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Abstract: In recent years, the energy industry has increased the proportion of renewable energy
sources, which are sustainable and carbon-free. However, the increase in renewable energy sources
has led to grid instability due to factors such as the intermittent power generation of renewable
sources, forecasting inaccuracies, and the lack of metering for small-scale power sources. Various
studies have been carried out to address these issues. Among these, research on Virtual Power Plants
(VPP) has focused on integrating unmanaged renewable energy sources into a unified system to
improve their visibility. This research is now being applied in the energy trading market. However,
the purpose of VPP aggregators has been to maximize profits. As a result, they have not considered
the impact on distribution networks and have bid all available distributed resources into the energy
market. While this approach has increased the visibility of renewables, an additional method is
needed to deal with the grid instability caused by the increase in renewables. Consequently, grid
operators have tried to address these issues by diversifying the energy market. As regulatory method,
they have introduced real-time energy markets, imbalance penalty fees, and limitations on the output
of distributed energy resources (DERs), in addition to the existing day-ahead market. In response, this
paper proposes an optimal scheduling method for VPP aggregators that adapts to the diversifying
energy market and enhances the operational benefits of VPPs by using two Mixed-Integer Linear
Programming (MILP) models. The validity of the proposed model and algorithm is verified through
a case study analysis.

Keywords: optimal scheduling; mixed-integer linear programming; multi-energy market;

over-generation; uncertainty of renewable energy sources; virtual power plants

1. Introduction

Recently, energy policies considering carbon-free energy and the enhancement of
sustainable energy are being established worldwide [1,2]. Thus, the share of renewable
energy sources that are carbon-free and sustainable is expected to increase further [3].
However, due to certain characteristics of renewable energy sources, such as their decen-
tralization, intermittency, and uncertainty, the integration of renewable energy generation
with high performance remains a challenging task [4,5]. One of the aspects that researchers
are studying to address this issue is the development of VPPs based on the concept of
distributed energy generation aggregation [6—9]. VPPs can be categorized into Commercial
Virtual Power Plants (CVPPs) and Technical Virtual Power Plants (TVPPs) based on their
operational objectives. CVPPs are designed to contribute to the demand balance of the
transmission system. They have no regional constraints on resource aggregation and enable
various business opportunities through participation in the energy market [10,11]. As a
result, aggregators can recruit distributed resources and encourage their participation in the
energy market, thereby increasing the visibility of distributed resources and improving the
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efficiency of grid operations. However, the primary objective of a VPP is profit maximiza-
tion. So, they often bid all distributed resources into the energy market without considering
the impact on the distribution network. This fact increases the potential for grid instability,
voltage imbalances, frequency fluctuations, short-circuit currents, and harmonics, due to
the arbitrary generation by aggregators [12]. As a result, grid operators are now implement-
ing real-time energy markets and imbalance penalties in addition to the existing day-ahead
market as regulatory measures [13]. Furthermore, in order to maintain real-time power
balance, the output from distributed energy resources (DERs) has been constrained through
the implementation of real-time constraints [14,15]. In the context of a real-time market,
real-time prices are provided as the market reflects supply—demand balance conditions,
thereby offering short-term price signals. As the trading intervals decrease from 1 h to
30 min, 15 min, and 5 min, flexible resources are likely to receive relatively greater rewards.
The imbalance penalty calculates the difference between the planned generation amounts
in the day-ahead market and the actual generation in real time at real-time prices. This
provides an incentive for VPPs to adhere to their bid amounts in the day-ahead market.
On the other hand, limiting the output power of DERs due to the power balance is
a major factor that reduces the revenue of VPP aggregators. Various studies have been
conducted to solve these power curtailments and maximize the benefits for aggregators.
Ref. [16] adjusts scheduling by considering the predicted grid operating conditions and
those provided by the DSO. After this, they adjust the scheduling by considering penalties
for real-time non-compliance with the day-ahead scheduling. Ref. [17] describes a method
for determining the power bidding curve of a VPP, considering power consumption, the
probability of renewable energy generation uncertainty, and the cost of deploying flexible
resources. These aforementioned cases can be managed by considering the capabilities of
the participants. However, when considering power curtailment, scheduling adjustments
for specific participants may be enforced. Ref. [18] presents a method for controlling the
generation of PV systems and the charging speed of electric vehicles at each bus to satisfy
voltage stability conditions. Additionally, Refs. [19,20] propose operational strategies for
participating in DR services to enhance the economic benefits for prosumers. The above
method shows that all participants cooperate with power curtailment, but it is necessary to
consider the profitability of participants who incur losses during the cooperation process.
There is also an approach that involves conducting P2P transactions to mitigate the uncer-
tainty of renewable energy generation. Ref. [21] demonstrates a method for considering the
uncertainty of renewable energy generation by placing energy market bids and simultane-
ously conducting P2P transactions among participants. Refs. [22-24] describe a method
where P2P transactions are conducted first, considering the uncertainty of renewable energy,
and the remaining electricity is then bid into the energy market. These methods effectively
manage the uncertainty of renewable energy generation, increase flexibility among market
participants, and enhance the overall stability of the energy system. However, the feasibility
of such P2P transactions can be limited by regulations of the energy market structures.
Additionally, there are challenges related to data communication and processing delays due
to technical issues, as well as the need for significant initial investments. Another approach
involves current studies on microgrid systems that integrate RES to manage the uncer-
tainties in renewable energy output, which can be applied to VPP research. For example,
Ref. [25] proposes a new concept called the Committed Carbon Emission Operation Region
(CCEOR) for integrated energy systems, which considers the uncertainties in renewable
energy output and the characteristics of low-carbon sequential operations. Ref. [26] sug-
gests a probabilistic triple-layer game method for multi-energy trading in integrated energy
markets that include various multi-energy microgrids (MEMGs). The algorithm proposed
in [27] applies a two-stage robust optimization (TSRO) method that omits discrete variables
and constraints of ESS to effectively compensate for the variability and uncertainty of RES
power output. While these techniques excel in ensuring energy self-sufficiency and reduc-
ing carbon emissions in small regions by utilizing multiple complex resources, additional
robust optimization methods need to be applied for maximizing commercial profit and
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optimizing energy markets, which are among the primary operational objectives of VPPs.
In this context, research has been conducted on optimal bidding strategies to maximize
commercial profits in the VPP energy market. First, Refs. [28,29] use neural networks such
as LSTM and GAN models to predict uncertainties in load, energy market prices, and
DERSs, significantly enhancing the operational stability of VPP operators. However, these
methods have high computational loads and their prediction accuracy is influenced by the
quality and quantity of historical operational data. Refs. [30,31] integrate various types
of RES resources and use linear and nonlinear programming techniques such as Mixed-
Integer Nonlinear Programming (MINLP) and Mixed-Integer Linear Programming (MILP)
to derive optimal profits for VPP operators by participating in multiple energy markets.
Nevertheless, these studies only consider day-ahead market bidding, and there is a need
to secure additional profitability through the consideration of real-time bidding markets.
Another approach for optimizing VPPs is the Optimal Virtual Power Plant Management
method using the Model Predictive Control (MPC) approach, as proposed in [32,33]. This
method models internal resources and uses a three-tiered structure to optimize VPP gener-
ation by effectively controlling internal resources for both day-ahead and real-time market
errors. However, this method also only considers day-ahead market bids, necessitating the
need to secure profitability through real-time additional bidding.

This paper presents an energy optimization algorithm for VPP aggregators operating
PV, WT, and ESS systems. This paper addresses the integration of real-time energy markets,
imbalance penalties, and power curtailment in addition to the existing day-ahead energy
market. In order to achieve this objective, two MILP (Mixed-Integer Linear Programming)
models are employed. The initial MILP model is concerned with the minimization of imbal-
ance penalties that arise from excess generation by a VPP. This is achieved by scheduling
the available resources in a more effective manner when the actual awarded bid quantity
is less than the submitted bid quantity. This model considers various constraints and
parameters such as the forecasted generation, the submitted bids, and the real-time bid
quantities to optimize resource allocation and minimize penalties. The second MILP model
is designed to maximize profit in the real-time market. It identifies the optimal generation
amounts that should be bid during the most profitable time periods. This model considers
real-time market prices, the state of charge of the ESS, and other operational constraints to
determine the best times to discharge the ESS and sell electricity in the real-time market.
This strategy enhances real-time scheduling and resource management within the VPP,
leading to improvements in profit maximization and penalty minimization. Specifically, the
proposed “Dual-MILP” algorithm schedules DERs every 15 min, considering curtailment
areas and generation errors. This allows the Dual-MILP approach to dynamically adjust
to real-time market conditions and generation forecasts, providing a solution to the chal-
lenges posed by the integration of renewable energy sources and the variability of real-time
energy markets.

The remainder of this paper is organized into five sections. Section 2 describes the
definition and operational framework of the proposed VPP. Section 3 presents the math-
ematical formulation of the optimal VPP operation model, which aims to maximize the
VPP’s profit in various market environments. In Section 4, case studies are presented to
verify the proposed optimal operation model. Finally, the conclusions are presented in
Section 5.

2. Description and Framework of the VPP and Energy Market

The structure of the energy market is based on the timelines of the day-ahead market
and the real-time market. In this context, the VPP forecasts the next day’s generation power
before the day-ahead market closure and places bids in the energy market. In this study,
bidding for supply was considered in the power wholesale market, which means that the
VPP only performs bidding as a seller. The day-ahead market operates from 08:00 to 11:00
on the day prior to the operational day, with bidding closing at 11:00. Then, at 18:00 on the
same day, the results of the day-ahead market are received. Based on the bid results, the
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VPP determines the availability of surplus renewable energy and formulates generation
schedule plans accordingly. For example, when the bid quantity is determined to be lower
than the expected quantity, this indicates the occurrence of surplus power. In such cases, the
VPP must formulate strategies to either curtail the output to manage the surplus renewable
energy or utilize its resources to mitigate the excess. The real-time market is assumed to be
held at 22:00-22:45 the previous day, and the real-time market is repeated every 15 min. In
order to bid in the real-time market, this paper assumes that the amount of error between
the predicted power generation of renewable energy and the successful bid result of the
day-ahead market is calculated. Then, it calculates the amount of error compared to the
successful bid result of the day-ahead market. It establishes a bidding plan considering the
market penalty criteria to be imposed later. In other words, the VPP operator is assumed to
be fully responsible for the day-ahead schedule. If errors arise in the bidding results, the
operator is subject to market penalties. The structure of the energy market and the basic
configuration of the VPP are illustrated in Figure 1.

Day-ahead Market (D-1) 1:
~11:00 ~1800 ~2,4,{)0i
08:00~11:00 18:00 18:00 ~ 22:45~24:00
Day ahead market Announcement of Adjust VPP operation Real-time market
o=l LI Bia e Poer (bid & offer period)
(bid & offer period) generation plan curtailment
10 001S 0 005 125 730 0745 1800 sae 20 235 230 236 240
H vee ves e
i 00:00~24: 00 (bid & offer every 15m)
: Real-time operation
E - T Real-time Market (D-day)
[

<

‘Wholesale
Electricity Market

I I

VPP Control Center
(Virtual Power Plant)

| pV! I ESS! |W'l'l I cee |P\7N I | EV I ESS? Load
Us?

BUS! B BUS?

TSO/DSO

Figure 1. The structure of the energy market.

3. Optimal Scheduling of VPP Using the Dual-MILP Approaches
3.1. Day-Ahead Market Scheduling

In this section, the mathematical modeling of VPP scheduling in a multi-energy market
environment are conducted. The optimization model for VPP operation is divided into
the formulation of the day-ahead market scheduling, real-time market scheduling, and
additional bidding in the real-time market, following the market processes of the wholesale
energy market. In this context, the day-ahead market scheduling optimization model is
designed to minimize VPP over-generation by utilizing the ESS to respond to the power
curtailment instructions from the grid operator.

The bidding sequence for participation in the day-ahead market is illustrated in
Figure 2, where t represents the one-hour set of periods for the VPP day-ahead market
operation scheduling, and P? APV P? AWT denote the estimate generation quantities

—=bid sbidx*

for PV and WT in each period. P; ", P, represent the bid quantity for the day-ahead
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generation plan and the actual confirmed bid quantity from the grid operator. It is assumed
that before the closure of the day-ahead market, the VPP bids 100% of the predicted
generation power of the RES resources, as follows:

—bid
plid — pPAPV 4 pDAWT 1)
Start (¢ = 0)
[ PtDA'PV + P?A_WT — l_)bid ]

NO Rescheduling VPP power using the ]

MILP with P, — P}y and PESS

[ Send the operation result (P}, , PESS)

Figure 2. Bidding sequence for the day-ahead market.

The VPP operator can be bid the entire generation quantity submitted in the day-ahead
market. However, the grid operator may request the VPP generator to reduce a certain
portion of the bid quantity based on the day-ahead estimate supply-demand balance. In
this case, if the day-ahead estimate generation power of the RES is accurate, the VPP must
stop or reduce a certain amount of generation to avoid penalties for over-generation, which
can result in losses for the VPP. To address this issue, the proposed day-ahead market bid
sequence involves establishing an adjustment plan to mitigate profit losses, considering the
available ESS resources, or determining whether to curtail the renewable energy output if
the bid result is not 100% of the bid plan. The objective function for this is defined by the
following formula in Equation (2).

Maximize | Y (P} x APA 4 PFSS x APA — (P/ — B]")APA) )

teT

where PESS, AP4 denote the ESS charging/discharging plan and the day-ahead market
price. To prevent excessive ESS operation and ensure ESS stability, the ESS is operated on a
daily basis with multiple specified constraints, including the battery capacity, PCS capacity,
and SOC levels. The first constraint is designed to maintain an appropriate SOC at the end
of each day to prepare for the next day’s operation or emergency support. The formulation
for this is provided below [34].

ESS ESS
socks < soc!, < socEs 3)
SOCL,, = soci + ¥ (PEC x TE€ — PEP x 7FP) @)
treT
= Lgﬂ x AT x nEC FP = 10& x AT X % 5)
Ess; " ESs; 7 U

where s represents the unique identifier of the ESS, and SOCEﬁ, SOC{ , SOCSEﬁ denote

the minimum SOC, the real-time ESS SOC, and the maximum SOC. The SOC{ value in
Equation (4) is determined based on Equation (5), where Pfc, UEC, PtED , 17ED represent the
charging capacity and charging efficiency and the discharging capacity and discharging
efficiency. ESSSC‘ZP, AT denote the ESS rated capacity (kWh) and the ESS control period,
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respectively. The second constraint ensures operation within the rated capacity of the PCS
for charging and discharging, as shown in Equations (6) and (7).

USECPSECmin S PSEC S uECPSECmﬂx (6)

usEDPSEDmin < ’PSED‘ < USEDPSEDmax @)

In addition, the equation for constraining simultaneous charging and discharging is
as follows:
U U <1 ®)

PESS = pEC 4 pi? ©

where ULC, UEP represent the state binary variables for the charging mode and discharging
mode, respectively.

3.2. Real-Time Market Scheduling

In the real-time market, a VPP is penalized based on the real-time market price, which
is taken as the penalty rate. Therefore, the negative error penalty for each time period
can be calculated by multiplying the negative error amount by the real-time market price.
Similarly, the positive penalty can be calculated by multiplying the positive error amount
exceeded by the real-time market price. The market penalty function for generation error is
defined as follows:

pPenalty RT Piiss  bid*
Ct2 = Atz x max( P — P~ xa,0 10)
Pmiss _ pbid  Hbidx .. (Fbid  Hbidx
Ptz - Ptz - Pt2 U( Ptz 2 Ptz

Npenalty RT Nmiss
Ct2 = Atz x Py

o pide —bi Zpid . —bi (11)
P =B B if (P < P
where t; represents a 15 min set of periods for the VPP day-ahead market operation plan;

P ena N ena PR . . .
c,""", ¢, """ denote the penalty costs for positive and negative error in the real-time

market; and ART represents the expected revenue in the real-time market. Specifically,

the positive penalty function Cfp""“”y for the real-time market is optimized under the
assumption that penalties are only imposed on amounts exceeding 5% of the day-ahead
market bid quantity. For this purpose, the constant a representing the percentage of error is
used in Equation (11). Equation (12) represents the MILP objective function for real-time
market scheduling. The MILP objective function in Equation (11), which includes the
penalty cost and the use of ESS resources within the VPP, aims to optimize the VPP to
maximize operational profit by addressing error from the bid results.

Maximize| Y (P x ART — ¢ — cprooivy 1y~ (PESS x ART) (12)

12eT ReT
For the case of real-time market scheduling, the constraints are the same as those used
for the day-ahead market, but because it operates every 15 min, the inequality constraint
matrix A and the equality constraint matrix Aeq for MILP application are much more
complex, and constraints must be applied at 15 min intervals. First, the constraint matrix

for the SOC of ESS in the real-time market is as follows:

0 o ... 0 0 7[PEP
TED £ED 0 0 Pf?

30< | . ) ) ) S <70 (13)
(ED (ED  1ED ED||pED

5,96
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TEC 0 0 07[Pi
TEC  fEC 0 0 PSE2C
30< | . ) . S <70 (14)
EC EC EC EC }éC
T T T T Ps,96

where PED to Psfé% denote the discharge amounts of the ESS at each time interval. Since
the scheciuling is carried out in 15 min intervals over 24 h, the 24 h period is divided into
96 columns, forming the matrix PSEC. The SOC constraints corresponding to the discharge
amounts are also structured in the same manner as those shown in Equation (14). Secondly,
the constraint matrix used to prevent simultaneous charging and discharging of the ESS is
constructed as follows:

r17EC
us,l
[To6x96  To6x96] u}gp <1 (15)
5,1
ECH _PElC r17ECH
us,l PsézC us,l
PsECmm < S.' < PECmux (16)
EC . EC
LU 5] pEC LU 961
L~ 5,70
ED _ ElD_ ED
s,1 PSEZD us[l
PSEDmm < 5: < PsECmax (17)
ED : ED
_us,%_ PEQI% _us,%_
L" 5,964

where U51CN96 and USL:PN% each include binary conditions that take on values of 0 or 1.
The constraint matrix is constructed to prevent simultaneous charging and discharging
by multiplying the values of U§1CN96 and USEJDN% at each time interval by the maximum
and minimum charging and discharging amounts of the ESS. Additionally, to incorporate
penalties for over-generation and under-generation, the equality matrix is as follows:

ED
Ps,l
: s —bid . (wbid _ —bid
[To6x96 T 6] ART | = max (PZ"”“ ~-P,)" xua, 0) if (Ptzl <P, *) (18)
1
EC
Ps,l
: iss  =sbidk ., (=bid _ =bid
(o696  To6x96] ART =P — P if (Ptzl > P, *) (19)

Finally, the sequence of the proposed MILP scheduling algorithm, which includes the
above constraints in the real-time market, is illustrated in Figure 3.
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Py, Pr" = P, + Py, <
\ J
e a

Rescheduling VPP generation plan using Equation (12)

& J
: L ‘
Send the operation result(P!*" P
. 7

Figure 3. Bidding sequence for the real-time market.

3.3. Optimal Additional Bidding in the Real-Time Market

Through the MILP optimization in Equation (12), the VPP schedules its daily genera-
tion plan in real time to minimize penalties by utilizing its available resources. However,
since the ESS capacity within the VPP is finite and must maintain a certain SOC level, limi-
tations arise if the VPP operates only based on the grid operator commands. For example,
if a command to reduce generation is received for a specific time period, the VPP uses its
ESS resources to charge excess generation. However, if the over-generation exceeds the ESS
capacity, it becomes challenging to fully accommodate the over-generation, and additional
methods must be employed to discharge the ESS to ensure operation the following day.
To address these issues, this paper proposes a sequence for additional bidding in the real-
time market. For this purpose, the PtP miss function in Equations (10) and (11) is modified
as follows:

t
~ ; ; —bid
pyiss — Pgmzss + Pg]mzss _ Zt Pt; *_ (PFZT_PV + PgT_WG) + PFZT* (20)
2

where PRT" represents the additional bid capacity in the real-time market. If the total
amount of P} in Equation (20) is modified, the value of the MILP optimization in
Equation (12), which uses this variable, will change accordingly. This means that by finding
and applying the optimal value of PRT", it can be used in the real-time market optimization
algorithm in Equation (12). For this purpose, additional MILP modeling is performed, and
the cost function is as follows:

M| £ P50 - T (7 T s o] e
tzET tzGT t2€T

The sequence for additional bidding in the real-time market is illustrated in Figure 4.
In Figure 4, PRT-Curtail repyresents the real-time additional bid quantity not approved
by the system operator. The overall flow of the algorithm can be summarized as follows:
The VPP operator adjusts the scheduling of the RES and submits it to the DSO. If the DSO
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notices that the scheduling does not meet the supply-demand balance, it provides a new
bid quantity to the VPP. Then, the VPP attempts to offset the power curtailment as much as
possible using internal resources. If it cannot be fully offset, the operator proceeds with
output curtailment while considering penalties to maximize operation profit. After this,
through the real-time market, the VPP platform operator adjusts the generation by placing
additional real-time bids.

N

[ pyid _ ppia-
l J

( A
RT_Curtail ¢

P§2T _ Ptz _Curtat

\, J/
v

4 3

Rescheduling PfZT using Equation (21)
. J
s : 3\
Report P’g to the ISO

RT+_pRT __ pRT_Curtail
P¢, "=P¢, — Py, J

[ Send the operation result(szT‘) ]

Figure 4. Operational sequence for real-time additional bidding.

4. Simulation Analysis and Comparison
4.1. Definition of Simulation Scenarios

This section investigates the performance of the proposed Dual-MILP bidding strategy
for VPPs based on the various case studies. The main contribution of the proposed Dual-
MILP method is that it allows real-time scheduling of VPP generation in a real-time market.
Specifically, it aims to maximize VPP profit through the real-time scheduling of RES
resources within the VPP in response to (1) generation errors within the VPP or (2) sudden

output adjustment requests from the DSO/ISO leading to changes in Ff;d. To achieve
this, each RES resource sends newly updated generation forecasts to the MILP Control
Center every 15 min. These values are compared with the actual bid value ﬁzd* to obtain

sz miss or PN™ss. Based on this comparison, the generation of RES resources owned by
the VPP is scheduled in the day-ahead market. The detailed simulation setup is shown in
Figures 5 and 6 below.
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Figure 5. System configuration for simulation.
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Figure 6. Day-ahead forecasted RES generation and hourly electricity prices.

The case scenarios compare the scheduling and cost results of four additional cases
based on the basic case, which only involves preliminary scheduling, as shown in Table 1.
The scenarios include three cases: First, the day-ahead generation and bid values differ
without re-scheduling, Second, the day-ahead generation and bid values differ with ESS
re-scheduling, Third, additional real-time bidding is performed. In these scenarios, the
rated power of the available ESS resource is assumed to be 500 kW, the rated capacity is
5000 kWh, and the initial SOC is 50%.
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Table 1. Scenario configuration table.
Scenario Curtailment Curtailment Quantity Time Real-Time Additional Bidding
Scenario 1 Py 2 ple P =08 x P 11:30~13:30 PRT*=0
Scenario 2 AT A Py = 0.8 x Py 11:30~13:30 PRT+= pRT
Scenario 3 AT P =09 x P 11:30~13:30 pRT*= pRT+

4.2. Simulation Results

As explained in Sections 1 and 2, the grid operator requests the VPP to adjust its gener-
ation output according to the demand-supply balance. To validate this scenario, scenario 1
is designed to impose a 20% power curtailment on the bid quantity submitted during peak
generation periods. In Figure 7, the black waveform and blue waveform represent the sub-
mitted VPP generation plan and the bid quantity, respectively, while the green waveform
represents the real-time energy price. The red blocks and blue blocks represent the expected
income and actual income, respectively. As shown in Figure 7, during the over-generation
periods where penalties occur, it is evident that there is a significant discrepancy between
the actual income and the forecasted income if no additional re-scheduling is performed.
To ensure the accuracy and reliability of our simulation results, the following hardware
configuration was used: CPU: [12th Gen Intel(R) Core(TM) i5-1240P 1.70 GHz], RAM:
[16.0 GB], GPU: [Intel Iris Xe], Operating System: [Windows 11 Pro].
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Figure 7. Results of scenario 1 without the proposed method (Case 1).

Figure 8 illustrates the scenario when the VPP uses its ESS and the proposed algorithm
to mitigate penalties from over-generation. According to the ESS capacity assumptions
defined in Section 4.1, the SOC is limited to operate within 0.3 to 0.7. Due to these con-
straints, if there is no additional discharge scenario, the ESS cannot fully absorb the entire
over-generation, and only a portion is compensated. In this case, although the penalties
are reduced compared to the scenario in Figure 7, the actual income is still lowered due to
over-generation penalties.

To overcome the limitations illustrated in Figure 8, this paper proposes the Dual-
MILP approach explained in Section 3. The proposed Dual-MILP algorithm performs
additional bidding in areas where the optimal profit can be achieved, based on the P’tgiss
values updated every 15 min. The algorithm process can be summarized as follows: First,
if a curtailment area occurs, the algorithm schedules the ESS to minimize the penalty for
over-generation. Next, using the SOC capacity of the ESS charged through the curtailment
area and the remaining time intervals over 24 h, the algorithm calculates the areas where
additional bidding can yield profit, using Equation (14), and reflects this in the VPP
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generation scheduling. The simulation results following this sequence can be seen in
Figure 9. In the real-time market within the curtailment areas, the algorithm reduces the
penalty for over-generation by charging the ESS and additional bid quantities through
the additional bidding algorithm, marked with the yellow dashed line. This approach
achieves higher income compared to simple over-generation compensation methods, while
also improving the SOC capacity through discharges to address over-generation on the
following day. The proposed method has the drawback of requiring accurate real-time
energy price data. To mitigate this, it is advisable to update the energy price data needed
for the optimization algorithm at least every 15 min.
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Figure 8. Results of scenario 1 when the proposed method is used without additional bidding in the
real-time market (Case 2).
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Figure 9. Results of scenario 2 when the proposed method is used with additional bidding in the
real-time market (Case 3).

Finally, if the penalties for over-generation cannot be overcome through additional
generation bidding and ESS scheduling in the real-time market, as shown in Figure 10,
the final way to mitigate penalties is to control the renewable energy generation resources
within the VPP. This approach minimizes penalties by reducing over-generation. However,
since this method negatively impacts the profit of VPP operators who generate income
from renewable energy, it is considered a last-resort process.
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Figure 10. Results of scenario 3 when the proposed method is used with additional bidding in the
real-time market and RES curtailment (Case 4).

The simulation results for scenario 4 are shown in Figure 11. In scenario 4, since the
generation power curtailment is lower than the charging capacity limit of the ESS within the
VPP, all of the over-generation capacity can be absorbed without an additional curtailment
area. It can be observed that the proposed method maximizes the VPP’s profitability by
bidding for additional generation in the real-time market during the peak energy price
period from 19:00 to 20:00.
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Figure 11. Results of scenario 4 when the proposed method is used with additional bidding in the
real-time market (Case 5).

The results of the simulations for each scenario are presented in Table 2. The effec-
tiveness of the algorithm is demonstrated by key parameters such as the penalty cost for
over-generation, the actual income for curtailment areas, the ratio of penalties to income,
and income from additional real-time bidding. As evidenced by the simulation results,
the proposed algorithm yields a lower ratio of penalties to income. Furthermore, it can be
observed that the income generated by the VPP is increased by the additional bidding.
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Table 2. The impact of varying operational scenarios on VPP income.
. Real-Time
Case Penalty (A) 1(;31::;112 :::nlzrg; (é//B) Additional (CO//B)
° Bidding Income (C) ’
Case 1 187,750 1,204,850 15.5% 0 0%
Case 2 46,969 1,206,531 3% 0 0%
Case 3 46,969 1,206,531 3% 554,949 45%
Case 4 0 1,165,000 0% 554,949 47%
Case 5 0 1,269,700 0% 277,785 21%

5. Conclusions

This paper presents an optimal scheduling model for VPPs as a solution to renew-
able energy power curtailment, considering the characteristics of renewable energy
sources such as decentralization, intermittency, and uncertainty. In order to achieve this
objective, this paper focuses on VPP aggregators that operate PV, WT, and ESS, which
constitute the majority of renewable energy resources. Furthermore, this paper presents
an energy optimization scheduling technique that utilizes resources within the VPP in
the complex energy market environment, including the day-ahead market, the real-time
energy market, imbalance, and power curtailment. In order to achieve this goal, this
study analyzed a VPP one-day market bidding model, a real-time market scheduling
model, and a real-time market additional bidding model by applying step-by-step mod-
eling techniques. In order to derive the optimal value of the operation model, a MILP
technique was employed.

The results of the case study analysis demonstrate that, in the context of power cur-
tailment commands, the proposed algorithm achieved a reduction in operational losses of
approximately 3-15% in comparison to a traditional VPP. Furthermore, real-time additional
bidding yielded an increase in VPP profit of over 21%. Based on the numerical results of
this case study, the main conclusions of this paper are as follows:

(1) The proposed Dual-MILP algorithm schedules ESS generation every 15 min, consid-
ering curtailment areas and generation errors. Additionally, it performs real-time
supplementary bidding for the area that can achieve optimal profit in the next
time slot.

(2) Through this, the VPP configuration using PV, WT systems, and ESS demonstrated
higher profitability in the complex energy market structure compared to standalone
systems, thereby confirming the economic attractiveness of this VPP setup.

(3) Additionally, it was demonstrated that a VPP based on an uncertain renewable energy
resource can be characterized and quantified to provide flexibility and ancillary
services. This interaction can assist grid system operators in managing and planning
the transmission system.

(4) The proposed strategy was formulated as a MILP model and simulated on a multi-
energy system, demonstrating the effectiveness and applicability of the model.

(5) Inscenarios involving more dynamic markets within larger systems, computational
efficiency becomes critical. To address this, it can be advantageous to use commercial
solvers such as Gurobi, CPLEX, or CBC instead of the intlprog solver used here in the
MATLAB (version R2020a) simulations in Section 4.

Lastly, in this work, there are also some parts that could be improved. Firstly, future
research could consider the maximization of profit assuming various grid support services,
which have recently diversified [33-36] (from the day-ahead scale of the market to almost-
instantaneous frequency regulation). The proposed model only considers the real-time
market and additional bidding market, thus failing to leverage revenue generation through
grid support services. Given the above research limitations, future studies could utilize a
hierarchical structure like that used in [26,32] to schedule resources in real time while also
enabling profit generation from various grid support services.
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