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Abstract: Model predictive control (MPC) performance depends on the accuracy of the system
model. Moreover, the optimization algorithm of MPC requires numerous online computations. These
inherent limitations of MPC hinder its application in power electronics systems. This paper proposes
a two-part solution for these challenges for a three-phase inverter with an output LC filter. The first
part of the control scheme is a linear and modified model-free approach based on the auto-regressive
structure (ARX) with exogenous input. The second part is the computationally efficient optimization
algorithm based on the active set method to solve the optimization problem of the MFPC. The
objective of the control scheme is to regulate the output voltages of the inverter in the presence
of constraints. The constraints are the maximum admissible filter current and optimal duty cycle
to avoid any damage to the system. To validate the performance of the proposed control scheme,
simulations and hardware-in-loop (HIL) real-time investigations have been performed, comparing
the results of the proposed approach with the model-based predictive control. The results showcase
the computational efficiency and effectiveness of the MFPC approach, demonstrating its potential for
overcoming the limitations of traditional MPC in power electronics systems.

Keywords: Model predictive control; data-driven control; system identification; optimization; control;
LC filter; inverter

1. Introduction

Three-phase inverter with an LC filter is the most commonly used topology for pro-
viding sinusoidal voltages with low total harmonic distortion (THD) [1]. This topology
has a lot of significance for applications which require pure sinusoidal voltages at their
output such as uninterruptible power supplies (UPSs), electric drives, and the integration of
distributed energy resources (DERs) with the AC grid [2–4]. The primary control objective
for this topology is to regulate the output voltages to the desired reference levels while
considering system constraints such as maximum permissible filter current or limitations
on the input [5].

Model predictive control (MPC) is a viable option for constrained power electronic
systems due to its ability to systematically handle constraints, its simple design concepts,
and its fast dynamic response [6]. Both versions of MPC, implicit [7] and explicit [8],
have been proposed for power converters. Implicit MPC has been applied to three-phase
inverters with LC filter [5]. To reduce the computational burden of implicit MPC, explicit
MPC has been proposed for PWM inverters [6]. However, regardless of whether implicit or
explicit MPC is used, as a model-based approach, the performance of MPC is dependent on
the accuracy of the system model [9]. Any mismatch in the system model can significantly
affect controller performance. Additionally, a major drawback of implicit MPC is the high
computational requirement to determine the optimal control action [10].

Model-free predictive control (MFPC) has been proposed to eliminate the dependence
of MPC on the system model [11]. MFPC consists of two parts: a model-free approach
and predictive control (PC) [12]. The model-free approach estimates the future behavior
of system variables, while the predictive controller uses a cost function as a criterion to
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determine the optimal control action. Additionally, MFPC handles constraints in the same
systematic way as MPC. Due to these advantages, MFPC is increasingly being applied to
power converters [13].

A finite control set model predictive control (FCS-MFPC) has been proposed for
voltage source inverters with a first-order filter at the output [14]. However, due to the FCS
approach, this control scheme suffers from variable switching frequencies. Furthermore,
system constraints are not included in the proposed FCS-MFPC. FCS-MPC has also been
proposed for grid-forming inverters with LCL filters [15]. The proposed FCS-MFPC cost
function incorporated a switching penalizing term to reduce switching effort and a voltage
tracking error term to better track capacitor voltages. However, the proposed approach
does not include the system constraint of the maximum permissible filter current. An FCS
data-driven predictive control has been proposed for the electric drives [16]. The proposed
approach regulates the stator current in the presence of constraints on the stator current.
However, there are no constraints that can deal with the variable switching frequency of
the FCS-MPC.

To solve the problems mentioned above, this paper proposed a model-free predictive
control that is computationally efficient and does not require the physical model of the
system. The contributions of this paper are summarized as follows:

• The proposed approach uses a continuous control set-based MFPC to control a three-
phase inverter with an LC filter in the presence of the system constraints. The CCS
approach eliminates the problem of variable switching frequency and provides sinu-
soidal voltages of low THD.

• The model-free approach uses an auto-regressive structure with exogenous input
(ARX) to estimate the system dynamics. ARX is a linear parametric model that reduces
the complexity of the proposed approach. Moreover, a well-established method of
recursive least squares (RLS) is available to be used to estimate ARX parameters.

• The system constraints of the maximum permissible filter current and duty cycle
constraints are part of the control.

• A computationally efficient optimization algorithm based on an active set method
(ASM). The computations of ASM depend on the number of constraints. The system
constraints are reduced by combining the constraints of the maximum permissible
filter current and duty cycle due to their dependence on each other.

• A detailed stability analysis of the proposed MFPC has been presented using the
Lyapunov theory.

The organization of this paper is as follows. Section 2 discusses the mathematical
modeling of the system. Section 4 explains MFPC formulation for the three-phase inverter
with LC filter. Section 7 discusses the simulation results of the proposed MFPC approach
and its comparison with MPC. Finally, Section 10 concludes the paper.

2. System Modeling

A two-level three-phase inverter with LC filter is shown in Figure 1. Each leg of the
inverter has two switches that will operate in complementary mode. i f a, i f b and i f c are the
filter currents with a filter inductance of L in each phase. van, vbn and vcn are the output
voltages of the inverter with a filter capacitance of C in each phase. A balanced three-phase
and unknown load is connected at the output of the inverter and it draws current ioa, iob
and ioc. The input of the inverter is the constant DC voltage vdc.
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Figure 1. Three-phase inverter with LC filter.

2.1. Continuous-Time State-Space Model

The states of the switches S1–S6 are represented by the switching signals Sa, Sb and Sc.
These switching signals are defined as

Sa =

{
1 if S1 = 1 and S2 = 0
0 if S1 = 0 and S2 = 1

(1)

Sb =

{
1 if S3 = 1 and S4 = 0
0 if S3 = 0 and S4 = 1

(2)

Sc =

{
1 if S5 = 1 and S6 = 0
0 if S5 = 0 and S6 = 1

(3)

The continuous state-space form of the three-phase inverter with LC filter is defined as:

dx
dt

= Ax + Bu + Bdio (4)

with,

A =



0 0 0 −1
L 0 0

0 0 0 0 −1
L 0

0 0 0 0 0 −1
L

1
C 0 0 0 0 0
0 1

C 0 0 0 0
0 0 1

C 0 0 0


, B =



1
L 0 0
0 1

L 0
0 0 1

L
0 0 0
0 0 0
0 0 0

, Bd =



0 0 0
0 0 0
0 0 0
−1
C 0 0
0 −1

C 0
0 0 −1

C

.

io =

ioa
iob
ioc

, x =



i f a
i f b
i f c
van
vbn
vcn

, u =



SaVdc − ( Sa+Sb+Sc
3 )Vdc

SbVdc − ( Sa+Sb+Sc
3 )Vdc

ScVdc − ( Sa+Sb+Sc
3 )Vdc

0
0
0


.

The system in (4) is a non-linear system because of the switching signals Sa, Sb, and Sc.

2.2. Discrete-Time State-Space Model

To linearize the system described in (4), we use the state-space averaging [3] technique.
Moreover, to obtain a discrete-time state-space, we will use a zero-order-hold model [5].
The linear and discrete-time model is defined as

xk+1 = Amxk + Bmuk + Bdmio,k (5)
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with
Am = eATs , Bm =

∫ Ts
0 eAτ B dτ, Bdm =

∫ Ts
0 eAτ Bd dτ,

xk =



i f a,k
i f b,k
i f c,k
van,k
vbn,k
vcn,

, uk =

(da,k − 0.5)Vdc
(db,k − 0.5)Vdc
(dc,k − 0.5)Vdc

, io,k =

ioa,k
iob,k
ioc,k

.

da,k, db,k, dc,k are the optimal duty cycle for leg A, leg B, and leg C, respectively. Ts is
the sampling time and we assume that at any instant da,k + db,k + dc,k = 1.5 [17].

3. Autoregressive Representation of the System

In the model-free approach [18], the system is considered as a black box. The model-
free approach uses input and output data from the black box to find its model. There
are two types of model-free approaches, parametric [19] and non-parametric [20]. In this
paper, we are using a linear parametric model-free approach known as auto-regressive
with an exogenous input (ARX) model [21]. The rationale for using an auto-regressive with
exogenous input (ARX) model is its better performance even in the absence of unmodeled
non-linearities. Moreover, there are well-established methods for estimating the parameters
of ARX such as the recursive least squares (RLS) [22] method. The relationship between
output filter currents and input duty cycle is defined as

î f a(k) =
B f a(Z−1)

A f a(Z−1)
(da,k − 0.5)Vdc (6)

î f b(k) =
B f b(Z−1)

A f b(Z−1)
(db,k − 0.5)Vdc (7)

î f c(k) =
B f c(Z−1)

A f c(Z−1)
(dc,k − 0.5)Vdc (8)

The relationship between output voltages and the input duty cycle is defined as

v̂an(k) =
Ban(Z−1)

Aan(Z−1)
(da,k − 0.5)Vdc (9)

v̂bn(k) =
Bbn(Z−1)

Abn(Z−1)
(db,k − 0.5)Vdc (10)

v̂cn(k) =
Bcn(Z−1)

Acn(Z−1)
(dc,k − 0.5)Vdc (11)

with
Bx(z−1) = bx

1 z−1 + bx
2 z−2 + .... + bx

nB
z−nB (12)

where x = f a, f b, f c, an, bn, cn

Ay(z−1) = 1 + ax
1z−1 + ax

2z−2 + .... + ax
nA

z−nA (13)

where y = f a, f b, f c, an, bn, cn.
The variables nA and nB define the order of the ARX structure. The higher the

order, the higher the accuracy of the estimation will be. However, a higher order will
increase the computations. The choice of nA and nB should be such that it estimates the
system dynamics and does not require too many computations. After rearranging (6)–(8),
the estimated currents will be

î f a,k = −a f a
1 î f a,k−1 − ..... − a f a

nA î f a,k−nA + b f a
1 da,k−1 + ..... + b f a

nB da,k−nB (14)
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î f b,k = −a f b
1 î f b,k−1 − ..... − a f b

nA î f b,k−nA + b f b
1 db,k−1 + ..... + b f b

nB db,k−nB (15)

î f c,k = −a f c
1 î f c,k−1 − ..... − a f c

nA î f c,k−nA + b f c
1 dc,k−1 + ..... + b f c

nB dc,k−nB (16)

After rearranging (9)–(11), the estimated output voltages will be

v̂an,k = −aan
1 v̂an,k−1 − ..... − aan

nA
v̂an,k−nA + ban

1 da,k−1 + ..... + ban
nB

da,k−nB (17)

v̂bn,k = −abn
1 v̂bn,k−1 − ..... − abn

nA
v̂bn,k−nA + bbn

1 db,k−1 + ..... + ban
nB

db,k−nB (18)

v̂cn,k = −acn
1 v̂cn,k−1 − ..... − acn

nA
v̂cn,k−nA + bcn

1 dc,k−1 + ..... + bcn
nB

dc,k−nB (19)

The unknown parameters of the ARX structure will be in vectors θ1, θ2, θ3, θ4, θ5 and θ6.

θ1 =
[
−a f a

1 .... − a f a
nA b f a

1 ....b f a
nB

]
(20)

θ2 =
[
−a f b

1 .... − a f b
nA b f b

1 ....b f b
nB

]
(21)

θ3 =
[
−a f c

1 .... − a f c
nA b f c

1 ....b f c
nB

]
(22)

θ4 =
[
−aan

1 .... − aan
nA

ban
1 ....ban

nB

]
(23)

θ5 =
[
−abn

1 .... − abn
nA

bbn
1 ....bbn

nB

]
(24)

θ6 =
[
−acn

1 .... − acn
nA

bcn
1 ....bcn

nB

]
(25)

The past and present values of data that include input and output will be in the
regressor vectors ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, and ϕ6.

ϕ1,k = [i f a,k−1, .....................i f a,k−nA , (da,k−1 − 0.5)vdc, ...., (da,k−nB − 0.5)vdc] (26)

ϕ2,k = [i f b,k−1, .....................i f b,k−nA , (db,k−1 − 0.5)vdc, ...., (db,k−nB − 0.5)vdc] (27)

ϕ3,k = [i f c,k−1, .....................i f c,k−nA , (dc,k−1 − 0.5)vdc, ...., (dc,k−nB − 0.5)vdc] (28)

ϕ4,k = [van,k−1, .....................van,k−nA , (da,k−1 − 0.5)vdc, ...., (da,k−nB − 0.5)vdc] (29)

ϕ5,k = [vbn,k−1, .....................vbn,k−nA , (da,k−1 − 0.5)vdc, ...., (da,k−nB − 0.5)vdc] (30)

ϕ6,k = [vcn,k−1, .....................vcn,k−nA , (da,k−1 − 0.5)vdc, ...., (da,k−nB − 0.5)vdc] (31)

3.1. Parameter Estimation Algorithm

Recursive least squares (RLS) [22] is a well-established method to estimate the param-
eters of the ARX model. The following three equations define the algorithm.

θ̂k = θ̂k−1 + Gkek (32)

Gk =
Pk−1ϕk

ϕ̂k
T Pk−1ϕk + λ

(33)

P(k) =
1
λ
(I − G(k)ϕT(k))P(k − 1) (34)

e(k) = i(k)− ϕT(k)θ̂(k − 1) (35)

3.2. Future Values

Using (35), the estimated future values of the filter current will be

î f a,k+1 = ϕT
f a,k+1θ̂ f a,k (36)

î f b,k+1 = ϕT
f b,k+1θ̂ f b,k (37)
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î f c,k+1 = ϕT
f c,k+1θ̂ f c,k (38)

Using (35), the estimated future values of the output voltages will be

v̂an,k+1 = ϕT
an,k+1θ̂an,k (39)

v̂bn,k+1 = ϕT
bn,k+1θ̂bn,k (40)

v̂cn,k+1 = ϕT
cn,k+1θ̂cn,k (41)

4. Problem Formulation

The objective is to regulate the output voltages of the inverter while respecting the
filter current and duty cycle constraints. The cost function is defined as:

J = ∑
j=a,b,c

(vre f
jn,k+1 − v̂jn,k+1)

2, with j = a, b, c (42)

vre f
jn,k+1 is the reference voltage and v̂jn,k+1 is the estimated voltage that we obtain from the

model-free approach. We are using a single-step prediction horizon which is not common.
However, we are using a single-step prediction horizon because a three-phase inverter with
an LC is a stable minimum-phase system. To avoid overshoot in the filter current which
will distort the output voltages and can damage the components, the constraint on the filter
current will be defined as

Imin ≤ i f j,k+1 ≤ Imax, with j = a, b, c (43)

To avoid any impossible duty cycle and damages to the system, the constraint on the duty
cycle will be defined as

dmin ≤ dj,k ≤ dmax, with j = a, b, c (44)

Using (42)–(44), the optimization problem is defined as:

minimize J = ∑
j=a,b,c

(vre f
jn,k+1 − v̂jn,k+1)

2 (45a)

subject to dmin ≤ dj,k ≤ dmax (45b)

Imin ≤ i f j,k+1 ≤ Imax (45c)

5. Controller Formulation

According to (45), the cost function and constraints of each phase are independent
from each other. This helps us to simplify the problem by designing the controller for each
phase separately. Moreover, for convenience, the order of polynomials in (13) and (12)
are nA = 3 and nB = 2, respectively. Using (45), the optimization problem for phase A is
defined as:

minimize Ja = (vre f
an,k+1 − v̂an,k+1)

2 (46a)

subject to dmin ≤ da,k ≤ dmax (46b)

Imin ≤ i f a,k+1 ≤ Imax (46c)

There are several methods available in the literature to solve the optimization problem
defined in (46). Two main types of algorithms are the interior point [23] and the active
set method [24]. In this section, we are proposing a tailored active set method to solve
the optimization problem. The computational requirement of an active set method grows
exponentially with an increase in the number of constraints. However, due to the structure
of our system, we reduce the number of constraints by using the relationship between the
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duty cycle and filter current. Using Equation (36), the relationship between the duty cycle
and filter current will be

da,k =
î f a,k+1 + a f a

1 i f a,k + a f a
2 i f a,k−1 + a f a

3 i f a,k−2 − b f a
2 (da,k−1 − 0.5)vdc

b f a
1 vdc

+ 0.5 (47)

The relationship between da,k and i f a,k is monotonic. As a result, we can combine the
constraints of the filter current and duty cycle as follows

max{dmin, dImin} ≤ da,k ≤ min{dmax, dImax} (48)

The unconstrained optimal duty cycle is obtained by differentiating (45a) with respect
to da,k. To obtain the optimal da,k,

J
da,k

= 0 (49)

da,k =
vre f

an,k+1 + aan
1 van,k + aan

2 van,k−1 + aan
3 van,k−2 − ban

2 (da,k−1 − 0.5)vdc

ban
1 vdc

+ 0.5 (50)

If da,k satisfies (48), then (50) will be the optimal duty cycle. If da,k does not satisfy (48),
then we need to compute dImin for Imin and dImax for Imax using (47). After this step, we need
to compute the cost for min{dmax, dImax} and max{dmin, dImin}. The set that has minimum
cost will be the optimal duty cycle. The proposed scheme to compute the optimal duty
cycle is given in Algorithm 1. The proposed MFPC block diagram is shown in Figure 2.

Algorithm 1: Proposed model-free predictive control

1 Compute unconstrained duty cycle using (50).

2 Compute dImin by keeping ire f
f a = Imin in (47).

3 Compute dImax by keeping ire f
f a = Imax in (47).

4 if max{dmin, dImin} ≤ da,k ≤ min{dmax, dImax} then
5 The unconstrained duty cycle is the optimal duty cycle

6 else
7 Compute cost J1 using (46a) for da,k = min{dmax, dImax}
8 Compute cost J2 using (46a) for da,k = max{dmin, dImin}
9 if J1 < J2 then

10 da(k) = min{dmax, dImax}
11 else
12 da,k = max{dmin, dImin}

Vjn,k+1

Estimation

vjn,k

ifj,k

CCS-Predictive 
Control

PWMdj,k S1,S2,….,S6

ref

Figure 2. Controller block diagram.

6. Stability Analysis

The stability of model-free predictive control (MFPC) with constraints is a complex
problem. This section explains the stability of unconstrained MFPC for phase A. The stabil-
ity analysis for phases B and C will follow the same process. For convenience in stability
analysis, we convert (39) into a state-space form with nA = 3 and nB = 2.
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xk+1 =

−aan
1 −aan

2 −aan
3

1 0 0
0 1 0

xk +

1
0
0

[(da,k − 0.5)vdc
]

van,k =
[
b1 b2 0

]
xk + [0]

[
(da,k − 0.5)vdc

] (51)

Using (46a) and (51), the optimal da,k is

da(k) =
vre f

an,k+1

CBvdc
− kx(k)

vdc
+ 0.5 (52)

with k = CA
CB using optimal da,k from (52) in (51), the closed-loop state-space model is

defined as:

xk+1 =

−aan
1 −aan

2 −aan
3

1 0 0
0 1 0

xk +

1
0
0

[( vre f
an,k+1

CBvdc
− kx(k)

vdc
+ 0.5 − 0.5)vdc

]
van,k =

[
b1 b2 0

]
xk

(53)

The closed-loop state-space model in (53) is written as:

xk+1 = Acl xk + Bclu

van,k = Ccl xk
(54)

with
Acl = A − Bclk, Bcl =

B
CB , Ccl = C.

We used Lyapunov stability criteria to analyze the stability of the closed-loop system (51).
The Lyapunov function is defined as

Ja,k = (vre f
an,k+1 − van,k+1)

T(vre f
an,k+1 − van,k+1) (55)

According to Lyapunov stability criteria, the following condition should satisfy:

ja,k − ja,k−1 < 0 (56)

If u∗ is the optimal input for (54), then vre f
an,k+1 and van,k+1 are defined as

vre f
an,k+1 = Cal Aal x

re f
k + Ccl Bclu∗ (57)

van,k+1 = Ccl Acl xk + Ccl Bclu∗ (58)

ja,k+1 = (Ccl Acl x
re f
k + Ccl Bclu∗ − Ccl Acl xk − Ccl Bclu∗)T(Ccl Acl x

re f
k + Ccl Bclu∗

−Ccl Acl xk − Ccl Bclu∗) = (CAek)
TCAek

(59)

ja,k = (vre f
k − vk)

T(vre f
k − vk) = (Cclek)

T(Cclek) (60)

ja,k+1 − ja,k = eT
k+1ek+1 − eT

k ∗ ek = (CAek)
TCAek − eT

k CT
clCclek (61)

ja,k+1 − ja,k = eT
k (AT

clC
T
clCclCcl AT

cl − CT
clCcl)ek (62)

To satisfy the Lyapunov stability condition, the following condition is proposed:

((Ccl Acl)
TCcl Acl − CT

clCcl) < 0 (63)
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The eigenvalues of (63) are negative which proves that matrix ((Ccl Acl)
TCcl Acl − CT

clCcl) is
negative definite. This fulfills the Lyapunov stability condition (56). Hence, the closed-loop
system (54) is asymptotically stable.

7. Results

This section presents simulation and high-fidelity model results to validate the per-
formance of the proposed scheme. Two main scenarios are the performance of the MFPC
in the presence of constraints on the filter current and duty cycle. The second scenario
discusses the comparison of the proposed MFPC and MPC for a model mismatch.

The simulations have been performed in Matlab/Simulink. For high-fidelity model
results, hardware in-loop (HIL) real-time simulations have been performed in Typhoon 604.
The parameters for the experimental and simulation results have been shown in Table 1.
The order of the polynomials Ay(z) and Bx(z) are nA = 3 and nB = 2, respectively.

Table 1. Parameters.

Parameter Value

Inductance of LC filter 1 [mH]
Capacitance of LC filter 40 [µF]
Sampling time Ts 20 [µsec]
Inverter input DC voltage Vs 520 [V]
Reference voltage 200 [V]
Inductive load inductance 10 [mH]
Inductive load resistance 20 Ω
Maximum filter current Imax 12 [A]
Minimum filter current Imin −12 [A]
lambda (λ) 0.9

7.1. Steady State Performance

Figure 3 shows the simulation results of the proposed approach for an inductive load
with L = 10 mH and R = 20 Ω. The inductive load turns on at 5 msec. The controller
regulates the output voltages in the presence of the constraints. During the start time,
the capacitor draws a large amount of current; as a result, there is some distortion in
output voltages. However, due to constraints on the filter current, the controller limits the
overshoot between Imax and Imin. The filter currents violate the constraints slightly because
of the state-space average method that neglects the switching behavior [25].
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-200

-100
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100

200

v an
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,v
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  [
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0 0.05 0.1
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Figure 3. Simulation results of the proposed MFPC in the steady−state.
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Figure 4 shows the HIL results of the proposed approach for an inductive load with
L = 10 mH and R = 20 Ω. Figure 4a shows that the proposed approach regulates output
voltages van, vbn, and vcn at the desired reference. Figure 4b shows that filter currents I f a,
I f b and I f c remain within the constraints Imax and Imin. Moreover, Figure 4c shows that the
optimal duty cycles da, db, and dc also remain within the constraints dmax and dmin. The
inductive load currents ioa, iob and ioc are shown in Figure 4d.

(a) (b)

(c) (d)

Figure 4. HIL result: Steady−state performance of the proposed MFPC. (a) Output voltages
van, vbn, vcn. (b) Filter currents i f a, i f b, i f c. (c) Duty cycles da, db, dc. (d) Output currents ioa, iob, ioc.

7.2. Model Mismatch Performance

Figure 5 shows the HIL results of the proposed MFPC and MPC for an ideal model or
nominal values of L and C. The comparison of Figure 5a,b shows that for an ideal model,
the performance of the proposed MFPC and MPC is similar.

(a) MPC (b) MFPC

Figure 5. MPC and MFPC performance for Cx1 and Lx1.

Figure 6 shows the performance of the proposed MFPC and MPC for a change in
the value of C by 30 percent while the value of L remains nominal. In this scenario,
a comparison of Figure 6a,b shows that the proposed MFPC is still regulating the voltages.
However, the MPC has a poor performance for change in the value of C.

Figure 7 shows the performance comparison of the proposed MFPC and MPC for a
change in the value of L by 30 percent while the value of C remains nominal. Figure 6a,b
show that the proposed MFPC gives much better output voltage compared to MPC.
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(a) MPC (b) MFPC

Figure 6. MPC and MFPC performance for Cx0.3 and Lx1.

(a) MPC (b) MFPC

Figure 7. MPC and MFPC performance for Cx1 and Lx0.3.

Figure 8 shows the HIL results of the proposed MFPC and MPC for change in the value
of L and C by 30 percent. A comparison of Figure 8a,b shows that the MFPC performance
for regulating the output voltages is better than the MPC.

(a) MPC (b) MFPC

Figure 8. MPC and MFPC performance for Cx0.3 and Lx0.3.

8. Converter Efficiency

The choice of switching frequency plays a crucial role in the converter’s efficiency.
A higher switching frequency results in higher switching losses, and vice versa. To demon-
strate the advantage of the proposed CCS-based MFPC, the efficiency of the inverter is
computed for both the proposed MFPC and the FCS-MFPC [14]. Figure 9 shows the input
and output power comparison of the inverter for the proposed MFPC and the FCS-MFPC.
The efficiency of the inverter with the proposed MFPC and FCS-MFPC is η = 91% and
η = 86%, respectively. This comparison shows that the proposed approach has fewer
switching losses compared to FCS-MFPC and achieves an efficiency greater than 90%.

Po
w
er
[w
]

Pin=3600W
Pout=3260W

(a) Proposed MFPC.

Po
w
er
[W

]

Pin=3600W

Pout=3096W

(b) FCS-MFPC.

Figure 9. Input and output power of inverter for proposed MFPC and FCS-MFPC.
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9. Computational Efficiency

We used simple criteria for measuring the computational efficiency of the algorithm.
In this criteria, we computed the number of computations of the algorithm when obtaining
an optimal control action. We compared the computational efficiency of the proposed
approach with the conventional FCS-MFPC [14]. The computations of the proposed ap-
proach and FCS-MFPC are summarized in Table 2. The computations of both algorithms
for different values of the model order are shown in Figure 10. The proposed approach
requires three times less computations than the FCS-MFPC for any value of nA and nB.
Computational efficiency will help to operate the controller at a higher switching frequency
and its implementation on low-cost hardware or a trade-off.

Table 2. Computations of the proposed MFPC and FCS-MFPC.

Algorithm ×/÷ +/−
Proposed MFPC 6 (nA + nB + 1) 6 (nA + nB + 2)

FCS-MFPC 24 (nA + nB + 1) 24 (nA + nB)

4 5 6 7 8 9 10

Order(n
A
+n

B
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Proposed approach
FCS-MFPC

Figure 10. Computational comparison of proposed MFPC with FCS-MFPC.

10. Conclusions

This paper has presented an improved CCS-MFPC for a three-phase inverter with an
LC filter. Further, the paper has proposed a computationally efficient tailored active set
method to solve the optimization problem of the MFPC. The constraints on the maximum
admissible filter current and duty cycle are part of the control scheme. Due to the CCS
nature which has a fixed switching frequency compared to FCS, the design of the output
LC filter is an easy task. Moreover, the computational efficiency of the algorithm is three
times compared to the conventional FCS-MFPC. This computational efficiency helps to
operate the controller at a high switching frequency and implementation of the controller
on low-cost digital hardware. Results have shown that the proposed controller regulates
the output voltages subject to constraints on the duty cycle and filter current. Further,
in case of a model mismatch, the overall performance of MFPC is much better compared
to MPC.
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