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Abstract: The hybrid AC/DC grid, based on a significant share of renewable energy sources, is
gradually becoming an essential aspect of the modern energy system. The integration of intermittent
renewable generators into contemporary energy systems is accompanied by the decommissioning of
power plants containing synchronous generators. Consequently, this leads to a reduction in system
inertia and an increase in the risk of stability disruption. The abrupt disconnection of the primary
generator or power line can result in an unanticipated mismatch between power generation and
consumption. This discrepancy can trigger substantial and swiftly evolving alterations in power
distribution, angular speed, load flow, and the frequency of generators. The risks of an energy system
collapse can be mitigated through automation, enabling rapid adjustments to generation and load
capacities, as well as power flows, in the electrical network. This article justifies the utilisation of a
power control method for high-voltage power line interconnections. The technology of hydro storage
power plants and measurements of voltage phasors are employed. The potential for easing power
flow restrictions and realising substantial economic benefits is supported by the results obtained
using simplified dynamic model of the Baltic power system and Nord Pool electricity market model.

Keywords: energy storage; flexibility; transient stability; electricity market; hydro pumped storage;
renewables; climate change mitigation

1. Introduction
1.1. Motivation

The urgency of the climate crisis demands immediate action to implement mitigation
measures and reduce greenhouse gas emissions [1]. A pivotal strategy for achieving this
involves the widespread development of renewable energy sources (RESs). The integration
of intermittent RES into modern power systems is rapidly increasing, aligning with the
decommissioning of fossil fuel energy plants. Some countries already have RES capacity
capable of meeting more than 100% of demand [2]. However, the widespread adoption
of RESs exacerbates challenges related to reliability, stability, and adequacy, demanding
comprehensive solutions [3–5]. The intermittent nature of RES generation, combined with
the variable and challenging-to-control nature of consumption, emphasises the need for
capital-intensive energy reserve and storage. This intricacy further complicates the delicate
balance between generation and consumption. Consequently, the widespread adoption of
RESs necessitates substantial efforts and investments to simultaneously achieve four key
objectives: system adequacy, reliability, stability, and economic effectiveness [6].

In power systems (PSs) with an extensive share of RESs, inertia can exhibit large
variations over time and across different regions. PSs are permanently subjected to a
variety of troubles, such as a short circuit in a transmission grid, a fault in and damage
to a large generator, etc. Large disturbances occur relatively rarely; however, they can
lead to loss of synchronism among generators and damage to PS equipment, resulting
in enormous economic and social consequences [7,8]. The transition from synchronous
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generators to renewables significantly reduces system inertia [2,4,5,9]. Low-inertia zones
are particularly predisposed to the loss of dynamic and transient stability, increased rates
of change of frequency (ROCOFs), reduced frequency stability, an increased likelihood of
cascading outages, and a decrease in the number of generation units available for primary
and secondary frequency regulation [3,10,11]. On one hand, with the reduction in total
system inertia and the associated faster frequency dynamics, the existing emergency control
and Under-Frequency Load Shedding (UFLS) schemes are becoming obsolete [12]. The
increased risk manifests itself as an increased probability of load shedding, transmission
power line tripping, and generation outages. This challenge is even more pronounced
in cases of the limited power capacity of interconnecting lines [2,8]. The stability of AC
power systems, encompassing frequency [13], transient voltage, angular, and thermal
stabilities [10], etc., forms the bedrock of secure and reliable operation in contemporary
power systems. The importance of stability is particularly high in power systems of
relatively small volume connected to neighbouring power systems by lines with a limited
transmission capacity. Figure 1 depicts a power system consisting of several subsystems:
PS1 is a relatively small power system, connected by a high-voltage AC transmission line
(TL) to PS2 and by high-voltage direct current (HVDC) lines to the subsystem PS3.
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Normally, operators of the considered system are obligated to ensure its functionality
in the event of the sudden failure (disconnection) of any of the major elements (the N-1
criterion [14]). Let us assume that the failure leads to a reduction in generation in subsystem
PS1 by an amount represented by ∆P. To justify the admissibility of the power jump, the
operator, in accordance with the N-1 criterion, employs dynamic models of the energy
system containing synchronous generators based on equations in the following form [15]:

dω
dt

= ∆P
ωsyn

2Htot
, (1)

d2δ

dt2
2Htot

ωsyn
= Pa = Ps − Pe, (2)

where, Ps, Pe, and Pa are the mechanical, electrical, and accelerating power (per unit),
respectively; since PS1 is an importing PS, the accelerating power is negative or decelerating.
ωsyn is the synchronous (angular) speed, Htot is the total system inertia, and d2δ

dt2 is the
angular acceleration of the rotor; in our case, a negative value represents deceleration.

Equations (1) and (2) delineate a process triggered by a disturbance in balance capable
of instigating a frequency drop or power oscillations between generators and potentially
resulting in the collapse of the power system. We can conclude that the rates of changes in
system frequency and rotor angle deviation are inversely proportional to the total system
inertia. Fluctuations in the angular speed and frequency of generators over time can cause
significant alterations in the power flow within the transmission network. This may result
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in the overloading of power transmission lines, ultimately leading to their disconnection.
We can see that the loss of system inertia causes faster falls in frequency and rotor angle
change for the same power imbalance ∆P (1) and increases the risk of large-scale accidents
and blackouts [16]. The risk of potential cascading events and catastrophic blackouts can be
reduced by using three distinct methods: Firstly, by augmenting the overall system inertia
Htot, attained by incorporating additional synchronous machines (such as synchronous
condensers) or by introducing synthetic inertia [17,18]. Secondly, by minimizing the value
of ∆P achieved through constraining the power from the energy sources in use. It is worth
noting that adherence to this constraint often necessitates the use of less profitable genera-
tors. Thirdly, by immediately reducing imbalances during dangerous processes [19]. To
attain this goal, two primary steps must be undertaken: (a) employing suitable automation
and measurement methods to identify unforeseen disconnections of energy sources and
assess the magnitude of imbalance between production and consumption; (b) taking cor-
rective actions by influencing generators or loads to promptly rectify the power mismatch
between energy production and energy consumption. The implementation of the first two
measures listed is often blocked by substantial costs since enhancement can be attained
through either constraining the influence of economically efficient sources or reinforcing
the capacity of power transmission lines. A more economically appealing option emerges
with the deployment of Special Protection Systems (SPSs) or Remedial Action Schemes
(RASs), used when carrying out the above measures is considered impractical or undesir-
able. A rapid reduction in ∆P can be achieved through timely remedial actions, including,
but not limited to, load shedding [20], system segment isolation [8], generator tripping,
generator reconnection, and the utilisation of braking resistors [19,21,22]. SPSs are designed
to take fixed, remedial action to preserve system integrity and ensure suitable system
performance [23].

While the rapid connection or disconnection of spare capacities to and from the
network can address the need for stability, it introduces challenges related to connection
speed. The maximum allowable time for taking stability assurance measures depends
on the type of the problem. Angular and frequency stability issues typically require the
fastest resolution [24], at least within a few cycles, but usually in less than one second.
Actions to alleviate steady-state stability problems and slow voltage collapse may have
an available time period of several seconds. Thermal overload issues may allow several
minutes before action is required. The connection of significant generation capacities
takes time, typically measured in tens of seconds or more. As noted in [25], generally,
hydro turbines are much faster than conventional steam turbine coal plants, which exhibit
typical ramp rates of 1% of rated power in MW/min. In fact, hydro turbines have a
response comparable to heavy duty and aero-derivative gas turbines, providing up to 20
and 30 MW/min per unit, respectively. The Dinorwig power plant is one of the fastest
ramping pumped hydroelectric storage power plants (PHSPPs) in the world and is able to
increase power from 0 to 1320 MW in 12 s [26]. At the same time, the switching of loads can
be performed much more rapidly, typically within a time of approximately ten milliseconds.
To address this task, load shedding schemes are commonly employed. The cutting off
of loads requires prompt identification of threats associated with emergency processes.
To achieve this, emergency automation features such as UFLS and out-of-step protection
(OSP) are employed most widely [27–30]. However, it is important to recognise that the
UFLS method leads to economic and social losses, since it is implemented by disconnecting
energy consumers from the network. Additionally, UFLS identifies the need for load
shedding by detecting a decrease in system frequency. However, the time required to make
a decision may become unacceptably long, considering the need to ensure angular stability
conditions and prevent the occurrence of asynchronous modes, for whose elimination
out-of-step protection automation is employed. The standard OSP automation method
divides the power system into segments, which ultimately leads to an imbalance and the
disconnection of a portion of consumers. OSP automation identifies stability disruption by
using PMU and measuring phasors’ angles [31]. In this case, restoring the power system to
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a stable state is achieved through disconnecting consumers, resulting in economic losses
due to power interruptions.

It should be noted that the ongoing electrification of specific engineering infrastruc-
tures is causing notable rises in both the quantity and capacity of consumers who are
highly sensitive to interruptions in power supply, particularly in terms of economic losses.
Involving consumers who are sensitive to operational pauses can impede efforts to prevent
the development of frequency breakdowns, thus significantly restricting the available op-
tions for implementing UFLS and OSP in emergency modes. Fortunately, along with these
challenges, new opportunities emerge to address or circumvent them. The development of
rapid communication networks presents promising opportunities for the distribution and
transmission of information, as well as for control actions. Wide area protection and phasor
measurement systems are extensively discussed in the scientific literature [32]. These
technological advancements offer a way to improve the coordination and efficiency of
energy management and control systems, especially when considering increased sensitivity
among specific consumers. In addition, the significance and capacities of energy storage
systems are experiencing growth. Experts unanimously emphasise that green hydrogen is
an inevitable component of the future solution [33]. Concurrently, various other types of
energy storage are either in use or under study [34]. These technologies include but are
not limited to the following: pumped hydroelectric storage power plants (currently the
most widely used technology [35]), battery energy storage systems [36,37], compressed air
stations, and synchronous condenser technology [18]. Energy storage can be used for the
rapid substitution of an unplanned power outages [38]; however, achieving this requires
ensuring sufficient speed and cost-effectiveness in managing the storage operation. In the
featured article [38], a feedback control strategy that modulates the real power injected
or absorbed by distributed energy-storage devices is proposed. Regrettably, the analysis
has been carried out under the assumption that there are no physical constraints on the
operational rate of the system.

Dynamic braking [22,39] uses an artificial load near generators during a fault in a
grid to consume the power of the generators in order to reduce rotor acceleration. Shunt
resistors have been used by switching resistors for about 0.5 s following a fault. The
dynamic braking method is not suitable in cases of a power deficit.

The integration of joint management operations for energy storage and flows of HV
TLs has been thoroughly analysed in [29,40]. It has been pointed out [41] that such a
structure makes possible the utilisation of reserves from neighbouring PSs and provides
additional opportunities for management, control, and the electricity market. The potential
benefits of this approach depend on the transmission capacities of power lines, emphasising
the importance of increasing its maximum capacity as a key factor in achieving stability
goals. Dynamic Line Rating (DLR) technology represents a method for enhancing line
capacity [42]. It is important to recognise that the effectiveness of DLR technology relies
on the line conductor thermal capacity limit and is applicable when this element is the
weakest one in the route. However, long transmission lines with high nominal voltages
often face constraints due to their impact on transient or post-contingency system stability.
This recognition emphasises the need for a comprehensive approach to enhancing line
capacity, considering both thermal limitations and concerns about system stability.

1.2. Research Problem’s Definition, Aim, and Contribution

Summarising the above, the urgency of the climate crisis demands the rapid develop-
ment and deployment of RES technologies to reduce greenhouse gas emissions. However,
integrating intermittent RESs into power systems, while decommissioning fossil fuel plants,
poses challenges to system reliability, stability, and adequacy due to the reduced system
inertia and variability in energy sources. Existing emergency control schemes, such as
UFLS and OOS protection, are becoming less effective. Alternatives, like SPS and RAS, are
cost-effective for rapid responses to disturbances. Advancements in fast communication
networks, measurement systems, and energy-storage technologies offer new opportunities
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for improving system stability and control. To address these issues, we propose a new
mode of operation for pumped hydroelectric storage plants, involving the simultaneous
running of the pump and the generator. While this mode increases energy consumption, it
also makes it possible to recover the disrupted balance, thus allowing for a higher power
flow in interconnected power lines. This can compensate for energy losses and can be
economically viable.

The assumption of the technical and economic viability of simultaneous use of the
pump and generation modes of a PSHPP forms the main hypothesis, the justification of
which constitutes the core of this article. The purpose of the paper is to demonstrate how the
proposed technology would detect additional transmission capacity on an interconnection
transmission line and how utilities and regional transmission operators might incorporate
such a DLR into real-time operations.

To validate the above-stated hypothesis, we set and complete the following tasks:

1. By using a simple dynamic model of the power system, we demonstrate the potential
for increasing the maximum allowable power of a TL connecting two PSs;

2. Via an abridged dynamic model and the parameters of the power systems of the Baltic
Sea region, we show the possibility of maintaining stability during sudden outages of
large energy sources;

3. By utilising data from the Nordic Power Exchange (Nord Pool) market [43], we
conduct an example of assessing the economic efficiency of the proposed approach.

It is worth noting that a brief disconnection of the pump of a pumped storage hydro-
electric power plant operating in combined pump and generator mode during a stability
threat can be easily implemented, incurring acceptable economic losses, and is practically
feasible.

1.3. The Structure of the Paper

The structure of this paper is as follows: Section 2 lays out the fundamentals of the
proposed control method, elucidating the instability phenomenon through the Equal Area
Criterion and detailing the proposed operational mode of pumped storage plants. In
Section 3, case studies are presented to substantiate the efficacy of the proposed strategy.
Finally, Section 4 offers concluding remarks to end the paper.

2. Materials and Methods
2.1. Instability Arising from Generation Surges

Let us return to the analysis of the PS, comprising two subsystems interconnected by
a transmission line (AC TL; please refer to Figure 1), and consider a scenario where each
subsystem is composed of a single synchronous generator harmoniously matched with its
respective load. Moreover, within the subsystem, PS1 holds the distinction of being the
predominant primary energy source, while the maximum allowable capacity of the power
line has been definitively determined and set. The sudden and unplanned disconnection
of both of these elements could potentially lead to instability in the analysed system. The
transmission system operators (TSOs) of subsystems PS1 and PS2 are responsible for ensur-
ing stability, setting constraints when choosing the operating modes for each subsystem and
the transmission lines between them. Additionally, let us assume that both subsystems, PS1
and PS2, are part of a single electricity market and are managed by an Electricity Market
Operator (EMO) whose main task is to provide consumers with the cheapest energy offered
by generating companies. Ultimately, the operating mode was determined by formulating
and solving an optimisation problem with two primary objectives:

1. Minimising the risk of instability [10,41];
2. Minimising energy generation costs while adhering to specified constraints, some of

which relate to stability conditions.

The mentioned bi-objective problem was decomposed into two separate tasks. Firstly,
there was a search for operating modes that are acceptable in terms of stability. Secondly,
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there was a minimisation of costs while considering the constraints obtained from the
first step.

To elucidate and elaborate on the proposed method, we employed a widely used
approach that included the dependence of transmitted power on the phase angle between
the voltages of equivalent generators in two interconnected power systems (see Figure 2a).
We assumed that the first subsystem (PS1) has limited inertia and power capacity and acts
as an importer of energy from the second subsystem (PS2). When synthesising the model
of the system, we used the assumption that all the components of subsystems PS1 and PS2
are located in one node (copperplate model, [44]). We supposed that the model satisfied the
power balance equation at any point in time. We examined two modes: (1) a steady-state
one, characterised by power balance Equation (3), and (2) a transient one, determined by
(4), assuming that a power outage occurred in subsystem PS1.

Pgen + Pimport − Pload = 0, (3)

Pgen − ∆P + Pimport − Pload = −Pdec, (4)

where Pgen represents the aggregated generation in PS1, −∆P stands for a power out-
age, Pimport denotes the exchange with the neighbouring subsystem, Pload represents the
aggregated load, and −Pdec denotes the decelerating power in PS1.
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Figure 2. (a) A simplified diagram of the interconnected power system and (b) a representation of a
sudden outage using the EAC.

The power losses due to transmission and distribution were neglected. A power outage
introduced angular changes, which are described by (2). Because of the highly nonlinear
behaviour, it was difficult to obtain pure analytical solutions to the system equations, and
the graphical method, also known as the Equal Area Criterion (EAC), was often used to
determine whether or not the system would lose stability after a disturbance [45].

For the system presented in Figure 2a, it was assumed that PS1 is a power-deficient
system, with the generators of PS1 operating at their maximum capacity.

The PS1 deficit was overcome by importing power Pe0 from PS2 over the TL (point
a in Figure 2b). For a sudden outage of the major generation source in PS1, power deficit
∆P occurred, and a number of things happened. Immediately after the generation loss,
the power deficit ∆P was redistributed among the remaining generators of PS1 and PS2.
The kinetic energy of the rotational mass of the generators’ rotors ensured power balance
at the very first moment but, as the inertial response decayed, the generators started to
decelerate and the system frequency started to decline. In response to the frequency decline,
the generators gradually increased their power, but the generators of PS1 were already
operating at their maximum power and, thus, the power transfer over the TL was gradually
increased by the amount ∆P (from point a to point c, Figure 2b). In case the acceleration
energy of generator PS2 (area abc in Figure 2b) needed to regain power balance in point c
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became greater than the maximum available deceleration energy (area cde in Figure 2b),
angular instability may have arisen between the generators of PS1 and PS2, resulting in the
loss of synchronism and an out-of-step condition along the transmission line.

To avoid the out-of-step condition, the power transfer over the TL had to be reduced
from Pe2 to Pe1 (Figure 3a,b), thus increasing the deceleration areas cde and cdef (Figure 3a,b).
This was achieved by disconnecting some load in PS1 (an undesirable method) or by the
fast injection of a significant amount of power ∆P1 in PS1.
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Such fast injection of additional power in PS1 was implemented on a rising slope of
the power–angle curve (Figure 3a), or even on a falling slope, when the angle exceeded
π/2 (Figure 3b). Fast injection of power assumes that there must be generation capacities
in the PS1 system that are already in operation, being synchronised with the system but
without supplying any power.

2.2. Fixing a Large-Scale Imbalance: Out-of-Step Protection

To detect the threat of instability, we utilised methods commonly used in SPSs.
There are two main types of special protection schemes: event-based and response-based
schemes [23,46,47]. Event-based SPSs initiate the shedding of low-priority loads or gen-
erators as soon as a forced outage of one or more power generators or loads occurs. The
distinction between event-based and response-based SPSs, along with their limitations, can
be summarised as follows:

• An event-based special protection scheme is typically activated by changes in the
position of switches, promptly disconnecting loads or generators immediately after a
predetermined outage occurs [42]. In contrast, a response-driven special protection
scheme incorporates measurement elements that introduce time delays.

• An event-based SPS typically necessitates a communication system for transmitting
control signals, whereas a response-driven scheme, such as a UFLS, conducts local pa-
rameter measurements and initiates local shedding actions. Both schemes involve the
shedding of loads or generators and can be implemented either together or separately.

It is possible to combine both of the mentioned approaches. To ensure the stability
of high-voltage power transmission lines, protections against out-of-step conditions were
adopted. One method of such protection involves monitoring the angle between the
voltages of equivalent generators connected to opposite ends of the line [48–50]. This
approach was implemented by using local protective terminals (see Figure 4; [51]) or a
system of phasor measurement units of voltage vectors.



Energies 2024, 17, 3754 8 of 25

Energies 2024, 17, x FOR PEER REVIEW 8 of 25 
 

 

the shedding of loads or generators and can be implemented either together or sepa-
rately. 
It is possible to combine both of the mentioned approaches. To ensure the stability of 

high-voltage power transmission lines, protections against out-of-step conditions were 
adopted. One method of such protection involves monitoring the angle between the volt-
ages of equivalent generators connected to opposite ends of the line [48–50]. This approach 
was implemented by using local protective terminals (see Figure 4; [51]) or a system of 
phasor measurement units of voltage vectors. 

E1 E2

Z1Σ

Protection 
terminal

Z2Σ

Zk1Σ Zk2Σ
V1 V2

V1 V2

ϕ2ϕ1

I

V

V

PS 1 PS 2

 
Figure 4. Angle-control-based OSP. 

As described in [51], each terminal models/determines equivalent generator electro-
motive force vectors according to (5). It is supposed that 𝑬௚ଵஊ is equivalent to the emf of 
the power plant, which, in turn, may consist of several generator units.  𝑬௚ଵஊ = 𝑽ଵ + 𝑰௚ଵ ∙ 𝒁௚ଵ𝑬௚ଶஊ = 𝑽ଶ + 𝑰௚ଶ ∙ 𝒁௚ଶ, (5)

where 𝑽ଵ 𝑎𝑛𝑑  𝑽ଶ are the voltages at the station buses, 𝑰௚ଵ 𝑎𝑛𝑑𝑰௚ଶ are the total currents of 
the generation sources, and 𝒁௚ଵ 𝑎𝑛𝑑 𝒁௚ଶ are the equivalent impedances of the generation 
sources. 

Phasor measurement units (PMUs) were strategically deployed throughout the net-
work to conduct real-time synchronised measurements of phase angles. The collected data 
were subsequently aggregated and processed by the SPS. In the event of a significant dis-
turbance, the SPS detected anomalies based on real-time angle differences, which allowed 
us to initiate adjustments or line disconnections when instability becomes imminent. Us-
ing Equation (5), it is a straightforward task to identify the threat of stability disruption. 
For example, when angle 𝛿 exceeds the preset maximum threshold 𝛿 > 𝛿௠௔௫. 
2.3. A Pumped Hydroelectric Storage Plant as a Rapid Power Injection System 

Pumped hydroelectric storage power plants represent the world’s most widely used 
storage technology with a total capacity reaching 159.5 GW [34,35,52–54]. PHSPP systems 
are designed to efficiently transfer water from a lower reservoir to an upper reservoir dur-
ing periods of low-cost power generation, such as windy and sunny days [55]. Conversely, 
during times of increased demand or supply shortages, such as during the evening, the 
water is returned to the lower reservoir through a turbine, enabling electricity generation. 
PHSPPs have relatively swift response times (from zero to nominal power in a time span 
of 20 s to a few minutes. Typically, hydropower plants have from 2 to 10 (or more) runners, 
and the power of the units can reach hundreds of megawatts, while the round-trip effi-
ciency can reach 0.8 [25,54]. It is important to emphasise that these units typically operate 
either in pump mode or in generator mode, and these two cannot function simultaneously 
(see Figure 5), as highlighted by Natalia Naval [52]. However, the restriction on the sim-
ultaneous operation of these modes is driven by economic considerations, as in this case, 

Figure 4. Angle-control-based OSP.

As described in [51], each terminal models/determines equivalent generator electro-
motive force vectors according to (5). It is supposed that Eg1Σ is equivalent to the emf of
the power plant, which, in turn, may consist of several generator units.

Eg1Σ = V1 + Ig1·Zg1
Eg2Σ = V2 + Ig2·Zg2

, (5)

where V1 and V2 are the voltages at the station buses, Ig1 and Ig2 are the total currents
of the generation sources, and Zg1 and Zg2 are the equivalent impedances of the genera-
tion sources.

Phasor measurement units (PMUs) were strategically deployed throughout the net-
work to conduct real-time synchronised measurements of phase angles. The collected data
were subsequently aggregated and processed by the SPS. In the event of a significant dis-
turbance, the SPS detected anomalies based on real-time angle differences, which allowed
us to initiate adjustments or line disconnections when instability becomes imminent. Using
Equation (5), it is a straightforward task to identify the threat of stability disruption. For
example, when angle δ exceeds the preset maximum threshold δ > δmax.

2.3. A Pumped Hydroelectric Storage Plant as a Rapid Power Injection System

Pumped hydroelectric storage power plants represent the world’s most widely used
storage technology with a total capacity reaching 159.5 GW [34,35,52–54]. PHSPP systems
are designed to efficiently transfer water from a lower reservoir to an upper reservoir during
periods of low-cost power generation, such as windy and sunny days [55]. Conversely,
during times of increased demand or supply shortages, such as during the evening, the
water is returned to the lower reservoir through a turbine, enabling electricity generation.
PHSPPs have relatively swift response times (from zero to nominal power in a time span of
20 s to a few minutes. Typically, hydropower plants have from 2 to 10 (or more) runners,
and the power of the units can reach hundreds of megawatts, while the round-trip efficiency
can reach 0.8 [25,54]. It is important to emphasise that these units typically operate either
in pump mode or in generator mode, and these two cannot function simultaneously
(see Figure 5), as highlighted by Natalia Naval [52]. However, the restriction on the
simultaneous operation of these modes is driven by economic considerations, as in this
case, the energy consumed by the pump exceeds the energy generated by the generator,
leading to seemingly unjustified economic losses.
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The situation changes significantly when we consider the ability of the above mode to
swiftly adjust the PS operation in response to a sudden imbalance in PS1. To succeed in
this, deactivating the pump of the PSHPP (as shown in Figure 5) is a feasible option.

In such a scenario, it becomes possible to execute the transition depicted in Figure 3,
moving from Figure 3a to Figure 3b and ultimately selecting a higher volume of permissible
energy imports (P0 in Figure 3) for enhanced stability. Given favourable prices for imported
energy, the costs associated with implementing the aforementioned mode are justified.

2.4. Modelling Methodology and Tools

The selection of operational modes for power systems in many countries is governed
by the regulations and guidelines established by electricity market rules, such as those of
Nord Pool. The selection process typically involves the following main steps:

1. Preparation of bids from generators and consumers [42,56];
2. Determination of commitments for generator units;
3. Verification of compliance with technical and environmental restrictions.

The first step is carried out by numerous energy retailers [57,58], while the second and
third steps are performed by market and transmission system operators (TSOs). Typically,
this problem is addressed by considering restrictions established by the TSO and min-
imising the costs of energy demand. Detailed power system models are necessary for the
performance of the above procedures, particularly for the study of electromechanical pro-
cesses and energy system stability. Even for simulating minor electromechanical transition
processes in PSs, solving high-order systems of differential equations and having a compre-
hensive database of real PS element parameters are necessary. Industrial software (such
as ETAP version 12.5) is used to create these models. The models embody mathematical
descriptions of specific PS components: generators, transformers, high-voltage lines, loads,
and automatic control actions (in the form of differential-algebraic equations [42,56]). To
analyse the stability control method under consideration, we can utilise the above software
and draw upon the existing experience of the operators, as the PS is only slightly modified
by adding one generator and load. However, we need to compare the energy costs of two
cases (see Figure 6):

1. A simulation of the system without the simultaneous operation of the generator and
pump of the PHSPP (ordinary Network Transfer Capacity (NTC));

2. A system with simultaneous operation of the generator and pump of the PHSPP
(increased NTC).
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In the below case study, we present a portion of the Baltic power system. The full
diagram includes elements of the Estonian, Latvian and Lithuanian power systems, as well
as the connections with Finland, Sweden, and Poland.

3. Results: Case Studies
3.1. The Baltic Power System

The Baltic power system (BPS) has been chosen to demonstrate the proposed approach.
The BPS combines the power systems of the three Baltic States, namely the Estonian, Latvian,
and Lithuanian power systems. It is a relatively small PS with a peak load of 4683 MW
(EE: 1552, LV: 1100, LT: 2031), historically operated synchronously with the Unified Power
System of Russia (UPS), which provides vast frequency and inertia reserves. To improve
energy independence and security, a political decision [59] was taken to disconnect the
Baltic PS from the UPS and to establish a new synchronous interconnection with the
Continental European network via Poland in 2025 (through one double-circuit 400 kV AC
line) [20]. The integration process has been started by introducing new HVDC connections
with Finland, Sweden, and Poland. There is an HVDC interconnection between Estonia and
Finland consisting of two DC cables (Estlink 1 and Estlink 2, the total capacity is 1.05 GW)
(in 2024). The LitPol Link is an electricity link between Poland and Lithuania that connects
the Baltic transmission system to the synchronous grid of Continental Europe. It has a
capacity of 500 MW, and since 2021, it can operate in a synchronous regime. Another HVDC
interconnector, NordBalt, connects the PSs of Lithuania and Sweden; its maximum capacity
is 700 MW. To strengthen the BPS, three synchronous condensers rated ca. 305 MVA each
per each Baltic country will be installed by 2025 [60]. There are plans to build a 500 MW
underground pumped hydro energy storage plant in Paldiski, Estonia by 2031. The planned
storage capacity of 6 GWh during a 12 h storage cycle is equivalent to Estonian households’
average daily electricity consumption [61]. In the future, up to 2050, a major transformation
of the existing system is planned: high-capacity solar, wind, and synthetic methane power
plants will be built, and plants producing atmospheric CO2 emissions will be shut down.
The Polish national energy and climate plan makes provisions for building nuclear power
plants in the 2030s, as well as developing wind energy [6]. With regard to interconnections,
it is important to note that the TSOs are planning to increase the import/export capacity
of the synchronous interconnections with Germany, the Czech Republic, and Slovakia by
2000 MW.

As is presented in Figure 7, the electricity generation mix in the BPS includes hydro,
biomass, wind, and solar power plants, comprising large PHSPPs and natural gas-fired
CHP plants.

The powerful PSHPP that actually exists in Lithuania (Kruonis PSHPP) is taken as
the facility to be reviewed. The plant is connected to the 330 kV transmission grid, which
does not impose restrictions when choosing plant operating modes. When planning the
operation, we assume the following: the water levels in the upper reservoir at the beginning
and at the end of the planning period are equal to the maximum permissible level and the
pump–turbine units at each hour can work only with the rated power, and, furthermore, the
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combination of the generation mode and the pumping mode is impossible. The parameters
of Kruonis PSHPP are presented in Table 1.

Energies 2024, 17, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 7. The portfolio of the power plants and interconnections: pumped storage hydropower plant 
(PSHPP), hydropower plant (HPP), solar power plant (SPP), wind power plant (WPP), seasonal en-
ergy storage (SES), and combined heat and power plant (CHPP); electricity loads (demand) and 
interconnections. 

The powerful PSHPP that actually exists in Lithuania (Kruonis PSHPP) is taken as 
the facility to be reviewed. The plant is connected to the 330 kV transmission grid, which 
does not impose restrictions when choosing plant operating modes. When planning the 
operation, we assume the following: the water levels in the upper reservoir at the begin-
ning and at the end of the planning period are equal to the maximum permissible level 
and the pump–turbine units at each hour can work only with the rated power, and, fur-
thermore, the combination of the generation mode and the pumping mode is impossible. 
The parameters of Kruonis PSHPP are presented in Table 1. 

Table 1. Parameters of Kruonis PSHPP [62]. 

Parameter Value 
Capacity 900 MW 

Reversible pump–turbine units 4 units 
Rated capacity in generation mode (per unit) 
Rated capacity in pumping mode (per unit) 

225 MWh/h 
220 MWh/h 

Efficiency in generation/pumping mode 90.0/80.0% 
Cycle efficient use rate 0.74 
Upper reservoir area 3.05 km2 

Maximum water head 113.5 m 
Minimum water head 105.5 m 

Total pool capacity 48,000,000 m3 

3.2. Modelling of the Baltic Power Grid 
To evaluate the transient processes and behaviour of the BPS in case of generation 

loss or major transmission line short circuits, ETAP version 12.5 was used [63]. A simpli-
fied 330/400 kV network model was created, representing each country with a single bus-
bar with aggregated loads and equivalent generators (Figure 8). A diagram of the mod-
elled grid is represented in Figure 8. 

Figure 7. The portfolio of the power plants and interconnections: pumped storage hydropower
plant (PSHPP), hydropower plant (HPP), solar power plant (SPP), wind power plant (WPP), seasonal
energy storage (SES), and combined heat and power plant (CHPP); electricity loads (demand) and
interconnections.

Table 1. Parameters of Kruonis PSHPP [62].

Parameter Value

Capacity 900 MW
Reversible pump–turbine units 4 units

Rated capacity in generation mode (per unit) 225 MWh/h
Rated capacity in pumping mode (per unit) 220 MWh/h

Efficiency in generation/pumping mode 90.0/80.0%
Cycle efficient use rate 0.74
Upper reservoir area 3.05 km2

Maximum water head 113.5 m
Minimum water head 105.5 m

Total pool capacity 48,000,000 m3

3.2. Modelling of the Baltic Power Grid

To evaluate the transient processes and behaviour of the BPS in case of generation loss
or major transmission line short circuits, ETAP version 12.5 was used [63]. A simplified
330/400 kV network model was created, representing each country with a single busbar
with aggregated loads and equivalent generators (Figure 8). A diagram of the modelled
grid is represented in Figure 8.
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The generation of Estonia and Lithuania is represented by an equivalent synchronous
turbo generator for each country. The generation of Latvia is represented by an equivalent
HPP generator. The generation and load values for the simulation are taken from a typical
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spring situation in the BPS in the recent years—a situation in which full production from
Latvian hydropower plants can be expected. The Estonian PS is importing electricity
(250 MW), and the Lithuanian PS is importing energy from Sweden (700 MW) and Poland
(700 MW or 1100 MW for different scenarios, S1–S6). Kruonis PSHPP of the Lithuanian
PS is modelled with two synchronous generators (G1 and G3) and two synchronous
motors operating in water pump mode (M2 and M4). The NordBalt HVDC link (L3) is
represented with a dedicated busbar and transmission cable. Interconnection with Poland
PS is accomplished by means of two AC transmission lines, L1 and L2. All Baltic generators’
angles are referenced to a Polish generator, which is chosen as the swing-generator. The
parameters of the modelled AC transmission lines correspond to the equivalent of the real
AC lines interconnecting the Baltic power grid. Table 2 summarises an overview of the
parameters of the modelled system.

Table 2. The main parameters of the modelled PS.

Parameter Value
(Scenarios S1. . .S3/S4. . .S6)

Total generation before disruption 1550/1850 MW
Total import 1400/1100 MW
Total export 250 MW
Total inertia 8.64 s

3.3. Validation of the Model

The model was developed using real power system parameters specific to the Baltic
region. Its behaviour was rigorously tested against experimental data, including real-
world short-circuit scenarios and the corresponding automation responses. Furthermore,
the model has been extensively used for analysing transient stability in various studies.
The results derived from the model were found to be trustworthy and consistent with
those obtained from models used by experts, such as transmission system operators. This
validation process ensures that the model accurately simulates the behaviour of the Baltic
power system under diverse operational conditions. As a result, the model serves as a
valuable tool for conducting thorough analysis and supporting decision-making in the
fields of power system operation and planning.

Below, we present the results of calculating the most intriguing transient regimes for
the selected scenarios.

3.4. Simulation Results

A brief description of the data and assumptions used are provided in Table 3. It
presents two main cases as the most severe for the Baltic power system: the loss of genera-
tion due to the tripping of the 700 MW Sweden–Lithuania interconnection (L3) and a short
circuit on a major transmission line (L1). For each case, we consider three scenarios:

• S1, S4—the absence of OSP protection and using the suggested control method to
evaluate the dangers of the operation mode;

• S2, S5—the mode with OSP protection used to assess the BPS ability to withstand a
disturbance;

• S3, S6—the implementation of the proposed control method to evaluate the system’s
performance and the effectiveness of the suggested solution.
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Table 3. The results of disturbances and the transient process.

Contingency Type Scenario
Proposed Control

Method
Implementation

OSP Operation The Consequence of Transient
Process/Frequency Nadir (%)

Sweden–Lithuania
off. 700 MW lost

S1 NO NO Out-of-step condition. Five-step UFLS
triggered/95.45%

S2 NO YES Out-of-step condition. OSP operation.
Six-step UFLS triggered/94.9%

S3 YES YES No out-of-step condition. No UFLS
triggered/99%

Short circuit on L1
at t = 0.5 s

S4 NO NO Out-of-step condition. No UFLS
triggered/97.97%

S5 NO YES Out-of-step condition. OSP operation.
Three-step UFLS triggered/96.8%

S6 YES YES No out-of-step condition. No UFLS
triggered/99.7 ÷ 100.8%

The right column of the table summarises the consequences of the transient process for
each scenario in these test cases based on the modelling results presented in the subsequent
Sections 3.4.1 and 3.4.2. The transient process visualisation for each scenario includes the
following:

(a) Generator active power (MW) of the selected, most essential units;
(b) Generator angle (electrical degrees) and system frequency relative to nominal (%);
(c) Power flow through the selected line/s (MW).

3.4.1. Test Case Set: Loss of Generation (Scenarios S1, S2, and S3)

The first three scenarios, S1–S3, have been designed to assess PS stability in the case of
the loss of a large generation source by tripping the NordBalt line between Lithuania and
Sweden (L3) and disconnecting 700 MW of the power transferred to BPS at t = 0.5 s.

In Scenario S1 (see Figure 9c), the power deficit of 700 MW leads to a significant
increase in the amount of power transmitted from Poland (L1 + L2), which, in turn, results
in an out-of-step condition at 2.65 s (Figure 9a): power swings of Plavinas HPP and
Polish generators; (Figure 9b): increasing divergence in the phase angles of the LV and
PL generators; (Figure 9c): SW-LT interconnections power oscillations). The inability to
transfer power due to the out-of-step condition results in a further frequency decline and
the operation of five steps of UFLS at the following times: t = 3.278, 3.442, 3.545, 3.759, and
3.823 s (see (Figure 9b): change in the system frequency).

This case demonstrates that an excessive power transfer from Poland could potentially
lead to angular instability, which is unacceptable, and such a regime should be avoided.

In Scenario S2 (see Figure 10), the operation of the OSP is simulated. The OSP discon-
nects transmission lines L1 and L2 as soon as the angle between Poland and the BPS exceeds
115 electric degrees at 2.4 s (see (Figure 10b,c)). As a result of the inability to meet the power
deficit, six steps of UFLS have been triggered at the following times: t = 2.935 s, 3.025, 3.097,
3.161, 3.222, and 3.292 s (see (Figure 10a,b)). The BPS remains in operation ((Figure 10a):
fading power oscillations) with a decreased system frequency of 47.5 Hz~0.95% fnom (see
(Figure 10b)).
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Figure 9. Scenario S1: (a) generator active power (Pe) at Pl,avin, as HPP (LV), Kruonis PSHPP (LT), and
generation units at LT and PL; (b) generator angle and system frequency; (c) power flow through
lines L1 and L2.
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Figure 10. Cont.
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Figure 10. Scenario S2: (a) generator active power (Pe) at Pl,avin, as HPP (LV), Kruonis PSHPP (LT),
and generation units at LT and PL; (b) generator angle and system frequency; (c) power flow through
lines L1 and L2.

Scenarios S1 and S2 demonstrate that the power transfer over the Poland–BPS syn-
chronous link (L1 + L2) must be intentionally limited to avoid the possible development
of instability and significant load shedding actions. Additional simulations show that the
angular and frequency stability of the BPS is preserved when the maximum power transfer
from Poland is limited to 400 MW.

In Scenario S3 (see Figure 11), the proposed control automation disconnects pumps/
motors (M2 and M4) of Kruonis PSHPP (0.5 s after tripping of L3) at t = 1.0 s, thus preventing
development of dangerous processes such as an out-of-step condition along the lines L1
and L2 and consequent frequency instability of the BPS. Kruonis PSHPP generators G1
and G3 provide the power system with an additional 400 MW of power, thus stabilising
the system frequency of the BPS ((Figure 11b): fading frequency oscillations; (Figure 11c):
fading power oscillations).
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Figure 11. Scenario S3: (a) generator active power (Pe) at Pl,avin, as HPP (LV), Kruonis PSHPP (LT),
and generation units at PL; (b) generator angle and system frequency; (c) power flow through line L4.

This case shows that fast actions, intended for the quick redirection of a significant
amount of power from non-critical load (Kruonis PSHPP pumps) to the network, preventing
hazardous scenarios with frequency instability. Therefore, the power transfer margin from
Poland can be increased without the risk of losing stability.

3.4.2. Test Case Set: Short Circuit on Transmission Line (Scenarios S4, S5, and S6)

The next set of scenarios, S4–S6, demonstrates the performance of the proposed
automation in the case of a short circuit in one of two Poland–BPS interconnecting lines (L1
and L2) and its impact on the stability of the BPS. The power transfer from Poland is close
to the thermal and static stability margin.

In Scenario S4 (see Figure 12), a short circuit on L1 at t = 0.5 s is simulated. The short
circuit was disconnected after 50 ms and the power transfer over the remaining line L1
resulted in an out-of-step condition at 2.6 s ((Figure 12a): power swings of generators;
(Figure 12b): increasing divergence in the phase angles of the LT and PL generators;
(Figure 12c): L2 power oscillations).
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Figure 12. Scenario S4: (a) generator active power (Pe) generation units at EE, LV, LT, and PL;
(b) generator angle and system frequency; (c) power flow through lines L1 and L2.



Energies 2024, 17, 3754 17 of 25

In Scenario S5 (see Figure 13), a short circuit on L1 at t = 0.5 s is simulated. The short
circuit has been disconnected after 50 ms and, to prevent an out-of-step condition, the OSP
disconnects line L2 at 2.2 s ((Figure 13a): fading oscillations; (Figure 13b)). As a result of
the significant power deficit, three steps of UFLS have been triggered. The PSs remain in
operation with a decreased frequency of 48.75 Hz (97.5% fnom) (see (Figure 13b)).
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Figure 13. Scenario S5: (a) generator active power (Pe) generation units at EE, LV, LT, and PL;
(b) generator angle and system frequency; (c) power flow through L1 and L2.

As was expected, the line short circuit leads to consequences similar to those in cases
S1 and S2. The power transfer over lines L1 and L2 should be intentionally limited to avoid
the angular and frequency instability of the BPS.

In Scenario S6 (see Figure 14), a short circuit on L1 at t = 0.5 s is simulated. The short
circuit was disconnected after 50 ms, and the proposed control automation disconnects the
pumps (400 MW) of Kruonis PSHPP at t = 1.0 s.

An additional injection of 400 MW from the Kruonis generators prevents an out-of-step
condition along the remaining line L2 (see (Figure 14c)), thus preventing the development
of frequency instability in the BPS.

Scenario S6 demonstrates the efficiency of the proposed approach in the prevention of
angular and frequency instability even when the transmission link is operating close to it is
maximal capacity. For all the simulated scenarios, if the proposed method is implemented,
the restrictions of the power transfer limit can be relaxed without the risk of losing stability.
For the cases presented, the power transfer over the Poland–BPS link could be increased
from 400 MW up to 800 MW.
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Figure 14. Scenario S6: (a) generator active power (Pe) generation units at EE, LV, LT, and PL;
(b) generator angle and system frequency; (c) power flow through line L2.

3.5. The Impact of the Line Capacity on the Market Price

Taking into consideration the fact that both the producers and consumers of the
energy systems participate in the Nord Pool electricity market, let us examine the impact
of increasing the TL capacity on the market price of electricity. All the participants are
required to submit their bids for buying and selling electricity to the Electricity Market
Operator (EMO). The market bids indicate how much the seller or the buyers are willing to
buy or sell and for what price. Bid acceptance in Nord Pool is based on the market price
formation and is managed by the EMO. The EMO aggregates all the bids and determines
the accepted/rejected generation and consumption bids and sets a market clearing price
(MCP) for each hour [64]. The selection of the cheapest generators is ensured, provided that
there is guaranteed balance and adherence to energy flow limitations along the transmission
lines. Generators’ bids with a price lower than the MCP and purchase bids with a price
higher than the MCP are accepted, whereas the remaining bids are rejected. In this auction
scheme, all the accepted participants are paid the market clearing price. Thus, the MCP
determines the incomes of power plants and the costs of power consumers. The diagrams
in Figure 15 illustrate the situations arising in cases of excess cheap energy in the Polish
power system and a deficit in the Baltic power system (different market bids are represented
by different colours in the figure).
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Figure 15. Representation of the impact of the power limitations on the MCP: (a) without a power
transmission limitation along the LitPol line/s; (b) with a limitation on the transmitted power along
the LitPol line/s; (c) alleviating the limitation through simultaneous use of a pump and a generator
at Kruonis PSHPP.

Figure 15a presents a diagram illustrating the scenario of generator selection in the
absence of power transmission limitations along the LitPol line. We can see that, thanks to
imports from Poland, a low MCP is established. Figure 15b depicts the scenario of generator
selection in the presence of a limitation on the transmitted power along the LitPol line.
Figure 15c illustrates the situation of alleviating the limitation on the transmitted power
along the LitPol line through the simultaneous use of a pump and a generator at Kruonis
PSHPP. We can observe an increase in the power consumed by the BPS by the amount
∆P1 and a significantly greater amount ∆P2 for the transmission capacity of the LitPol line
(see Figure 15c). The economic gain in this case, denoted as Cwin(∆t), can be expressed as
follows:

Cwin(∆t) = ∆P2·(MCP2 − MCP3)− ∆P1·MCP3, (6)

where parameters ∆P1, ∆P2, MCP2, and MCP3 correspond to Figure 15.
To evaluate the scale of the gain, we will utilise the market prices registered in the

Baltic region on 9 February 2024, as depicted in Figure 16.
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Using the market price data from 9 February (Figure 16) and assuming that the
transmission capacity of the LitPol line can be increased by 400 MW, based on the previous
calculations, we obtain the diurnal gain Cwin (the number of hours when the prices are
above 74% of the price in the PL area to observe efficiency: 12 h; average price difference:
80.4367 EUR/MWh.):

Cwin(∆t) ≈ 400 MW ·12 h·80.44
EUR
MWh

= 386, 112 EUR.

A similar situation (high prices in the LT area and low prices in the PL area) was
observed in September 2023 (Figure 17). The difference in the day-ahead prices between
the LT and PL areas is presented in Figure 18. The prices in the LT area were higher than in
the PL area at 202 h (28%) during this period (the average difference was 62.3 EUR/MWh).
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To evaluate the economic gain of the proposed solution, we consider the hours with LT
prices above 74% of the price in the PL area, thus taking into account the efficient cycle use
rate of Kruonis PSHPP (Table 1). There were 113 h with LT prices above the 74% threshold;
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the distribution of the prices in the LT area above 74% of the price in the PL area is shown
in Figure 19, and the average price difference for these hours was 95.03 EUR/MWh.
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The economic gain for this period could be

Cwin(∆t) ≈ 400 MW ·113 h·95.03
EUR
MWh

= 4, 295, 356 EUR.

The possibility of saving more than four million euros per month could be considered
economically attractive, since the implementation of this solution only requires financing
for constructing the automation.

4. Discussion and Conclusions

The hybrid AC/DC grid, incorporating a substantial proportion of intermittent renew-
ables, is becoming a vital configuration in modern energy systems. The energy transition
results in a reduction in system inertia, consequently elevating the risk of stability dis-
ruption. A sudden loss of large generation or cross-border interconnection can lead to an
unexpected energy imbalance, posing significant challenges for grid stability and reliability.
Therefore, power system operators restrict operating conditions, in particular by decreasing
the transfer capacity of a weakly interconnected power system. One negative consequence
of such restrictions under electricity market conditions is significant price variance between
different price areas. We can observe similar market behaviour and price changes in cases
when an important interconnection or generator has been disconnected.

In this paper, an analysis has been carried out to evaluate the technical feasibility and
economic viability of leveraging pumped storage power plants. The proposed control
automation allows for enhancing the stability of a weakly interconnected power system (in
particular, the Baltic power system) and alleviates cross-border transfer capacity limitations
due to a decrease in inertia. There are cases when the simultaneous operation of the
generators and pumps of a PSHPP is feasible. The preliminary results (Section 3.4) have
shown that it is possible and that power system stability can be enhanced by applying the
proposed control automation, employing measurements of voltage phasors. The two most
probable cases of disturbances were assessed: the loss of large-scale generation and tripping
of cross-border interconnections due to a short circuit. In the first case (Scenario S3), the
disconnection of the PSHPP’s pumps prevents the development of dangerous processes
such as an out-of-step condition along the lines (L1 and L2) and the consequent frequency
drop. The generators of Kruonis PSHPP (G1 and G3) provide the power system with an
additional 400 MW of power, thus stabilising the BPS system frequency (the transient
frequency deviation does not exceed 1%). In the second case (Scenario S6), the short
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circuit was eliminated by tripping the line (by relay protection) and the proposed control
automation disconnects the pumps (400 MW) of Kruonis PSHPP. An additional injection of
400 MW from Kruonis generators prevents an out-of-step condition along the remaining
line (L2), thus preventing the development of frequency instability in the BPS (the transient
frequency remains in the range of 99.7–100.8%).

To evaluate the economic gain, the historical market prices have been used. The results
obtained (Section 3.5) prove the economic viability of the proposed solution (the total
saving could reach 4,295,356 EUR per month).

Future research will focus on refining the current model to enhance the effectiveness of
our proposed method. This includes identifying optimal conditions for its application and
further development of the method’s accuracy and reliability in diverse scenarios. Through
iterative testing and analysis, we aim to establish clear guidelines for when and how to
best utilise the proposed method for maximum impact.
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Abbreviations

AC Alternate Current
BPS Baltic power system
CHPP Combined heat and power plant
DLR Dynamic Line Rating
EAC Equal Area Criterion
emf Electromotive force
EMO Electricity Market Operator
HPP Hydropower plant
HVDC High-voltage direct current
MCP Market clearing price
MS Market simulation
NTC Network Transfer Capacity
OSP Out-of-step protection
PMU Phasor measurement unit
PHSPP Pumped hydroelectric storage power plant
PS Power system
RAS Remedial Action Scheme
RESs Renewable Energy Resources
ROCOFs Rates of change of frequency
SES Seasonal energy storage
SPP Solar power plant
SPS Special Protection System
TL Transmission line
TSO Transmission Systems Operator
UFLS Under-Frequency Load Shedding
UPS Unified Power System of Russia
WPP Wind power plant



Energies 2024, 17, 3754 23 of 25

References
1. The European Council. The 2030 Climate and Energy Framework. Available online: https://www.consilium.europa.eu/en/

policies/climate-change/2030-climate-and-energy-framework (accessed on 17 May 2024).
2. Milano, F.; Dorfler, F.; Hug, G.; Hill, D.J.; Verbic, G. Foundations and Challenges of Low-Inertia Systems (Invited Paper). In

Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–25.
3. Lavanya, L.; Swarup, K.S. Inertia Monitoring in Power Systems: Critical Features, Challenges, and Framework. Renew. Sustain.

Energy Rev. 2024, 190, 114076. [CrossRef]
4. Johnson, S.C.; Rhodes, J.D.; Webber, M.E. Understanding the Impact of Non-Synchronous Wind and Solar Generation on Grid

Stability and Identifying Mitigation Pathways. Appl. Energy 2020, 262, 114492. [CrossRef]
5. Prabhakar, K.; Jain, S.K.; Padhy, P.K. Inertia Estimation in Modern Power System: A Comprehensive Review. Electr. Power Syst.

Res. 2022, 211, 108–222. [CrossRef]
6. International Energy Agency. Available online: https://www.iea.org/ (accessed on 28 January 2024).
7. Alhelou, H.H.; Hamedani-Golshan, M.E.; Njenda, T.C.; Siano, P. A Survey on Power System Blackout and Cascading Events:

Research Motivations and Challenges. Energies 2019, 12, 682. [CrossRef]
8. Zalostiba, D. Power System Blackout Prevention by Dangerous Overload Elimination and Fast Self-Restoration. In Proceedings

of the IEEE PES ISGT Europe 2013, Lyngby, Denmark, 6–9 October 2013; pp. 1–5.
9. Ørum, E.; Kuivaniemi, M.; Laasonen, M.; Bruseth, A.I.; Jansson, E.A.; Danell, A.; Elkington, K.; Modig, N. ENTSO Report—Future

System Inertia; European Network of Transmission System Operators for Electricity: Brussels, Belgium, 2015.
10. Hatziargyriou, N.; Milanovic, J.; Rahmann, C.; Ajjarapu, V.; Canizares, C.; Erlich, I.; Hill, D.; Hiskens, I.; Kamwa, I.; Pal, B.; et al.

Definition and Classification of Power System Stability—Revisited & Extended. IEEE Trans. Power Syst. 2021, 36, 3271–3281.
[CrossRef]

11. Guzs, D.; Utans, A.; Sauhats, A.; Junghans, G.; Silinevics, J. Resilience of the Baltic Power System When Operating in Island Mode.
In Proceedings of the 2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical
University (RTUCON), Riga, Latvia, 5 November 2020; pp. 1–6.

12. Markovic, U.; Stanojev, O.; Aristidou, P.; Vrettos, E.; Callaway, D.; Hug, G. Understanding Small-Signal Stability of Low-Inertia
Systems. IEEE Trans. Power Syst. 2021, 36, 3997–4017. [CrossRef]

13. Scherer, M.; Andersson, G. How Future-Proof Is the Continental European Frequency Control Structure? In Proceedings of the
2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015. [CrossRef]
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