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Abstract: This study presents the coupling-memory-sampled data control (CMSDC) design for the
Takagi–Sugeno (T-S) fuzzy system that solves the stabilization issue of a surface-mounted permanent-
magnet synchronous generator (PMSG)-based wind energy conversion system (WECS). A fuzzy
CMSDC scheme that includes the sampled data control (SDC) and memory-sampled data control
(MSDC) is designed by employing a Bernoulli distribution order. Meanwhile, the membership-
function-dependent (MFD) H∞ performance index is presented, mitigating the continuous-time fuzzy
system’s disturbances. Then, by using the Lyapunov–Krasovskii functional with the MFD H∞ perfor-
mance index, the data of the sampling pattern, and a constant signal transmission delay, sufficient
conditions are derived. These sufficient conditions are linear matrix inequalities (LMIs), ensuring the
global asymptotic stability of a PMSG-based WECS under the designed control technique. The pro-
posed method is demonstrated by a numerical simulation implemented on the PMSG-based WECS.
Finally, Rossler’s system demonstrates the effectiveness and superiority of the proposed method.

Keywords: permanent-magnet synchronous generator; linear matrix inequalities; coupling-memory-
sampled data control; Takagi–Sugeno fuzzy system

1. Introduction

With the depletion of fossil fuels and growing environmental concerns, developing
renewable energy production to replace conventional thermal power plants has been shown
to be a viable option. Therefore, renewable energy is often considered the unavoidable
future trend in electric power development [1], replacing fossil fuels with alternative power
sources like wind, hydropower, solar power, and biomass, which stabilize the constant
power generation and produce energy without affecting natural resources [2]. Among
these alternative energy sources, wind energy plays a vital role in producing electric energy
due to the technological improvements for energy extraction [3,4].

On the other hand, wind turbine (WT) systems have been classified into two types of
topologies: fixed-speed wind turbines [5] and variable-speed wind turbines (VSWTs) [6].
Fixed-speed WTs operate at a finite wind speed limit, and this requires a multistage gearbox
to increase the generator speed, while VSWTs operate at different wind speeds so that the
maximum output power can be achieved at several wind speeds (see [7,8] for more details).
Hence, VSWTs are popular for wind-energy-extraction purposes because of their easy con-
struction, the simplicity in starting them up, the flexibility of their installation, their high
degree of reliability, and their ability to extract more power [9]. Thus, VSWTs are used in
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this study because they can perform better than fixed-speed wind turbines. For this purpose,
several kinds of VSWT generators, such as squirrel cage induction generators (SCIGs) [10],
doubly fed induction generators (DFIGs) [11], permanent-magnet synchronous genera-
tors (PMSGs) [12], and wound synchronous rotor generators (WRSGs) [13], have been
developed and studied by researchers. Among the classes of wind generators, PMSGs
have been identified as superior, because of their various benefits, like high power density,
better performance, less operational noise, an external excitation current not being required,
and no losses being generated in the rotor [14–16]. In this regard, numerous researchers
have studied PMSGs. For example, the authors of [17] investigated PMSGs to increase
their velocity, torque-tracking performance, and output power by using a new passivity-
based controller. In addition, the authors of [18] studied the nonlinear PMSG stabilization
problem via multiplicative SDC gain uncertainties.

On the other hand, the proposed PMSG system is nonlinear. Therefore, qualitative
analysis is significantly more complex than present mathematical methods. To solve
this problem, the Takagi–Sugeno (T-S) fuzzy-model-based method is a powerful way to
express the dynamical performances of nonlinear systems [19]. In a T-S fuzzy system, the
nonlinear model can be expressed as a linear sub-model by a set of IF–THEN rules with
membership functions [20,21]. As a result, the T–S fuzzy-model-based technique creates a
strong relationship between linear and nonlinear system theories. Applying this approach,
interesting numerical results for nonlinear systems have been reported. For example, the
T-S fuzzy system has been employed in [22] to estimate the unknown function in a robotic
system for position tracking. Further, a T-S fuzzy system was developed in [23] to describe
the nonlinear dynamics of flexible air-breathing hypersonic vehicles concerning output
feedback control. In addition, the T-S fuzzy modeling approach has been considered to
handle nonlinearities in the vehicle lateral dynamic system in [24]. Inspired by the above
observations, a nonlinear PMSG-based WECS is similarly represented by T-S fuzzy systems.

Over the last few years, sampled data control (SDC) has performed outstandingly in
studying the stability of T-S fuzzy systems [25–29]. Since SDC has a propitious status in
regulating the signals between any two nonstop sampling times, it can be applied smoothly
at each sampling time. Several researchers have paid attention to the dynamics of T-S
fuzzy systems with SDC. For example, SDC has been studied for a T-S fuzzy-based wind
energy system with actuator faults [26]. In addition, SDC has been utilized to solve the
stability issue in [27] for DFIG-based WESs. In [28], the authors explored T-S fuzzy SDC
for a DFIG-based WT system. In [29], the researchers examined the SDC of a fuzzy system
using an enhanced Lyapunov function method. Furthermore, the renewing signal was
effectively transferred from the sampler to the controller, and the zero-order hold (ZOH)
at the sampling instant tk encountered a continuous signal communication delay. Further,
by developing a memory-based SDC scheme, the stabilization of chaotic systems has been
studied in [30]. In addition, H∞ control has been extensively considered in research to
decrease the disturbance input impact on the measured output to within a specified degree.
In this regard, using the fixed H∞ control performance index in [31] for a PMSG-based
WECS, the stabilization issue has been attenuated. In addition, the researchers in [32] have
recently established the membership-function-dependent (MFD) H∞ performance index
for discrete-time fuzzy systems. They also confirmed that the MFD H∞ performance index
produces less conservative findings than the fixed-H∞ performance index.

However, until now, the problem of PMSG-based WECSs, including the effect of
disruptions, has not been thoroughly studied by combining SDC and memory-based SDC
with a random variable under the MFD H∞ performance index, which has motivated the
present research work.

Based on the analysis mentioned above, this paper presents the stability and stabiliza-
tion problems of PMSG-based WECSs using the proposed CMSDC under the MFD H∞
performance index. The significant contribution of the study is summarized as follows:
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1. We formulate the nonlinear PMSG-based WECS model as a collection of linear sub-
systems using Takagi–Sugeno (T-S) fuzzy logic with IF–THEN rules and member-
ship functions.

2. The membership function information is contained in the proposed H∞ performance
index, with most commonly used H∞ performance is one example.

3. Using a CMSDC approach which includes the SDC and MSDC, the stabilization issue
of PMSG-based WECS is studied. The Bernoulli distribution order is involved in
designing a CMSDC.

4. The adequate requirements have been obtained as LMIs that guarantee the stability
and stabilization of the expressed T–S fuzzy PMSG-based WECS.

The following is the general layout of this article. Section II covers the preliminaries
and formulation of the state–space model. The stability and stabilization investigation of
the T-S fuzzy system is obtained via the fuzzy CMSDC in Section III. The design example
and comparison are given in Section IV. Finally, Section V summarizes the overall work of
this study.

Notations: In this paper, Rn denotes the Euclidean n-dimensional space and Rm×n

means real matrices. F > 0 denotes a positive symmetric definite. The transpose of
the F matrix specifies as FT ; I indicates the unit matrix with appropriate dimensions.
Sym{F} = F + FT . 0n×n symbolizes the null matrix; diag{. . .} symbolizes a block–diagonal
matrix and colum{. . .} symbolizes a block–column matrix. In a matrix, the symbol *
represents the symmetric term.

1.1. Wind Turbine Aerodynamic Model

The power coefficient Cp(λ, β) is indicated by





Cp(λ, β) =
PT
PW

,

PT = PWCp(λ, β) = 1
2 ρπr2V3

wCp(λ, β),

where PT and PW are turbine power and wind power, respectively; ρ is the air density;
r is the radius of the WT blade; Vw denotes the wind velocity. The tip speed ratio λ is
represented by

λ =
Vts × r

Vw
=

turbine speed × radius
wind speed

.

The Cp(λ, β) is calculated as follows [2]:

Cp(λ, β) =(0.44 − 0.0167β)sin
(

π(λ − 2)
13 − 0.3β

)

− 0.00184(λ − 2)β,

Here, β denotes the pitch angle. Researchers achieved the power coefficient Cp in the range
of 0.2 to 0.4 (see in [2]). According to the Betz limit, the highest power coefficient Cp is 0.59.
Therefore, the power coefficient Cp should be kept as high as possible to generate maximum
power. For variable-speed wind turbines, λopt=7.1, while the pitch angle β should remain
at 0.

1.2. Modeling of PMSG-Based WECS

The general state–space equation of PMSG-based WECS is given below [2]:
{

ẋ(t) = Ax(t) + Bu(t) + Zw(t),
y(t) = Cx(t),

(1)
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where A, B, Z, and C are the constant matrices; x(t) = [isd(t) isq(t) ωR(t) θsh(t) Vts(t)]T

and u(t) are the state vectors and control input vector, respectively, w(t) stands for the
disturbance signal.

A =




−Rsr

LM
ωR 0 0 0

−ωR
−Rsr

LM

ϕ

LM
0 0

0 A32 A33 A34 A35
0 0 −Wb 0 Wb
0 0 A53 A54 −PVts − A53




,

B =
[

1
LM

1
LM

0 0 0
]T

, (2)

with A32 =
−3NPϕ

8Ig
, A33 =

−DsWb + BW
2Ig

, A34 =
Kst

2Ig
, A35 =

DsWb
2Ig

, A53 =
DsWb

2It
,

A54 =
−Kst

2It
, ωR and Vts represent the generator and turbine speed, respectively; Rsr is

the resistance of the stator, NP is the number of poles, ϕ denotes magnetic flux, Ig is the
generator inertia, It denotes turbine inertia, Wb is the base twist angle, Ds denotes the
damping of the shaft, and Kst is the shaft stiffness. P = [1/(4Itλ

3)]ρπR5Cp(β). The d and
q axis machine inductances are described by Ld and Lq, which are both similar in nature;
therefore, we assumed Ld = Lq = LM. Here, P clearly show that it has the product of ωR,
so the designed model is nonlinear. It is more complex to use the present mathematical
techniques. Thus, the nonlinear model is evaluated by applying the T-S fuzzy method. The
intricate layout of a PMSG-based WECS is illustrated in Figure 1.
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Figure 1. Schematic diagram of the PMSG-based WECS model.

1.3. T-S Fuzzy Representation of the PMSG Model

Based on the principle of sector nonlinearity [33], the PMSG-based WECS (1) could be
portrayed as a T-S fuzzy model along with a set of fuzzy IF–THEN rules:
Plant Rule i : IF ωR(t) is Hi1 and Vts(t) is Hi2, THEN

{
ẋ(t) = Aix(t) + Biu(t) + Ziw(t),
y(t) = Cix(t), i = 1, 2, 3, 4.

(3)
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Here, Hi1 and Hi2 are fuzzy sets. By implementing the T-S fuzzy rule, the nonlinear
system (1) can be represented by

{
ẋ(t) = ∑4

i=1 ϖi(φ(t))
(
Aix(t) + Biu(t) + Ziw(t)

)
,

y(t) = ∑4
i=1 ϖi(φ(t))Cix(t),

(4)

where ϖi(φ(t)) stands for the normalized membership function; it satisfies

ϖi(φ(t)) =
hi(φ(t))

∑4
i=1 hi(φ(t))

, hi(φ(t)) =
2

∏
j=1

Hij(φj(t)),

where φ(t) = [ωR Vts], Hij(φj(t)) denotes the grade of membership of φj(t) in Hij. It is
assumed that

hi(φ(t)) ≥ 0,
4

∑
i=1

hi(φ(t)) > 0 ∀t ≤ 0.

The fuzzy system modeling conditions are assumed as

ϖi(φ(t)) ≥ 0,
4

∑
i=1

ϖi(φ(t)) = 1.

The following is a definition of the T-S fuzzy model:

Plant Rule 1: IF ωR(t) is H11 and Vts(t) is H12, THEN

A1 =




−Rsr

LM
D1 0 0 0

−D1
−Rsr

LM

ϕ

LM
0 0

0 A32 A33 A34 A35
0 0 −Wb 0 Wb
0 0 A53 A54 PD2 − A53




,

Plant Rule 2: IF ωR(t) is H11 and Vts(t) is H22, THEN

A2 =




−Rsr

LM
D1 0 0 0

−D1
−Rsr

LM

ϕ

LM
0 0

0 A32 A33 A34 A35
0 0 −Wb 0 Wb
0 0 A53 A54 −PD2 − A53




,

Plant Rule 3: IF ωR(t) is H21 and Vts(t) is H12, THEN

A3 =




−Rsr

LM
−D1 0 0 0

D1
−Rsr

LM

ϕ

LM
0 0

0 A32 A33 A34 A35
0 0 −Wb 0 Wb
0 0 A53 A54 PD2 − A53




,

Plant Rule 4: IF ωR(t) is H21 and Vts(t) is H22, THEN

A4 =




−Rsr

LM
−D1 0 0 0

D1
−Rsr

LM

ϕ

LM
0 0

0 A32 A33 A34 A35
0 0 −Wb 0 Wb
0 0 A53 A54 −PD2 − A53




,
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B1 = B2 = B3 = B4 =




1/Ld
1/Ld

0
0
0




,

where ωR(t) ∈ [−D1, D1] and Vts(t) ∈ [−D2, D2], D1 and D2 are the premise variable
bounds. Then, the fuzzy membership function is defined as

H11(ωR(t)) =
D1 + ωR(t)

2D1
, H12(Vts(t)) =

D2 + Vts(t)
2D2

,

H21(ωR(t)) =
D1 − ωR(t)

2D1
, H22(Vts(t)) =

D2 − Vts(t)
2D2

.

1.4. CMSDC Design

In this subsection, we will design a CMSDC for PMSG-based WECS. Therefore, the
fuzzy CMSDC law is designed as

Control Rule j: IF ωR(tk) is Hj1 and Vts(tk) is Hj2, THEN

u(t) = s(t)Kjx(tk − η) + (1 − s(t))Gjx(tk),

where t ∈ [tk, tk+1), both Kj and Gj are the control gain matrices, η is a memory parameter,
and s denotes the coupling term. x(tk) is the measure of x(t) at sampling instant tk, and
that is assumed as 0 < tk+1 − tk = hk ≤ h, h > 0, ∀k ≥ 0. Then, by setting h(t) = t − tk
with ḣ(t) = 1 for t ̸= tk, the sampling instant tk can be represented as tk = t − h(t), where
0 ≤ h(t) ≤ h. Moreover, s(t) is a stochastic variable coupling both SDC and memory
SDC with

s(t) =

{
1 signal forwarded,
0 if not,

where s(t) obeys Bernoulli distribution white order with Pr{s(t) = 1} = Ξ{s(t)} = s and
Pr{s(t) = 0} = 1 − Ξ{s(t)} = 1 − s. Then, the controller can be created as follows:

u(t) =
4

∑
j=1

ϖj(φ(tk))
(
s(t)Kjx(tk − η) + (1 − s(t))Gjx(tk)

)
. (5)

Substituting CMSDC (5) in the system (4), the closed-loop fuzzy PMSG-based WECS becomes





ẋ(t) = ∑4
i=1 ∑4

j=1 ϖi(φ(t))ϖj(φ(tk))
(
Aix(t) + s(t)Bi

×Kjx(tk − η) + (1 − s(t))BiGjx(tk) + Ziw(t)
)
,

y(t) = ∑4
i=1 ϖi(φ(t))Cix(t).

(6)

Further, Figure 2 illustrates the complete design of the proposed CMSDC.

Remark 1. This study deals with CMSDC, which is limited by Bernoulli distributed order. A
stochastic variable coupling s(t) has been involved to coupled the SDC and MSDC. If the stochastic
variable s(t)= 0, then the closed loop controller (5) becomes u(t) = ∑4

j=1 ϖj(φ(tk))
(
Gjx(tk)

)
,

it denotes the sampled data proportional control [2]. If s(t)= 1, the CMSDC (5) mitigates to
u(t) = ∑4

j=1 ϖj(φ(tk))
(
Kjx(tk − η)

)
, indicating the memory SDC [34]. Thus, the PMSG-based

CMSDC is more general than MSDC or SDC.
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PMSG
ẋ(t) = A(x)x(t) + Bu(t) + Zw(t)

Nonlinear system
Disturbance w(t)

ẋ(t) = ∑4
i=1 ϖi(φ(t))

(
Ai x(t)

+Biu(t) + Ziw(t)
)Sampling period tk

u(t) = ∑4
j=1 ϖj(φ(tk))

(
s(t)Kj x(tk − η)

+(1 − s(t))Gj x(tk)
) ZOH

T-S fuzzy model

Fuzzy controller

u(tk)

Figure 2. Block diagram of the considered T-S fuzzy CMSDC system (6).
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ẋ(s)ds, (7)

where ζT(t) =
[

xT(t) xT(tk)
]

and N =
[

N1 N2
]T . 179

Lemma 2. [36], Given the positive matrix R2 > 0, and continous function ẋ : [a,b]→ Rn, the 180
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ẋT(s)R2 ẋ(s)ds ≤−
[ b∫

a

x(s)ds

]T

R2

[ b∫

a

x(s)ds

]
. (8)

Remark 2. If all of the local linear subsystems have the same disturbance attenuation index,(
i.e., χ = 1, the classical H∞ performance (

∫ ∞
0 yT(t)y(t)dt ≤ γ2

∫ ∞
0 wT(t)w(t)dt)

)
, the end

outcome of the design will be the same as in [37]. Most studies investigate fuzzy systems with
disturbances using a conventional H∞ performance index. For example, the researchers used many
control methods such as sliding-mode control [31] and sampled-data control [38] to study the
conventional infinity performance index for TS fuzzy systems with disturbance. This study proposed
the MFD H∞ performance index for T-S fuzzy PMSG-based WECS through fuzzy CMSDC, in
contrast to earlier research.

Problem 1. The PMSG-based WECS is said to be asymptotically stable with MFD H∞ performance
disturbance attenuation level bound γ̂ if the solution of the states for the system satisfies the
following condition:

1. In the absence of w(t), the closed-loop system (6) is asymptotically stable.
2. Given the predefined constant γ̂ > 0 and under the zero initial condition, throughout other

than zero w(t) ∈ L2[0, ∞), the closed-loop system (6) fulfills the following inequality:

∫ ∞

0
yT(t)y(t)dt ≤ γ̂2

∫ ∞

0
wT(t)w(t)dt, (9)
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where γ̂ =

√
χϖ1(φ(t)) +

4
∑

i=2
ϖi(φ(t))γ with 0 < χ ≤ 1.

2. Main Results

The stability and stabilization of the PMSG-based WECS are derived based on the LMI
approach and the LKF technique in the following subdivisions.

2.1. Stability of PMSG

In this subsection, the proposed adequate circumstances are summed in the following
Theorem for the closed-loop system (6), which is a solution to Problem 1.

Theorem 1. Given positive scalars η, α, β, γ̂ and upper bound h, hk ∈ (0, h], the system (6)
is asymptotically stable with the H∞ performance, if there exist the matrices G > 0, M1 > 0,
M4 > 0, M6 > 0, K > 0, O > 0, P > 0, symmetric matrices I , N , and any appropriate
dimensional matrices, L1, L2, Mb(b = 2, 3, 5) and Tl(l = 1, 2, 3, 4, 5), such that the following
inequalities hold:

Ωij + hkΨ < 0, (10)
[

Ωij + hkΠ
√

hkT
∗ −M1

]
< 0, (11)

where

Ωij =eT
1 {−K+ 2T1 −N −O −P}e1 + eT

2 {2M2 − 2T2 −N −O}e2 − eT
3 {

π2

4
I}e3

− eT
4 {

π2

4
I +K}e4 + eT

5 {h2I + η2K}e5 + Sym
[
eT

1 {−M2 − T1 + T T
2

+N +O}e2 + eT
1 Ke3 − eT

1 M3e4 + eT
1 Ge5 + eT

2 M3e4 + eT
3

π2

4
Ie4

+ (eT
1 L1 + eT

5 L2)× (−e5 +Aie1 + s(t)BiKje4 + (1 − s(t))BiGje2 + Zie6)
]

+ eT
1 CT

i Cie1 − ΥieT
6 e6,

Ψ =eT
2 M4e2 + eT

4 M6e4 + eT
5 M1e5 + Sym

[
eT

1 {N T +OT + P}e5 + eT
2 M5e4

+ eT
2 {MT

2 −N T −OT}e5 + eT
4 MT

3 e5
]
,

Π =− eT
2 M1e2 − eT

2 M5e4 − eT
4 M6e4,

Υ1 =χγ2, Υi = γ2(i = 2, 3, 4),

T =
[
T T

1 T T
2 T T

3 T T
4 T T

5 0
]T

eb =[05×(b−1)5, I5, 05×(6−b)5], (b = 1, 2, 3, . . . , 6).

Proof. Consider the following LKF for PMSG-based
WECS:

V(t) = xT(t)Gx(t) +
4

∑
d=1

Vd(t), (12)

where

V1(t) =(hk − h(t))
∫ t

tk




ẋ(s)
x(tk)

x(tk − η)




T

M



ẋ(s)
x(tk)

x(tk − η)


ds,

V2(t) =h2
∫ t

tk−η
ẋT(s)I ẋ(s)ds − π2

4

∫ t−η

tk−η
[x(s)− x(tk − η)]TI [x(s)− x(tk − η)]ds,
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V3(t) =η
∫ 0

−η

∫ t

t+θ
ẋT(s)Kẋ(s)ds dθ + (hk − h(t))(x(t)− x(tk))

TN (x(t)− x(tk),

V4(t) =(hk − h(t))
[∫ t

tk

ẋ(s)ds
]T

O
[∫ t

tk

ẋ(s)ds
]
+ (hk − h(t))xT(t)Px(t),

in which

M =




M1 M2 M3
∗ M4 M5
∗ ∗ M6


.

Calculate the weak infinitesimal operator of LV(t); we have

LV(t) = 2xT(t)G ẋ(t) +
4

∑
d=1

LVd(t), (13)

where

LV1(t) =−
∫ t

tk




ẋ(s)
x(tk)

x(tk − η)




T


M1 M2 M3
∗ M4 M5
∗ ∗ M6






ẋ(s)
x(tk)

x(tk − η)


ds

+
(

hk − h(t)
)



ẋ(t)
x(tk)

x(tk − η)




T


M1 M2 M3
∗ M4 M5
∗ ∗ M6






ẋ(t)
x(tk)

x(tk − η)


,

LV2(t) =h2[ẋT(t)I ẋ(t)]− π2

4
[x(t − η)− x(tk − η)]TI [x(t − η)− x(tk − η)],

LV3(t) =η2 ẋ(t)Kẋ(t)− [x(t)− x(t − η)]TK[x(t)− x(t − η)]

− [x(t)− x(tk)]
TN × [x(t)− x(tk)] + (hk − h(t))Sym{ẋT(t)N (x(t)− x(tk))},

LV4(t) =− [x(t)− x(tk)]
TO[x(t)− x(tk)] + 2(hk − h(t))

× [ẋ(t)O(x(t)− x(tk)]− xT(t)Px(t) + 2(hk − h(t))× xT(t)P ẋ(t).

By using the Lemma 1 in LV1(t), the following inequality holds with M1 ≥ 0 and any
matrix T :

−
∫ t

tk

ẋT(s)M1 ẋ(s)ds ≤(t − tk)ξ
T(t)T M−1

1 T Tξ(t) +2ξT(t)T [x(t)− x(tk)], (14)

and Lemma 2 Jensen’s inequality [36] in LV3(t), the following inequality holds with K ≥ 0:

−η

t∫

t−η

ẋT(s)Kẋ(s)ds ≤ −
[ t∫

t−η

x(s)ds

]T

K
[ t∫

t−η

x(s)ds

]
, (15)

where ξT(t) =
[
xT(t) xT(tk) xT(t − η) xT(tk − η) ẋT(t) ωT(t)

]
. Additionally, for any matrices

L1 and L2, the zero equation holds as,

E
{

0 =2{xT(t)L1 + ẋT(t)L2}{
4

∑
i=1

4

∑
j=1

ϖi(φ(t))ϖj(φ(tk))× (Aix(t) + s(t)BiKjx(tk − η)

+ (1 − s(t))BiGjx(tk) + Ziw(t)− ẋ(t))}
}

.

(16)
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From (14), (15) and adding (16) with (13), then
{

E{LV(t) + yT(t)y(t)− γ̂2wT(t)w(t)} ≤ ∑4
i=1 ∑4

j=1 ϖi(φ(t))ϖj(φ(tk))ξ
T(t)[Ωij

+(hk − h(t))Ψ + (t − tk)× (Π + T M−1
1 T T)]ξ(t).

(17)

It must be noted that (17) is a blend of (t − tk) as well as (hk − h(t)) over hk ∈ (0, h].
From (10) and (11), we can say that E{LV(t)} < 0. Thus, the PMSG-based WECS (6) is
asymptotically stable with the fuzzy CMSDC scheme. This completes the source of the
theorem.

2.2. Stabilization of PMSG

In this section, the stabilization state is summed in the pursuing Theorem 2:

Theorem 2. Given positive scalars η, α, β, γ̂ and upper bound h, hk ∈ (0, h], the closed-loop
system (6) is asymptotically stable; if one can obtain the matrices Ḡ > 0, M̄1 > 0 M̄4 > 0,
M̄6 > 0, K̄ > 0, Ō > 0, P̄ > 0, and symmetric matrices Ī , N̄ , as well as any appropriate
dimensional matrices L, M̄b (b = 2, 3, 5) and T̄l (l = 1, 2, 3, 4, 5), then the following LMIs hold:

[
Ω̄ij + hkΨ̄ Ĉi

∗ −I

]
< 0, (18)




Ω̄ij + hkΠ̄
√

hkT̄ Ĉi
∗ −M̄1 0
∗ ∗ −I


 < 0. (19)

where

Ω̄ij =eT
1 {−K̄+ 2T̄1 − N̄ − Ō − P̄}e1 + eT

2 {2M̄2 − 2T̄2 − N̄ − Ō}e2 − eT
3 {

π2

4
Ī}e3

− eT
4 {

π2

4
Ī + K̄}e4 + eT

5 {h2Ī + η2K̄}e5 + Sym
[
eT

1 {−M̄2 − T̄1 + T̄ T
2

+ N̄ + Ō}e1 + eT
1 K̄e3 − eT

1 M̄3e4 + eT
1 Ḡe5 + eT

2 M̄3e4 + eT
3

π2

4
Īe4 + (eT

1 α + eT
5 β)

× (−Le5 +AiLe1 + s(t)BiXje4 + (1 − s(t))BiYje2 + Zie6)
]
− ΥieT

6 e6,

Ψ̄ =eT
2 M̄4e2 + eT

4 M̄6e4 + eT
5 M̄1e5 + Sym

[
eT

1 {N̄ T + ŌT + P̄}e5 + eT
2 M̄5e4

+ eT
2 {M̄T

2 − N̄ T − ŌT}e5 + eT
4 M̄T

3 e5
]
,

Π̄ =− eT
2 M̄1e2 − eT

2 M̄5e4 − eT
4 M̄6e4,

Υ1 =χγ2, Υi = γ2(i = 2, 3, 4),

Ĉi =colum
[

LTC̄T
i 0 0 0 0 0

]
.

Here, we can calculate the control gain matrices Kj and Gj through Kj = XjL−1 and
Gj = YjL−1, respectively.

Proof. Define L1 = αL−T , L2 = βL−T , LTGL = Ḡ, LTIL = Ī , LTKL = K̄, LTN L = N̄ ,
LTOL = Ō, LTPL = P̄ , LTMrL = M̄r(r = 1, 2, 3, 4, 5, 6). Then, the LMIs (10) and (11) are
pre-multiplied and post-multiplied on both sides with diag{LT , LT , LT , LT , LT , I} and its
transpose, respectively. Then, applying the Schur complement, one can obtain the LMIs (18)
and (19). Therefore, the PMSG-based WECS system (6) is asymptotically stable, holding
the H∞ disturbance attenuation level of γ̂. The entire proof is complete.

Remark 3. In addition, FMFs between the control and system are not synchronous due to the
digital transmission condition ωi(ϕ(t)) ̸= ωi(ϕ(tk)). Thus, we consider the error information of
FMFs condition |ωi(ϕ(t))− ωi(ϕ(tk))| ≤ τi, in Theorem 2, and we can obtain a more accurate
result based on the Lemma 1 in [39] the following corollary.
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Corollary 1. Let |ωi(ϕ(t)) − ωi(ϕ(tk))| ≤ τi, for given positive scalars η, α, β, γ̂ and upper
bound h, hk ∈ (0, h]; the closed-loop system (6) is asymptotically stable. If one can obtain the
matrices Ḡ > 0, M̄1 > 0 M̄4 > 0, M̄6 > 0, K̄ > 0, Ō > 0, P̄ > 0, symmetric matrices Ī , N̄ ,
and any appropriate dimensional matrices L, M̄b (b = 2, 3, 5), T̄l (l = 1, 2, 3, 4, 5) T1ij = TT

1ji,
(i, j = 1, 2, 3, 4), then the following LMIs hold:

Ysij +YT
sji ≤ Tsij +TT

sji, (20)

Ωsij − 2Ysij +
p

∑
r=1

(Ysir +YT
sri) ≤ Tsi(j+p) +TT

s(j+p)i, (21)

[
Ss11 Ss12
∗ Ss11

]
< 0, (22)

where Ysij = Hsij −Lsij, Ysij = Hsij −Lsij, (s = 1, 2)

Ss11 =




Ts11 . . . Ts1p
...

. . .
...

Ts1p . . . Tspp


, Ss12 =




Ts1(p+1) . . . Ts1(2∗p)
...

. . .
...

Ts1(p+1) . . . Ts4(2∗p)


,

Ω1ij =

[
Ω̄ij + hkΨ̄ Ĉi

∗ −I

]
, Ω2ij =




Ω̄ij + hkΠ̄
√

hkT̄ Ĉi
∗ −M̄1 0
∗ ∗ −I


,

the terms of Ωsij (s = 1, 2) are given in Theorem 2. Furthermore, we can calculate the control gain
matrices Kj and Gj through Kj = XjL−1 and Gj = YjL−1, respectively.

Proof. The proof of this corollary directly follows from Theorem 2 and Lemma 1 in [39];
therefore, the detailed proof is omitted.

Remark 4. Recently, there has been growing interest among researchers in the use of mismatched
membership functions for industrial applications, aimed at reducing conservatism in stability
conditions. For instance, in [40,41], authors have explored stability analysis using mismatched
functions, where the membership function in the controller differs from that of the plant process.
Their findings indicate less conservative stability conditions compared to traditional approaches.
Consequently, Corollary 1 establishes stabilization criteria under mismatched membership functions
using Lemma 1 in [39].

Remark 5. We derived the stability and stabilization conditions of T-S fuzzy system (6) with
H∞ attenuation level γ̂ as shown in Theorems 1 and 2. We assume that w(t) = 0 and obtain the
following system:

ẋ(t) =
4

∑
i=1

4

∑
j=1

ϖi(φ(t))ϖj(φ(tk))(Aix(t) + s(t)BiKjx(tk − η)

+ (1 − s(t))BiGjx(tk)), (23)

and for any matrix L1 and L2, the following zero equation is true:

E
{

0 =2{xT(t)L1 + ẋ(t)L2}
4

∑
i=1

4

∑
j=1

×ϖi(φ(t))ϖj(φ(tk))× {Aix(t) + s(t)BiKj

× x(tk − η) + (1 − s(t))BiGjx(tk)− ẋ(t)}
}

. (24)

From Theorem 1, can be gathered the LKF as well as its derivatives. That is summed in the
resulting Corollary 2.
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Corollary 2. The provided positive scalars η, α, β and upper bound h, hk ∈ (0, h]; if one can obtain
the matrices G > 0, M1 > 0, M4 > 0, M6 > 0, K > 0, O > 0, P > 0, symmetric matrices
I , N , and an appropriate dimensions matrices of L1, L2, Mb(b = 2, 3, 5) and Tl(l = 1, 2, 3, 4, 5),
then following LMIs hold:

Ωij + hkΨ < 0
[

Ωij + hkΠ
√

hkT
∗ −M1

]
< 0 (25)

where
Ωij =eT

1 {−K+ 2T1 −N −O −P}e1 + eT
2 {2M2 − 2T2 −N −O}e2 − eT

3 {
π2

4
I}e3

− eT
4 {

π2

4
I +K}e4 + eT

5 {h2I + η2K}e5 + Sym
[
eT

1 {−M2 − T1 + T T
2 +N +O}e1

+ eT
1 Ke3 − eT

1 M3e4 + eT
1 Ge5 + eT

2 M3e4 + eT
3

π2

4
Ie4 + (eT

1 L1 + eT
5 L2)

× (−e5 +Aie1 + s(t)BiKje4 + (1 − s(t))BiGje2)
]

Ψ =eT
2 M4e2 + eT

4 M6e4 + eT
5 M1e5 + Sym

[
eT

1 {N T +OT + P}e5 + eT
2 M5e4

+ eT
2 {MT

2 −N T −OT}e5 + eT
4 MT

3 e5
]
,

Π =− eT
2 M1e2 − eT

2 M5e4 − eT
4 M6e4,

eb =[05×(b−1)5, I5, 05×(6−b)5], (b = 1, 2, 3, . . . , 6).

Then, the system (6) is globally asymptotically stable. Furthermore, we can calculate the
control gain matrices Kj and Gj through Kj = XjL−1 and Gj = YjL−1, respectively.

Proof. The proof of the corollary is instantly received from Theorem 1. Therefore, the proof
is completed.

3. Numerical Validation

We divided this section into three parts to validate the proposed method’s efficacy
and applicability. In the first part, the PMSG model (6) is utilized as a design example.
Moreover, the same model is evaluated using various memory parameters η and pitch
angles β. In the second part, evaluate the MFD H∞ performance index. Finally, as a
comparison example, Rossler’s system is examined and resolved to prove the efficiency
and superiority of the proposed approach. The Matlab LMI control toolbox is used to solve
the complete dynamical model of the PMSG-based WECS.

3.1. Design Example

In this design example, we numerically evaluate the PMSG-based WECS, including the
acceptable derived condition as in Theorem 2, which proves the asymptotic stability of the
PMSG-based WECS. The parameters of PMSG-based WECS are given in Table 1, which is
referred from [2]. The defined scalars are determined as α = 0.005, β = 0.007 η = 0.02, s = 0.7,
and γ = 0.3. Moreover, we assume C1 = C2 = C3 = C4= [1 0 0 0 0]. In addition, the
disturbance matrix Zi is considered as the same input matrix Bi, i.e., Zi = Bi. For solving
the LMI condition based on Algorithm 1, the required control gain matrices are calculated
as follows:

Kj =[ −0.3755 −0.6057 −0.1964 −0.1619 0.0017 ],

Gj =[ −3.7118 −1.5248 0.2043 −0.0574 0.8291 ],

where i and j = {1, 2, 3, 4}.
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Algorithm 1 Calculating the control gain matrices and maximum allowable upper bound
(MAUB) of hk.

1. Given system matrices Ai, Bi, Ci (i = 1, 2, 3, 4.), scalars η, α, β, γ̂, h-upper bound and µ is
a step increment of h.

2. Set h = h + µ, by utilizing the f easp solver in the MATLAB LMI toolbox, solve the LMIs
(18) and (19) with there existing matrices Ḡ > 0, M̄1 > 0 M̄4 > 0, M̄6 > 0, K̄ > 0,
Ō > 0, P̄ > 0, symmetric matrices Ī , N̄ , and any appropriate dimensional matrix L,
M̄b (b = 2, 3, 5) and T̄l (l = 1, 2, 3, 4, 5) in Theorem 2. Furthermore, reduce the H∞
performance index γ̂ with the tuning parameter χ, 0 < χ ≤ 1.

3. If there is a feasible LMIs (18) and (19) and the matrices Xj, Yj and L in step 2, go to step
2; otherwise, set h = h − µ.

4. Calculate the control gain matrices Kj = XjL−1 and Gj = YjL−1 and MAUB of delay h.

Table 1. PMSG parameters [2].

Parameter Description Numerical Value

LM d and q axis mutual inductance 0.05 mH

Rsr Stator Resistance 0.0027 Ω

ϕ Magnetic flux 2 Wb

NP Number of poles 2

ρ Air density 1.225 kg/m3

r Blade Radius 8 m

Vw Wind speed 12 m/s

β Pitch angle 0.5 n/m.s

It Turbine Inertia 4.29 kg/m2

Ig Generator Inertia 0.9 kg/m2

Wb Base twist angle 314

Bw Viscous friction 0.5

As illustrated in Figure 3, one can observe that the states isd, isq, ωR, θsh and Vts are
stabilized under the proposed CMSDC. Furthermore, Figure 4 demonstrated the control
responses of u(t).
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Figure 3. The dynamic behavior of the states isd, isq, ωR, θsh, Vts converge to origin under the proposed
control scheme.
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Figure 4. Proposed control u(t) with respect to time and its dynamical response.

3.1.1. Simulation with Respect to Various Memory Parameter

This subsection shows the effectiveness of the memory parameter η in the proposed
CMSDC. For simulation purposes, we fixed the pitch angle as β = 0.5◦. Then, the memory
parameter η is changed to 0.01, 0.02, 0.05, and 0.1. Moreover, using Theorem 2, the
corresponding gain matrices are mentioned in Table 2 with different memory parameters.
Based on the calculated gain matrices, the dynamical behavior of PMSG-based WECS while
changing the η value is plotted in Figure 5 and Figure 6, respectively. These figures ensure
isd and isq currents behaviors changing according to memory parameter η. In addition, the
better performance is mentioned in graphs itself.
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Figure 5. Response of isd current with respect to various η value.
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Figure 6. Response of isq current with respect to various η value.

Table 2. Control gain matrix with respect to various η values.

Memory Parameter Gain Matrix

η = 0.01 Ki = [−0.8512 −0.7949 −0.3169 −0.1914 0.0028]
Gj = [−3.9244 −1.6717 0.2939 −0.0674 0.84076]

η = 0.02 Ki = [−0.3755 −0.6057 −0.1964 −0.1619 0.0017]
Gj = [−3.7118 −1.5248 0.2043 −0.0574 0.8291]

η = 0.05 Ki = [−0.1070 −0.4974 −0.0886 −0.2697 0.0007]
Gj = [−8.6157 −3.3236 0.0918 −0.1745 2.0742]

η = 0.1 Ki = [−0.0148 −0.0904 −0.0142 −0.1131 0.0001]
Gj = [−2.7762 −1.5718 0.0605 −0.0277 0.6963]

3.1.2. Simulation Concerning Pitch Angles

This subsection evaluates the function of β in the PMSG-based WECS. The parameters
of the PMSG-based WECS are used in the same way as in the above subsection. In addition,
consider the various pitch angles β as 0◦, 0.25◦, 0.5◦, and 0.75◦. Then the isd and isq currents
controlled behavior of the PMSG-based WECS model is depicted to investigate the dynamic
aspects with different pitch angles for the fixed-membership boundary.

By utilizing the various pitch angles, we acquire the power coefficient and their gain
matrices, which are tabulated in Table 3. Furthermore, the behavior of isd and isq currents
are displayed in Figure 7 and Figure 8, respectively. It demonstrates that changing the pitch
angle has a significant impact on the performance of a PMSG-based WECS. As displayed
in Figures 7 and 8, we confirm that, when utilizing the proposed controller, the considered
PMSG-based WECS is fruitfully controlled and reaches the global asymptotic stability in
the presence of disturbance.
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Figure 7. The controlled trajectories of current isd in respect of various pitch angle β.

0 20 40 60 80 100

Time[sec]

-1.5

-1

-0.5

0

0.5

1

1.5

i s
q
[A

m
p

e
re

]

=0 =0.25 =0.5 =0.75

i
sq

50 51 52 53 54

-0.02

0

0.02

0.04

Best response

Figure 8. The controlled trajectories of current isq in respect of various pitch angle β.

Table 3. Control gain matrices with respect to pitch β.

Pitch Power Cp Control Gains

β = 0◦ 0.4151 Ki = [−0.5653−0.9582 −0.3037 −0.2654 0.0026]
Gj = [−7.4583 −2.5576 0.2975 −0.1639 1.7836]

β = 0.25◦ 0.4098 Ki = [−0.5351 −0.8987 −0.2845 −0.2485 0.0025]
Gj = [−6.7517 −2.3801 0.2896 −0.1464 1.5872]

β = 0.5◦ 0.4045 Ki = [−0.3755 −0.6057 −0.1964 −0.1619 0.0017]
Gj = [−3.7118 −1.5248 0.2043 −0.0574 0.8291]

β = 0.75◦ 0.3992 Ki = [−0.5254 −0.8823 −0.2832 −0.2389 0.0026]
Gj = [−6.5118 −2.3396 0.2215 −0.1286 1.2341]

3.2. Evaluation of the MFD H∞ Performance Index

This subsection deals with the numerical evaluation of the MFD H∞ performance
index by using various χ values (0 < χ ≤ 1). In this respect, the MFD H∞ performance
index is derived with various χ values by using the above-mentioned system characteristics
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and Theorem 2. The calculated H∞ bound values are presented in Table 4. Moreover, for
a better understanding of the H-infinity bound computation technique, one particular
example is taken and presented here.

γ̂ =
√
(0.5 × ϖ1(φ(t)) + ν)× 0.36 ∈ [0.4677, 0.6]. (26)

where ν = ϖ2(φ(t)) + ϖ3(φ(t)) + ϖ4(φ(t)). Moreover, from (9), the proposed fuzzy MFD
H∞ technique becomes a traditional H∞ method when the χ is set to 1. By using the
conventional H∞ approach and Theorem 2, and setting the γ = 0.4, we can acquire the
performance index of 0.4. At the same time, the proposed MFD approach achieved a small
performance index, i.e., γ̂min = 0.3521. As a result, when compared to the traditional
technique, the suggested approach provides a superior performance index. In this respect,
several tests have been carried out depending on the different tuning parameters chi, and
the determined H∞ bound behaviors are shown in Figure 9. It is absolutely clear that
the proposed MFD H∞ approach accurately eliminates the disturbance compared to the
conventional H∞ method and assures the suggested method’s superiority.
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0.1

0.2

0.3
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 =0.7
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Figure 9. H∞ performance index γ̂ from different χ values.

Table 4. Evaluation of the MFD H∞ performance index.

χ 0.1 0.3 0.5 0.7 1

γ 0.4 0.47 0.6 0.45 0.4

H∞ Performance Index [0.3521,0.4] [0.4269,0.47] [0.4677,0.6] [0.4328,0.45] 0.4

3.3. Comparative Example (Effectiveness of CMSDC Scheme)

In this subsection, Rossler’s system [30] is examined and resolved to prove the ef-
ficiency and superiority of the designed CMSDC. Rossler’s system dynamics, including
input terms, are represented by





ẋ1(t) = −x2(t)− x3(t),
ẋ2(t) = x1(t) + āx2(t),
ẋ3(t) = b̄x1(t)− (c̄ − x1(t)x3(t) + u(t)),

(27)

where x1(t), x2(t) and x3(t), denote as state variables, ā, b̄ and c̄ are constants. u(t) denotes
control input. The Rossler’s system with x1(t) ∈ [c̄ − d, c̄ + d] can have described by the
T-S fuzzy system with

A1 =




0 −1 −1
1 ā 0
b̄ 0 −d


,A2 =




0 −1 −1
1 ā 0
b̄ 0 d


, B1 = B2 =




0
0
1


,
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the membership functions are ϖ1(x1(t)) =
c̄ + d − x1(t)

2d
and ϖ2(x1(t)) = 1 − ϖ1(x1(t)).

In such a case, we take ā = 0.3, b̄ = 0.5, c̄ = 5 and d = 10. By choosing α = 0.05, β = 0.8,
s = 0.5, and η = 0.01, the proposed sufficient requirement in Corollary 2 is validated and we
achieved largest sampling interval h = 0.1532. In addition, the largest upper bound of the
sampling interval is derived to be 0.1681 based on Corollary 1.

The time responses of the solution trajectories x1(t), x2(t) and x3(t) of (27) without
control inputs are shown in Figure 10. The state trajectories of system (27) with control
inputs are shown in Figure 11, demonstrating that state trajectories are convergent to
origin under the proposed control method. Aside from that, Figure 12 shows the response
of control input. Furthermore, the obtained maximum sampling interval is compared
with existing methods [30,42–44], which is given in Table 5. Finally, based on the find-
ings in Table 5, we can conclude that the proposed CMSDC (5) is capable of obtaining a
less conservative outcome than existing works [30,42–44] with relation to the maximum
upper limit.

Table 5. Maximum sampling interval h.

Methods [30] [42] [43] [44] Corollary 2

1-6 h 0.0959 0.1147 0.1165 0.1291 0.1532
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Figure 10. Dynamical response of state trajectories x1(t), x2(t) and x3(t) of (27) without control input.
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4. Conclusions

This study has described the stability and stabilization problem for surface-mounted
PMSG-based WECS via the CMSDC approach, limited by a Bernoulli distribution order.
The superiority of this study is to design a CMSDC with constant signal transmission
delay while acting disturbance in the system. Moreover, the MFD H∞-based CMSDC has
been proposed, which successfully attenuated the system disturbance. Furthermore, by
utilizing LKF and integral inequality, sufficient requirements have been derived in the
form of LMIs, which ensured that the PMSG-based WECS is globally asymptotically stable
under the CMSDC. Finally, from the numerical example, we demonstrated the proposed
controller’s effectiveness with reduced conservativeness and the derived results. In [45], the
authors examined a neural-event-triggered control approach combined with an adaptive
critic learning strategy for nonlinear wind turbine systems. Moreover, the authors of [46]
investigated event-triggered H∞ blood glucose regulation issues for type 1 diabetes using a
networked artificial pancreas. Furthermore, researchers have explored an event-triggered
control approach combined with fractional stochastic neural networks in [47]. Inspired by
the above-mentioned literature [45–47], this study model will be enlarged and explored
for disturbances caused by wind speed and also consider large-scale wind farms with an
event-triggered mechanism in future work. In addition, the proposed control mechanism
for PMVG-based WECS under actuator fault will be studied as another future direction.
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