate is also very low. Although positive displacement pumps
have the advantage of providing a high head at low flow rates, they are complex in structure
and less suitable for cryogenic applications. High-speed centrifugal pumps can better adapt
to cryogenic working conditions.

Currently, cryogenic pump products are available from only limited global commercial
companies, such as Nikkiso (Tokyo, Japan), Cryostar (Hésingue, France), EBARA (Tokyo,
Japan), Barber-Nichols (Arvada, CO, USA), etc. These products are primarily designed for
large-scale cryogenic systems and come at a high cost [19]. In the realm of basic physics
research, cryogenic pumps are commonly employed to transport various cryogenic fluids,
including liquid helium, liquid argon, and liquid xenon, as Figure 2 shows. The pumping
of these liquid cryogens reduces the temperature to the required experimental cryogenic
environment, facilitating the cooling of superconducting coils for applications such as
particle detection and control research [20–25]. The applications of cryogenic pumps
include the use of liquid helium pumps in CERN’s ATLAS Detector, pumping liquid xenon
in a gamma-ray detector utilizing liquid Xe as a scintillation material and cooling neutrons
using cryogenic fluid circulation systems in the Spallation Neutron Source laboratory, etc.
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In industrial production and energy development, the use of liquid cryogens is integral
to processes such as air liquefaction and separation, oil well development, and liquefied
natural gas (LNG) storage and transportation [26–31]. To facilitate equipment installation,
maintenance, and the extraction of cryogens, the pumps employed in these fields are
typically submersible pumps, as shown in Figure 3. Moreover, during the design and
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selection process of these pumps, it is essential to consider factors such as efficiency,
leakage, and reliability to ensure economic and safe operation.
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Furthermore, cryogenic pumps play a pivotal role in wind-tunnel testing for aerospace
applications. Wind tunnels facilitate various aerodynamic experiments based on the prin-
ciples of relativity and similarity. To increase the Reynolds number within wind tunnels,
strategies such as enlarging tunnel dimensions, elevating operating pressure, and reducing
the airflow temperature can be employed. Consequently, liquid nitrogen (LN2) and cryo-
genic nitrogen are used as simulated flow media in cryogenic wind tunnels, requiring LN2
pumps that meet high-flow-rate pumping demands [32,33].

The development and promotion of hydrogen energy also necessitate the use of
cryogenic pumps for the long-distance transportation and storage of liquid hydrogen (LH2).
These pumps must ensure the continuous and stable delivery of the fluid and handle
long-distance, low-flow-rate transportation [34,35]. Another significant application of high-
speed cryogenic pumps is within the aerospace industry [36–39]. Modern liquid rocket
engines are advancing toward a high specific impulse and environmental sustainability,
typically utilizing cryogenic propellants such as LH2 and liquid oxygen (LOX). Turbopumps
are employed to supply these cryogenic propellants to combustion chambers operating
under extremely high pressure. Unlike closed-loop cryogenic systems, turbopumps are
characterized by high flow rates and very high rotational speeds, as illustrated in Figure 4.
The design of the impeller profile, internal flow-field distribution, rotor stress distribution,
and pump performance are critical factors in these applications.
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2.2. Liquid Refrigerant

The procurement and storage of liquid cryogenic fluids are challenging and expensive,
making the setup and operation of cryogenic test rigs costly and experimentally demanding.
As illustrated in Table 1, the physical properties of refrigerants closely resemble those of
cryogens. There are substantial differences between the physical properties of room-
temperature water and cryogens, particularly concerning the saturation pressure change
with the temperature increase dpv/dT, liquid/vapor density ratio ρl/ρv, latent heat of
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vaporization cp, thermal conductivity k, and viscosity ν. Consequently, some researchers
use R114 refrigerant as a surrogate for cryogens, applying similarity laws to investigate the
internal flow and hydraulic performance of refrigerants in centrifugal pumps [18].

Table 1. Thermal properties of thermosensitive fluids vs. room-temperature water.

Parameters Water LN2 LH2 R114 R134a R410A

T/K 283 77 23 283 283 283
dpv/dT/Pa·K−1 84 12,108 53,690 4700 13,980 32,500

ρl/ρv 107,286.1 182.0 26.7 154.0 62.7 27.5
cp/kj·kg−1 2477.5 199.6 431.2 133.7 190.9 /

k/mW·m−1·K−1 578.4 145.5 103.4 64.3 87.7 97.5
ν/µPa·s 1311.7 162.9 11.0 325.8 235.3 143.0

With the rapid advancement of electronic information technology and increased focus
on energy conservation, devices are becoming smaller and more powerful, leading to higher
heat fluxes [41]. Pump-driven two-phase flow systems have been increasingly utilized
for cooling high-heat-flux electronic devices and data centers due to their superior heat
transfer capabilities and energy efficiency. The primary working fluids in these systems
include fluorocarbons such as R142b, R22, R32, and R410A [42–45]. Our research team
has previously developed a high-speed pump utilizing R134a refrigerant [46]. This single-
stage pipeline pump is suitable for high-heat-flux electronic thermal management systems,
which is shown in Figure 5. During operation, the refrigerant upstream of the pump is in a
low-temperature and low-pressure state. After being pressurized by the refrigerant pump,
it enters the cooling equipment. The net positive suction head (NPSH) is a critical factor
influencing the pump performance.
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3. Current Challenges
3.1. Cavitation in Inducer

Cavitation generally occurs at the inlet of centrifugal pumps and is more likely to
occur at high rotational speeds [47]. Cavitation not only damages the blade material,
thereby reducing the operational lifespan of pumps, but also induces pressure pulsations
that lead to vibrations. These vibrations can jeopardize the safe and stable operation of
aerospace engines or petrochemical systems or cryogenic systems. Additionally, high-
frequency noise (above 500 Hz) and a reduction in pump capacity are observed. In rocket
engines, high-speed turbopumps are subject to size constraints, with impellers rotating at
extremely high speeds, resulting in severe cavitation of the propellant. Numerous rocket
launch failures have been attributed to the instability caused by turbopump cavitation. In
industrial systems, cavitation in cryogenic fluids not only reduces production line efficiency
but also impacts the resonance of transport pipelines.

For high-speed centrifugal pumps, radial impellers offer significant pressure-boosting
capabilities but are highly sensitive to cavitation, making them susceptible to breakdown.
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Presetting an axial-flow inducer is an effective solution to the cavitation problem. While the
pressure-boosting capability of an inducer is lower than that of a radial impeller, it provides
superior cavitation resistance. Extensive studies have been conducted on the cavitation
behavior of low-temperature thermosensitive fluids within inducers, primarily using safe
and readily available LN2.

Ito et al. [48] introduced a bubble size distribution model into numerical simulations
to investigate the cavitation characteristics of LN2, focusing on bubble development and
thermal effects. Numerical results indicated that the rotational speed of the backflow vortex
is consistently lower than that of the impeller and is concentrated near the inducer axis,
with bubbles of different sizes exhibiting relatively fixed positional distributions. Chen
et al. [49] examined the mechanism of tip leakage vortex cavitation and the associated
cavity structure in inducers. Their numerical results demonstrated that the periodic cou-
pling of cavity development, flow rate, and local incidence angle variations led to the
instability of tip leakage vortex cavitation. The axial vorticity distribution of the tip leakage
vortex and the cavity structure are shown in Figure 6. Zhang et al. [50] evaluated the
prediction accuracy of four cavitation models—full cavitation, Kunz, Schnerr–Sauer, and
Zwart–Gerber–Belamri models—using Ito et al.’s [51] experimentally captured images of
LN2 cavitation as a reference. The full cavitation model provided the most accurate numer-
ical predictions without modifying computational parameters, whereas the other models
achieved satisfactory predictions through empirical parameter adjustments. This demon-
strates that by improving computational models and validating them against experimental
results, CFD numerical simulations can achieve high computational accuracy, providing
reliable guidance for analyzing hydrodynamic phenomena in hydraulic devices [52].
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In addition to LN2, cavitation in cryogenic propellants such as LH2 and LOX used in
liquid rockets has also received considerable attention and research. In an experimental
study, Lettieri et al. [40] conducted visual studies on the cavitation instability of the inducer
in rocket engine turbopumps. Optical experiments demonstrated that the generation of
rotating cavitation is related to the interaction between cavities at the leading edges of
adjacent blades. Changes in the incidence angle exacerbate cavitation, leading to the appar-
ent supersynchronous rotation of the cavities around the annulus. Shao and Zhao [34,53]
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developed a LH2 centrifugal pump to meet the demand for low-flow-rate and high-head
applications. They conducted hydraulic performance tests on a prototype designed using
LN2 as the working fluid, employing similarity laws. The pump performance met the
design expectations, with simulation results closely matching experimental data. Based on
this, they optimized the impeller design using genetic algorithms. Cavitation characteristics
can be effectively enhanced by decreasing the inlet angle, enlarging the impeller diameter,
or incorporating an inducer. Additionally, slightly reducing the impeller’s outlet diameter
can decrease hydraulic losses, thereby increasing the head. The performance characteristics
are shown in Figure 7. Kim et al. [54,55] used water at 310–323 K and LOX as working
fluids to study cavitation instability by measuring the vibration of the pump casing. Under
low-flow-rate conditions, both fluids exhibited supersynchronous rotating cavitation. In
the LOX experiments, asymmetric cavitation was predominant, and its cavitation insta-
bility at high-flow-rate conditions was lower than that of hot water. Shimura et al. [56]
conducted experimental studies on the vibrations caused by cavitation in the inducer of a
turbopump and modified the inducer blades to suppress rotating cavitation and mitigate
vibration effects.
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Tani et al. [11] studied the relationship between rotating cavitation and the flow co-
efficient in the oxidizer inducer of a turbopump. Numerical simulations discussed the
relationship between tip vortices and inducer blades, while unsteady simulations revealed
that tip vortices were not the primary factor driving cavitation. Instead, negative flow
divergence caused by bubble collapse affected the flow angle, leading to tip gap recircu-
lation and exacerbating cavitation. Kimura et al. [57] investigated the tip leakage vortex
structure and the rotating cavitation it induced. Their study found that the development of
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the vortex structure is strongly influenced by the geometry of the inlet casing and flow rate.
Adding a gutter to the inlet casing effectively suppressed cavitation and recirculation, as
shown in Figure 8.
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Research on cavitation in inducers for LNG has also been extensive. Son et al. [28]
developed a pump for LNG transportation systems, investigating its hydraulic performance
and NPSH and addressing cavitation and surge issues. Their study revealed that the
pressure loss generated within the inducer is not recovered in the impeller and recirculation
channels, and this pressure loss further increases. Vortices generated at the trailing edge of
the blades negatively affect the operation of the impeller and the hydraulic performance
of the pump. Li et al. [27] performed both numerical and experimental studies on the
cavitation behavior and pressure pulsation of the impeller in a two-stage LNG submersible
pump. Their research found that as the flow rate increases, cavitation becomes more severe
and periodic, with a greater impact on the first-stage impeller. The low-frequency pressure
pulsation frequency of the impeller gradually becomes dominant. Karakas et al. [58] also
performed numerical and experimental studies on the effects of inducer tip clearance on the
cavitation characteristics and hydraulic performance of an LNG submersible pump. The
results indicated that wider inducer tip clearances lead to back leakage and more severe
vortex recirculation, resulting in local pressure drops and cavitation. Moreover, the impact
of tip clearance on cavitation is more pronounced in variable pitch inducers.

3.2. Thermal Effect

The temperature reduction induced by thermal effects is a characteristic of cavitation in
thermosensitive fluids, which complicates the cavitation behavior and has been a significant
area of research in low-temperature thermosensitive fluid cavitation studies. Thermal
cavitation not only suppresses the formation and growth of cavities but also impacts the
cavitation dynamics of thermosensitive fluids [59,60].

Researchers have extensively studied the cavitation dynamics in simple cavity-generating
devices such as hydrofoils, Venturi tubes, and ogives [61–63]. Chen et al. [64] developed a
hydrofoil cavitating flow model using fluoroketone as the working fluid and discovered
that the thermodynamic cavitation effects of room-temperature fluoroketone resemble
those of LN2 at cryogenic temperatures. Their findings identified a transition temperature
at which the dominant factor influencing cavitation shifts from the liquid/vapor density
ratio to thermal effects. Zhang et al. [65] carried out experimental studies on the cavitation
characteristics of R134a refrigerant in a Venturi tube and observed that the formation,
shedding, and collapse of cavities become more frequent and complex under the combined
influence of reentrant jet flow and thermal effects.
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For cryogens, Chen et al. [66] examined the influence of thermal effects on the cavitat-
ing flow of LN2 in a hydrofoil, discussing how thermal effects specifically impact the mass
transfer processes and cavity structures in cavitating flows. They found that the phase
transition of cryogenic liquids causes changes in fluid properties, which in turn alter the
reference free-stream conditions equivalently. Long et al. [67] performed numerical studies
on the shedding process of LH2 cavitation on an ogive surface under thermal effects, clari-
fying the interaction between cavitation and vortices in unsteady thermal cavitating flows.
Chen et al. [68,69] investigated the thermal transition process and transition temperature
in the evolution of unsteady cavitating flows of LN2, identifying two modes of thermal
cavitation dynamics, termed the inertial mode and thermal mode, as shown in Figure 9. As
the temperature rises, the shedding frequency and the number of simultaneously shedding
cavities increase consistently, while the characteristic frequency of individual shedding
processes and quasi-periodic features first decreases and then increases. Zhu et al. [70,71]
visualized the cavitating flow of LN2 in a Venturi tube and established a one-dimensional
theoretical equation considering thermal effects to estimate the speed of the condensation
front, applying a two-dimensional thermal effect parameter to quantify the intensity of
cavitation thermal effects. Murakami and Harada [72] utilized Particle Image Velocimetry
to investigate the cavitating flow of superfluid helium, focusing on the effect of the void
fraction in the Venturi tube on cavitation thermal effects. Niiyama et al. [73] studied the in-
fluence of turbulence around cavities on cavitation thermal effects based on LN2 cavitation
experiments in an orifice, finding that heat transfer is enhanced during cavitation. Liang
et al. [74] demonstrated that the thermal cavitation mode transition of LH2 is influenced by
both thermal effects and Reynolds number, with the entropy production rate increasing
with temperature according to the entropy transport equation.
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As a complex three-dimensional hydraulic structure, the study of cavitation behavior
within an inducer holds significant practical value. Extensive research on the thermal effects
of cavitation within inducers has been conducted through a combination of experimental
and simulation approaches. Yoshida et al. [75–77] studied the thermal effects of LN2
on synchronous rotating cavitation within an inducer, examining characteristics such
as the cavity length at the blade tip, temperature, and fluid forces. They found that,
as the cavity length increased, the thermal effects intensified. The growth of cavity non-
uniformity due to synchronous rotating cavitation was identified as a primary cause of shaft
vibration. Ito et al. [51,78] established the first visualization experimental setup suitable
for studying an inducer with both LN2 and water, comparing the unsteady cavitation
characteristics of LN2 to those of water, as shown in Figure 10. They elucidated the
cavitation developments of backflow vortices and tip vortices as well as the thermal effects
of cryogen. The experimental results indicated that backflow vortices in LN2 cavitation are
more intense, and tip vortices are smaller compared to those in water.
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Building on this visualization experiment, Fan et al. [79] set a cavitation model to
predict the performance of the LN2 inducer. Their numerical study revealed that, in the cav-
itation region, as temperature increased, the temperature drop within the cavities became
significant and the cavity volume decreased, contributing to a delay in the head variation.
Additionally, an increased rotational speed affected the cavity volume, exacerbating cavita-
tion. They also analyzed sub-synchronous rotating cavitation phenomena in an inducer in
terms of a temperature drop, thermal effects, and bubble volume changes. Chen et al. [80]
utilized an enhanced cavitation model that includes thermal effects to investigate how
cavitation and tip leakage vortices influence hydraulic losses in an LN2 inducer. They found
that the tip leakage flow exhibited a helical distribution, with its shape negatively correlated
with the nitrogen temperature. Thermal effects partially suppressed the development of
tip leakage vortices. Enstrophy analysis revealed energy losses within tip leakage vortices,
identifying these vortices as key parameters influencing thermal cavitation. Wei et al. [81]
investigated cavitating flow characteristics in a LN2 submersible pump. They improved
the cavitation model by incorporating corrections for rotation and thermal effects and
validated their numerical framework by comparing it with transient cavitation images
captured by Ito et al. [51]. Their study indicated that cavitation within the inducer was
primarily caused by vortices at the tip clearance, with the evolution of cavities shown in
Figure 11. Using vortex identification methods and the vorticity transport equation, they
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identified vortex structures, analyzed the interaction between cavitation and vortices, and
assessed the impact of thermal effects on cavitation.
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Blumenthal and Kelecy [82] incorporated the thermal properties of LH2 into a cavi-
tation model and utilized CFD methods to predict the cavitating flow state of the NASA
TM X-1360 inducer with LH2. The revised numerical model provided the most accurate
predictions at 23.3 K. Goncalves et al. [83] conducted numerical investigations into the
cavitating flow characteristics of LH2 and LOX within the inducer of a NASA rocket engine
turbopump. Their computational model accounted for the impact of the thermal properties
of cryogens on the flow characteristics, revealing that, at high rotational speeds, the wall
viscosity effect and vaporization, respectively, led to heating and cooling effects within
the pump.

Xiang et al. [37,84] analyzed the internal cavitating flow characteristics of an inducer
using LOX as the working fluid based on a transport-based cryogen cavitation model.
Their findings indicated that thermal effects significantly reduced the cavitation region and
bubble formation, thereby delaying the head breakdown, as illustrated in Figure 12. Higher
temperatures exhibited stronger thermal effects and improved cavitation performance.
Shi et al. [85] explored the thermal cavitation characteristics of LOX, discovering that,
as the temperature was raised, the thermal effects became more pronounced, effectively
suppressing cavitation phenomena in steady-state cavitating flows within the inducer.
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As more commonly used thermosensitive fluids, refrigerants have practical signif-
icance for engineering applications in the study of their cavitation thermal properties.
Holl et al. [86] developed a correlation for temperature depression based on temperature
and pressure from cavitation experiments with water and Freon R113 to describe cavitation
intensity. Franc et al. [18,87] performed visualization experiments on the cavitating flow of
R114 refrigerant within an inducer, exploring how temperature affects cavitation develop-
ment, as shown in Figure 13. They estimated the temperature drop around the cavitation
region based on the cavity length, finding that the temperature drop increased with an
increasing cavity length. Additionally, they established a model for analyzing the thermal
effects of cavitation in inducers. Fang et al. [46] employed an improved Sauer–Schnerr
cavitation model to investigate the impact of variables such as NPSH, temperature, and
flow rate on the internal flow characteristics and cavitating flow properties of a centrifugal
pump with an inducer.
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The cavitating flow of low-temperature thermosensitive fluids within the inducer is
highly unsteady, with its evolution process accompanied by dramatic changes in physical
quantities such as temperature, pressure, and velocity. Due to the suppression of thermal
effects, the interaction mechanism between the cavitating flow and turbulence, as well
as vortex structures in the flow field, becomes more complex. Therefore, conducting
experimental studies on cavitation in the inducer with low-temperature thermosensitive
fluids is valuable for revealing the mechanisms of cavitating flow.

The importance of synchronously collecting multiple physical parameters, such as
pressure, temperature, and frequency, and using high-speed photography and Particle
Image Velocimetry (PIV) technology to study cavitating flow is increasing. However,
when the working fluid temperature is below room temperature, especially for cryogenic
fluids, setting up cavitation visualization testing equipment is highly challenging due to
limitations in adiabatic conditions, frosting on visual windows, material brittleness, and
high-speed rotating mechanical processing techniques.

Numerical simulation has become an indispensable research method for solving
complex multiphase cavitating flow problems. Extensive and in-depth research on the
calibration and improvement of cavitation models and turbulence models can accurately
present and predict the cavitating flow of low-temperature thermosensitive fluids within
the inducer. Additionally, the suppression of cavity evolution by thermal effects has also
received attention. Furthermore, the use of data-driven methods to perform the modal
decomposition of cavitating flow and obtain coherent structures of cavitating flow is also
worthy of attention.
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4. Prospects and Solutions
4.1. Development of a Low-Specific-Speed Centrifugal Pump with an Inducer

In large systems, high-flow-rate cryogenic pumps have been successfully implemented.
However, for small systems, due to factors such as the flow resistance of the pipeline and
components, pumps need to have characteristics that can handle low flow rates and high
pumping pressures, which is indicative of a lower specific speed. Based on the summary of
current applications and challenges, the development of low-specific-speed pumps with
high performance metrics will be the future trend and direction for centrifugal pumps
utilizing thermosensitive fluids.

The development of low-specific-speed pumps will focus on the following directions:

1. Enhancing cavitation resistance: Incorporating an inducer at the pump inlet to en-
hance the NPSH, thereby mitigating the effects of high rotational speeds and complex
operating conditions on pump performance. The design of the inducer should account
for the impacts of cavitation dynamics and thermal effects.

2. Optimizing impeller design: optimizing impeller profile design methods to improve
hydraulic performance, addressing issues of high energy loss and low efficiency at
ultra-low specific speeds.

3. Flow-induced noise and vibrations: attention should be given to flow-induced noise
and bearing vibrations during high-speed operation, as the performance of high-speed
bearings directly influences the operational lifespan of the pump.

4. Compact and maintenance-friendly design: the pump design should be more compact
and easier to maintain, with efforts to reduce the weight and volume while also
lowering manufacturing and operational maintenance costs.

4.2. Application of a Centrifugal Pump with Hydrodynamic Bearings
4.2.1. The Structural Design of the Prototype

Building on the previous applications review, naturally cooled pump-driven two-
phase flow systems have significant development potential for data center cooling. Con-
sidering the actual working conditions of vapor-compression refrigeration systems, we
propose a high-speed centrifugal pump with hydrodynamic bearings, utilizing R410A re-
frigerant as the working fluid. The design operating conditions are a flow rate of 1.5 m3/h
and a designed rotational speed of 7000 rpm. To ensure hydraulic efficiency, a two-stage
impeller configuration is employed, with specific speeds of nq1 = 15 and nq2 = 11 for each
stage, respectively. The primary components of the high-speed centrifugal pump, as shown
in Figure 14, include the inducer, primary impeller and vaned diffuser, secondary impeller
and vaned diffuser, discharge volute, hydrodynamic bearing, shaft, motor, and casing.
Considering the weight and strength of the prototype, the pump casing, vaned diffuser,
and discharge volute are made of aluminum alloy, while the shaft, impeller, hydrodynamic
bearings, and bearing housing are made of stainless steel.

To achieve the high-speed rotation of the pump, herringbone-grooved radial hydrody-
namic bearings and spiral-grooved thrust hydrodynamic bearings are employed as support
components, using R410A refrigerant as the lubricating medium. The hydrodynamic effect
of the liquid maintains the high-speed operation of the motor. Since the bearing rotating
surface does not come into direct contact with the bearing housing, the friction loss and
wear of the hydrodynamic bearings are minimal, resulting in smooth operation, high
reliability, and low noise [88].

To further integrate the pump structure, the motor is housed within the casing, elimi-
nating the need for couplings and other transmission components. The high-speed centrifu-
gal pump is designed for a pipeline configuration. The working fluid is initially drawn in
from the inlet to the inducer for pre-pressurization; then it enters the primary impeller and
vaned diffuser, flows through the motor casing to the secondary impeller and vaned dif-
fuser, and is finally discharged through the volute. The design parameters of the hydraulic
components are listed in Table 2.
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Table 2. Main parameters of hydraulic components.

Design Parameter Value

Inducer

Number of blades 3
Inducer diameter/mm 21.4

Hub diameter/mm 12
Tip clearance/mm 0.3

Primary impeller

Number of blades 6
Inlet diameter/mm 22

Outlet blade angle/◦ 28
Outlet width/mm 3

Outlet diameter/mm 52

Primary vaned diffuser
Number of blades 8

Outlet blade angle/◦ 12
Outlet diameter/mm 68

Secondary impeller

Number of blades 6
Inlet diameter/mm 19

Outlet blade angle/◦ 30
Outlet width/mm 3

Outlet diameter/mm 68

Secondary vaned diffuser
Number of blades 8

Outlet blade angle/◦ 12
Outlet diameter/mm 88

Discharge volute Inlet width/mm 3.6
Discharge diameter/mm 18

4.2.2. Research Methods

As previously reviewed, CFD numerical calculations can shorten the design time
and reduce manufacturing costs for the development of new pump models. The devel-
opment process of the centrifugal pump with a hydrodynamic bearing combined with
CFD numerical performance predictions and experimental testing for validation. First, the
profiles of the main hydraulic components, such as the impeller, were designed. Suitable
numerical models were selected to predict the pump performance. Subsequently, tests
were conducted on a refrigerant pump external characteristic test rig, with experimental
results guiding the pump design and numerical simulation outcomes.

Pressure and temperature measurement points were placed at both the inlet and outlet
of the prototype. A flow meter and flow valve were installed downstream of the pump,
while the inflow pressure at the pump upstream could be adjusted by changing the height
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of the refrigerant storage tank. The refrigerant pump test rig allowed the determination of
key parameters such as the head and power under different flow rates, speeds, and NPSH
conditions. These parameters were recorded using a data acquisition system to infer the
operating status of the pump. Additionally, an automatic control system enabled start/stop
testing and long-term operational testing of the prototype.

4.2.3. Test Results of Prototype

Tests were conducted on the constructed refrigerant pump external characteristic test
rig. The prototype had an inlet temperature of 10 ◦C and an NPSH of 3 m. The hydraulic
performance test results of the high-speed centrifugal pump at the rated speed are shown
in Figure 15. Under the design conditions, the pump achieves a head of 56.5 m with an
efficiency of 36.1%. It can be observed that, when the prototype operates at the rated
speed, the head gradually decreases with the increasing flow rate, without exhibiting a
hump. The power increases at a relatively gentle rate with the increasing flow rate. The
flow rate–efficiency curve reaches a peak and then decreases as the flow rate increases,
indicating an optimal flow rate at which the prototype achieves maximum efficiency. The
maximum efficiency point (BEP) of the centrifugal pump at the rated speed is 37.9%,
with a corresponding flow rate of 2.1 m3/h and a head of 47.5 m. The trend of the
hydraulic characteristics of the prototype obtained from the experiments was consistent
with the hydraulic characteristics of pumps with similar specific speeds studied in Ref. [89].
The process of pumping liquid refrigerant was continuous and stable, meeting design
expectations. Compared to an earlier single-stage high-speed centrifugal pump developed
by the research team that used water as the working fluid, the prototype achieved higher
efficiency at a lower designed specific speed [12].
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The designed high-speed pump can adapt to a broader range of applications through
variable frequency motor control. According to similarity laws, pumps operating under
approximately similar conditions exhibit nearly equal efficiencies. Using the BEP at the
design speed as a baseline, predictions for similar conditions at speeds ranging from 4000
to 6000 rpm were made and compared with measured data, as shown in Figure 16. The
experimentally measured efficiencies at 4000 rpm, 5000 rpm, and 6000 rpm were 36.7%,
37.8%, and 37.4%, respectively. It can be seen that the deviation between the theoretical
predictions and the experimental results for the head and power increases as the rotational
speed decreases, with a maximum deviation of 2.4%. This demonstrates that similarity
laws provide accurate predictions of the hydraulic performance of centrifugal pumps under
various operating conditions.
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Additionally, the reliability and service life of the hydrodynamic bearings in the
centrifugal pump were empirically evaluated. The pump successfully underwent over
100,000 on/off cycles and more than 150 days of continuous overload operation testing
within a data center cooling system. After the tests, the degradation in the external charac-
teristics of the high-speed centrifugal pump was less than 5%. This prototype demonstrates
substantial application potential in data center cooling systems and novel electronic device
cooling technologies.

5. Conclusions

This paper summarizes the current applications of high-speed pumps using low-
temperature thermosensitive fluids and reviews the challenges encountered in their appli-
cation. These challenges include the mechanisms of cavitation inception, development, and
collapse within the inducer as well as the impact of fluid thermal properties and thermal
effects on cavitating flow. Understanding these aspects is crucial for studying the perfor-
mance of high-speed pumps and guiding their design. Based on industry development
trends, a high-speed centrifugal refrigerant pump incorporating hydrodynamic bearings
is proposed, with an overview of its performance and potential applications. The key
conclusions drawn from this review and discussion are as follows:

(1) Cavitation is the most common issue encountered in the pumping process of high-
speed pumps. An inducer can enhance the cavitation resistance of pumps, significantly
improving their hydraulic performance and stability. The accurate prediction of the
cavitation intensity in an inducer using improved cavitation models is crucial for the
effective design and performance optimization of high-speed pumps.

(2) Compared to cavitation studies with room-temperature water, cavitation experiments
with low-temperature thermosensitive fluids are relatively few due to the complex-
ity and difficulty of setting up the testing systems. Capturing cavity flow behavior
through high-speed photography has become one of the important research methods
for exploring cavitation characteristics and mechanisms. However, limited by cur-
rent technological conditions, conducting cryogenic cavitation flow experiments in
inducers is extremely challenging.

(3) Thermal effects have become the focus of research on cavitation dynamics of ther-
mosensitive fluids. The local temperature drop caused by thermal effects suppresses
the growth and collapse of cavities. Affected by the thermal effects, the cavitating
flow characteristics in hydraulic components such as hydrofoils, Venturi tubes, and
inducers have been extensively studied and demonstrated.
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(4) A two-stage high-speed refrigerant pump with an inducer and hydrodynamic bearings
is proposed. Under design conditions (n = 7000 rpm, Q = 1.5 m3/h), the pump achieves
a head of 56.5 m with an efficiency of 36.1%. The stability and reliability of the
prototype have been thoroughly validated, indicating significant application potential
in data center cooling systems and novel electronic device cooling technologies.
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