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Abstract: The urea oxidation reaction (UOR), requiring less energy to produce hydrogen, is consid-
ered as a potential alternative to the traditional oxygen evolution reaction. Consequently, developing
highly efficient UOR catalysts to facilitate H2 production has garnered widespread attention. A
promising approach to enhancing the effectiveness of these electrocatalysts is defect engineering. By
introducing structural defects, defect engineering can expose more active sites and optimize their
electronic structure, thereby improving their activity. This work offers a comprehensive overview
of recent progress in defect engineering of nickel-based electrocatalysts for the UOR. It summarizes
various strategies for generating defects, including the creation of vacancies, doping, the incorpora-
tion of single atoms, amorphization, and achieving high refractivity. Furthermore, we discuss the
advanced characterization techniques commonly used to identify the presence of defects in these
electrocatalysts, as well as to determine their detailed structures. Finally, we outline the prospects
and challenges associated with the systematic design and fabrication of novel UOR electrocatalysts
with tunable defects, aiming to further enhance their efficiency and stability.

Keywords: hydrogen production; urea oxidation reaction; nickel-based compounds; defect engineering

1. Introduction

The severe environmental degradation and non-renewability associated with conven-
tional fossil fuels have spurred aspirations for advancing a new generation of renewable
energy devices, underpinned by cleaner technologies [1–5]. Among most clean energy
alternatives, H2 emerges as a frontrunner, esteemed for its efficiency and environmental
benignity [6–9]. Hydrogen fuel cells, pivotal in harnessing H2 energy, have garnered
widespread attention for their zero-emission attributes and heightened efficiency, rendering
them an appealing substitute for conventional energy sources. Nevertheless, the attainment
of commercial viability for hydrogen fuel cells hinges significantly on the advancement of
H2 production. Currently, methods for H2 production primarily involve steam reforming,
coal gasification, biological methods, and electrolysis of water [10–13]. Among them, the
quest of water electrolysis for H2 production has attracted considerable attention due to its
environmentally friendly and highly efficient characteristics. Traditional water electroly-
sis consists of two half-reactions, the oxygen evolution reaction (OER) at the anode and
the hydrogen evolution reaction (HER) at the cathode, producing oxygen and hydrogen,
respectively. However, conventional water electrolysis for H2 generation encounters a
substantial impediment: the OER process involves complex multiple electron transfer pro-
cess with slow reaction kinetics, thus requiring high potentials [14–17]. To circumvent this
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challenge, researchers have introduced certain thermodynamically less-stable oxidizable
substances, such as urea, into the electrolyte to mitigate the energy barrier associated with
the anodic reaction [18–21]. Replacing the OER with a UOR accelerates the water-splitting
process [22–25]. The formulas for the traditional water electrolysis setup, including the
anodic OER (Equation (1)) and the cathodic HER (Equation (2)), are as follows:

4OH− → O2 + 2H2O + 4e− (1)

2H2O + 2e− → H2 + 2OH− (2)

2H2O → 2H2 + O2 (3)

The OER and HER have theoretical potentials of 0.4 V and −0.83 V vs. RHE, respec-
tively. Consequently, the calculated potential necessary for the full electrolysis of water is
1.23 V (Equation (3)). The formulas for the traditional urea electrolysis setup, comprising
the anodic UOR (Equation (4)) and the cathodic HER (Equation (5)) [26–31], are presented
as follows:

CO(NH2)2 + 6OH− → CO2 + N2 + 5H2O + 6e− (4)

2H2O + 2e− → H2 + 2OH− (5)

CO(NH2)2 + H2O → 3H2 + CO2 + N2 (6)

The calculated voltage for the entire urea electrolysis process is merely 0.37 V (Equation (6)),
markedly lower than the 1.23 V necessary for water electrolysis. Although the UOR involves a
complex six-electron transfer mechanism that results in slow kinetics, this issue can be mitigated
by developing efficient catalysts. However, the inherently lower theoretical potential of the UOR
is regarded as a distinct advantage. Therefore, there is an urgent need to develop catalysts for the
UOR that are both efficient and durable to maximize its practical application performance. Noble
metal catalysts, including platinum and ruthenium, exhibit outstanding performance as catalysts
for electrode reactions [32–34]. Nevertheless, their exorbitant cost and constrained accessibility
have spurred researchers to investigate alternative non-noble metal catalysts. Among various
UOR electrocatalysts, nickel is one of the most extensively studied transition metals due to its
cost-effectiveness and excellent performance in the UOR [35–38].

Currently, extensive research has been conducted on nickel-based materials, which
are abundant, cost-effective, and efficient [39–43]. The application of defect engineering in
Ni-based materials has significantly enhanced the intrinsic activity of the catalysts. Defect
engineering is a classic case of catalyst design. In solid materials, defects can be classified
based on their morphology and properties within the crystalline structure, including point
defects, line defects, planar defects, and volumetric defects. The intentional introduction
of defects allows for the modulation of the catalyst’s electronic and surface properties,
manipulation of the material’s structure and composition, and alteration of its physical and
chemical properties, thereby enhancing the catalyst’s activity. In catalysis, molecules of
reactants need to adsorb onto the catalyst surface before undergoing chemical reactions to
produce products. Defects on the catalyst surface can provide active sites, enabling reactant
molecules to initiate chemical reactions while being adsorbed, thereby rendering the catalyst
more active. The principle behind this lies in the fact that defects generate unsaturated
coordination sites, which are more reactive compared to fully coordinated sites. In addition
to altering the active sites, defect engineering can also modulate the electronic makeup of
the catalyst, adjusting the interactions between the catalyst and reactants, lowering the
activation energy, and enhancing catalytic activity. In summary, defect engineering has
become a potent strategy for boosting catalyst activity and stability in the field of catalysis.
However, its meaningful application in electrochemical UORs remains relatively limited.
Therefore, reviewing recent advancements in utilizing defect engineering for Ni-based
catalysts in assisting hydrogen production remains of significant importance.

This review summarizes recent advancements in defect-engineered nickel-based cat-
alysts aimed at enhancing UOR efficiency, ultimately aimed at enhancing H2 generation
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efficiency. Furthermore, it provides an in-depth examination of associated characterization
techniques. Specifically, the types of defects present in nickel-based catalysts are introduced
and discussed (Figure 1), with a comparative analysis of various defect strategies (Table 1).
It also summarizes common preparation methods and the types of defects formed (Table 2).
Subsequently, this review presents the main characterization methods employed to ascer-
tain the presence, structure, and prevalence of defects in the developed electrocatalysts.
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Figure 1. Schematic diagram of defect engineering of catalysts.

Table 1. Comparison of properties of different materials.

Catalysts HER Activity UOR Activity Water Electrolysis Urea Electrolysis Refs.

NF/P-NiMoO4− x

116 mV
(vs. RHE)

10 mA cm−2

1.59 V
(vs. RHE)

100 mA cm−2
1.66 V 10 mA cm−2 1.48 V 10 mA cm−2 [44]

ZnO-Ni2P/NF (a) -
1.347 V

(vs. RHE)
50 mA cm−2

1.667 V 50 mA cm−2 1.529 V 50 mA cm−2 [45]

Mn-Ni(OH)2/CP
−76 mV

(vs. RHE)
10 mA cm−2

1.347 V
(vs. RHE)

10 mA cm−2
1.61 V 10 mA cm−2 1.407 V 10 mA cm−2 [46]

S-Co2P@Ni2P
103 mV

(vs. RHE)
100 mA cm−2

1.36 V
(vs. RHE)

100 mA cm−2
1.52 V 10 mA cm−2 1.43 V 10 mA cm−2 [47]

Ru/P-NiMoO4@NF
0.23 mV

(vs. RHE)
3000 mA cm−2

1.46 V
(vs. RHE)

1000 mA cm−2
- 1.73 V 500 mA cm−2 [48]

Ni-S-Se/NF
98 mV

(vs. RHE)
10 mA cm−2

1.38 V
(vs. RHE)

10 mA cm−2
1.57 V 10 mA cm−2 1.47 V 10 mA cm−2 [49]

c-CoNiPx/a-P-MnOy

100 mV
(vs. RHE)

10 mA cm−2

1.35 V
(vs. RHE)

100 mA cm−2
2.0 V 100 mA cm−2 1.67 V 100 mA cm−2 [50]
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Table 1. Cont.

Catalysts HER Activity UOR Activity Water Electrolysis Urea Electrolysis Refs.

Pt1/D-NiCo LDH
(b)-24

37 mV
(vs. RHE)

10 mA cm−2

1.25 V
(vs. RHE)

10 mA cm−2
1.52 V 10 mA cm−2 1.32 V 10 mA cm−2 [51]

RhSA
(c)-S-Co3O4/NF

45 mV
(vs. RHE)

10 mA cm−2

1.28 V
(vs. RHE)

10 mA cm−2
- 1.33 V 10 mA cm−2 [52]

Mo-FeNi-LDH (b) -
1.32 V

(vs. RHE)
10 mA cm−2

1.49 V 10 mA cm−2 1.38 V 10 mA cm−2 [53]

Ru-NiO/p-Ni
127 mV

(vs. RHE)
10 mA cm−2

1.39 V
(vs. RHE)

100 mA cm−2
1.75 V 100 mA cm−2 1.58 V 100 mA cm−2 [54]

TiO2@Ni3S2

112 mV
(vs. RHE)

10 mA cm−2
- 1.58 V 10 mA cm−2 - [55]

Ni/TiO2 NPAs (d)
88 mV

(vs. RHE)
10 mA cm−2

- - - [56]

(a) nickel foam (NF); (b) layered double hydroxide (LDH); (c) Rh single atom (RhSA); (d) TiO2 nanopyramid arrays
(NPAs).

Table 2. Comparison of preparation methods and defect types.

Catalysts Preparation Method Type of Defects Refs.

a-Ni(OH)2 Template Method Vacancy defects [57]
V-Ni(OH)2 One-step hydrothermal method Vacancy defects [58]

Mo-NiS/Ni3S2 Hydrothermal sulfurization–acid-assisted etching Vacancy defects [59]
(a) VNi-α-Ni(OH)2 Alkaline precipitation method Vacancy defects [60]

NiFe LDH (b)@Ni(OH)2 Electrodeposition and in situ etching Vacancy defects [61]
Co-NiMoO4/NF Hydrothermal and impregnation Heteroatom doping [62]

P-NiMoO4 Acid etching and oxidative synthesis Heteroatom doping [44]
Ru/P-NiMoO4@NF Hydrothermal synthesis and thermal treatment Heteroatom doping [48]

S-Co2P@Ni2P Chemical deposition and low-temperature phosphidation Heteroatom doping [47]
Ni/Ni3S2@N Clectrodeposition and thermal treatment Heteroatom doping [63]

Ni/r-Ni(OH)2@C Plasma-enhanced chemical vapor deposition Heteroatom doping [64]
Mn-Ni(OH)2 Electrodeposition Heteroatom doping [65]

Ni-TPA (c)@NiSe Hydrothermal synthesis Amorphization [66]
Ni(OH)2–NiMoOx/NF Template method and electrodeposition Amorphization [67]

Ni(OH)S/NF Solvothermal synthesis and annealing Amorphization [68]
NiFe hydroxide Chemical corrosion Amorphization [69]
Nickel carbonate Chemical precipitation Amorphization [70]

Fe-O-P Atomic layer deposition–phosphorization Amorphization [71]
NiOx/N-doped Chemical reduction Amorphization [72]
RhSA-S-Co3O4 Hydrothermal synthesis and rapid quenching Single-atom design [52]

Pt/D-NiCo LDH SACs (d) Electrodeposition and etching treatment Single-atom design [51]
Ir-NiFe-OH Hydrothermal synthesis Single-atom design [73]

TiO2@Ni2(OH)2CO3 Atomic layer deposition High-index facets [55]
Ni3S2 Nanosheet Hydrothermal synthesis High-index facets [74]

(a) nickel vacancy (VNi); (b) layered double hydroxide (LDH); (c) nickel–terephthalic acid (Ni-TPA); (d) single-atom
electrocatalysts.

2. Defect Engineering of Catalysts
2.1. Vacancy Defects

Introducing vacancy defects is considered an effective method for controlling the
atomic and electronic structure of catalysts. Vacancies contain abundant localized electrons,
which can not only anchor individual atoms but also adjust the bonding strength of metal
adsorbates, enabling rapid exchange of intermediates and thus achieving excellent electro-
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catalytic performance. Therefore, creating vacancies can effectively enhance UOR activity.
Complex characterization methods are crucial for identifying the types and quantities of
defects in electrocatalysts and for gaining a thorough understanding of how these flaws in-
fluence catalytic performance. For instance, advanced aberration-corrected high-resolution
transmission electron microscopy (AC-HRTEM) enables direct visualization of materials
at the atomic scale, facilitating the identification of various defects in electrocatalysts. Qin
et al. [58] first employed EDX elemental mapping to provide direct observational evidence
of the uniform distribution of O, Ni, and V elements (Figure 2a). Subsequently, they con-
ducted a detailed structural analysis of HRTEM images of the V-doped catalysts, revealing
that catalysts with different V doping concentrations exhibited varying numbers of exposed
facets and point defects (indicated by white dashed circles) (Figure 2b). Furthermore, by
comparing the 3D pseudo-color surface maps of the catalysts before and after V doping,
they found that the surface roughness increased after V doping, indicating that the lattice
exhibited relatively random interruptions by defects (Figure 2c,d). These findings indicate
that the improvement in the specific surface area and active sites of Ni(OH)2 stems from the
successful doping of V and the introduction of numerous defects through doping. Among
all types of vacancies, the energy required to form oxygen vacancies is extremely low, which
renders them the predominant type of anion vacancies. The presence of oxygen vacancies
may modify the physicochemical characteristics of catalysts. For instance, it is feasible to
modulate the electronic configuration of the catalyst through regulating the quantity of
oxygen vacancies, as well as the active catalytic regions and the affinity of reactants for
adsorption [75]. Researchers have reported the use of oxygen vacancies to improve the cat-
alytic efficiency of catalysts in UORs, as demonstrated by Qiu et al. [44]; NiMoO4 modified
with phosphate was prepared using a simple etching method mediated by polyoxometalate,
leading to the formation of mesh-like nanostructures and numerous oxygen vacancies on
nickel foam (NF, Figure 2e). The resultant catalyst exhibited remarkable HER efficacy,
achieving 116 mV at 10 mA cm−2 and a Tafel slope of 77.5 mV dec−1 (Figure 2f). Similarly,
it exhibited significant UOR activity, achieving 1.359 V at 10 mA cm−2, alongside a Tafel
slope measuring 19.3 mV dec−1 (Figure 2g). Moreover, compared to traditional water elec-
trolysis, the NF/P-NiMoO4−x electrode required just 1.48 V to reach an equivalent current
density to traditional water electrolysis, which needed 1.66 V (Figure 2h). Furthermore, the
electrolytic cell composed of NF/P-NiMoO4−x||NF/P-NiMoO4−x exhibited reductions in
overpotentials by 30 mV at 10 mA cm−2 and 80 mV at 50 mA cm−2, compared to the cell
composed of Ir/C||Pt/C in urea electrolysis. Furthermore, it demonstrated superior long-
term durability over 50 h compared to Ir/C and Pt/C. The introduction of oxygen vacancies
increased the defect energy close to the Fermi level, significantly boosting the electrical
conductivity of NF/P-NiMoO4−x. This improvement accelerates the electrocatalysis of
both HER and UOR kinetics.

The properties of metal compounds are influenced not only by anion vacancies but
also significantly by cation vacancies. Cation vacancies possess unique characteristics due
to their distinct electron and orbital distributions. However, cation vacancies have a higher
formation energy compared to anion vacancies, making the study of their effects more
challenging. Xu et al. [45] synthesized a novel nickel–zinc bimetallic nanosheet bifunc-
tional electrocatalyst (ZnO-Ni2P) on NF (Figure 2i). During the preparation process, the
incorporation of zinc resulted in the formation of a heterostructure composed of Ni2P and
ZnO. ZnO can attract electrons from Ni atoms and transfer them to P atoms, leading to the
formation of Ni cation vacancies and P anion vacancies, which characterizes ZnO as an
‘electron pump’. Ni vacancies facilitate the oxidation of Ni2+ to higher oxidation states, facil-
itating the oxidation of urea molecules. Concurrently, P vacancies enhance charge transfer,
thereby promoting effective adsorption and activation of H* intermediates. Meanwhile,
the prepared catalyst shows excellent effectiveness in UORs and HERs (Figure 2j,k). In
UOR measurements, it achieved 50 mA cm−2 at 1.347 V, and then it achieved 10 mA cm−2

at 68 mV for HER tests. Furthermore, the electrolytic cell was constructed using ZnO-
Ni2P/NF||ZnO-Ni2P/NF in an electrolyte composed of 1 M KOH with 0.33 M urea. The
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applied potentials were 1.424 V at 10 mA cm−2 and 1.529 V at 50 mA cm−2, demonstrating
good performance (Figure 2l).
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2.2. Heteroatom Doping

Doping has found extensive application in the synthesis of various electrocatalysts. By
introducing dopant atoms, electron structure can be adjusted, facilitating the redistribution
of electron density. Additionally, the incorporation of dopant atoms facilitates the formation
of surface defects, thereby enhancing the binding affinity with urea molecules and reaction
intermediates. Consequently, dopant atom doping stands as a widely utilized approach to
enhance electrocatalytic performance. The success of doping can be intuitively determined
through physical characterization. For instance, X-ray photoelectron spectroscopy (XPS) is
an exceptionally precise method of spectroscopy. It can detect the chemical and electronic



Energies 2024, 17, 3801 7 of 24

states on material surfaces. Defects can alter the binding energies of elements in the original
material or even introduce new binding energies, leading to slight shifts in the XPS peaks
or the appearance of new peaks.

Liu et al. [76] prepared Co-doped α-Ni(OH)2 and utilized XPS to verify the effective
doping of Co atoms into α-Ni(OH)2. The characterization of the material involved an
examination of alterations in both the chemical state and the composition at the surface
of the samples. The presence of Ni, Co, and O elements in Co-doped α-Ni(OH)2 was
confirmed through comprehensive spectrum analysis. In the high-resolution XPS spectrum
of the Co-doped samples, the peak corresponding to Ni 2p3/2 shifted towards higher
binding energies, suggesting a modification in the oxidation state of nickel induced by
cobalt doping (Figure 3a). The Co 2p3/2 XPS spectrum indicates that the average oxidation
state of Co exceeds +2. The area ratio of Co2+ to Co3+ suggests the presence of cobalt in
various oxidation states, further confirming the successful incorporation of cobalt through
doping (Figure 3b). By fitting the high-resolution XPS spectrum of O 1s into three peaks,
corresponding to Ni-O bonds, oxygen vacancies or defect edge oxygen atoms, and inter-
calated species oxygen atoms, it was observed that the relative area of Ni-O decreased
while that of O2 increased for the Co-doped samples (Figure 3c). This suggests that Co
doping led to a change in the ratio of Ni2+ to Ni3+ and the formation of oxygen vacancies
or defects. This confirmed that Co doping not only altered the oxidation state of Ni but
also affected the electronic structure and defect state of the samples. Liu et al. [46] utilized
a single-step electrodeposition method to grow manganese-doped Ni(OH)2 nanosheets
on carbon paper (CP) electrodes (Figure 3d), yielding a homogeneous and extensive cata-
lyst layer. This methodology represents a scalable approach to electrode manufacturing.
The resultant electrodes exhibit highly efficient activity in both the UOR and the HER.
Theoretical calculations indicate that manganese doping facilitates the transition of Ni(II)
to Ni(III), thus improving the chemisorption of urea and boosting UOR efficiency. The
nanosheet’s interconnected structure offers more active sites, which are beneficial through-
out the reaction process, facilitating electron and reactant molecule (urea) transfer. EDX
(Energy-dispersive X-ray spectroscopy) mapping confirms the uniform manganese doping
within the Ni(OH)2. The obtained electrodes exhibit outstanding electrocatalytic activity.
In alkaline solutions containing urea, achieving 10 mA cm−2 requires only 1.347 V vs. RHE.
Similarly, 100 mA cm−2 is attained at 1.427 V vs. RHE (Figure 3e). Subsequent testing of the
HER activity of the Mn-Ni(OH)2/CP electrode revealed that it achieved a current density
of 10 mA cm−2 at −76 mV, outperforming the Pt/C/CP electrode, which required −39 mV
to reach 10 mA cm−2 (Figure 3f). Finally, the authors used a Mn-Ni(OH)2||Mn-Ni(OH)2
electrolytic cell to investigate the urea electrolysis activity. In an electrolyte containing urea,
the voltage required to achieve 10 mA cm−2 is 1.407 V, whereas in pure water, the same
current requires 1.61 V (Figure 3g). The long-term stability of urea electrolysis was evalu-
ated through time-resolved potential measurements, showing consistent stability even after
12 h of operation. This validates the exceptional stability exhibited by Mn-doped Ni(OH)2
during urea electrolysis. The superior catalytic activity of the catalyst is closely associated
with Mn element doping: Firstly, the introduction of Mn ions initiates transformations
in the morphology and configuration of Ni(OH)2, fostering the creation of interwoven
nanosheet layers. These layers can promote the formation of more active sites, facilitating
the generation of high-valence Ni. Secondly, according to DFT calculations, the introduction
of Mn induces changes in the electron density distribution of Ni(OH)2. This alteration
diminishes the energy threshold needed to facilitate the formation of high-valence Ni,
consequently amplifying the activity of UOR. Furthermore, Mn doping facilitates easier
adsorption of urea molecules on Mn-Ni(OH)2 surface, resulting in improved UOR activity.
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In addition to metallic doping, non-metallic doping represents an efficacious strategy
for augmenting UOR activity. Yuan et al. [47] synthesized a phosphorized cobalt nanowire
core@shell heterostructure array, decorated with nickel phosphide nanosheets and sulfur-
doped at the interface (S-Co2P@Ni2P) (Figure 4a), for applications in the HER and UOR.
Both experimental and theoretical investigations affirm that sulfur doping at the interface
facilitates the migration of charges from the interior Co2P to the exterior Ni2P, consequently
prompting a redistribution of electrons at the interface Co and Ni centers. This orchestrated
electron redistribution enhances the adsorption energies of active species during both
HER and UOR, thereby bolstering catalytic kinetics and ultimately endowing the prepared
catalyst with exceptional electrochemical performance.

Specifically, in the context of the HER, a minimal overpotential of 103 mV is adequate
to reach a current output of 100 mA cm−2, while for the UOR, an equivalent current
density can be attained with a voltage of 1.36 V (vs. RHE) (Figure 4b,c). To further analyze
the electrode’s effectiveness in catalyzing HERs, the authors integrated the S-Co2P@Ni2P
electrode into the urea electrolysis setup. This resulted in achieving 10 mA cm−2 at a
relatively moderate 1.43 V in the electrolytic cell, notably below the voltage needed for
water electrolysis (1.52 V) (Figure 4d). Sulfur doping alters the electronic structure of the
metal center at the interface, thereby enhancing the catalytic performance of S-Co2P@Ni2P.
Comprehensive physical characterizations and DFT calculations corroborate the pivotal
role of sulfur doping in this context: at the interface of S-Co2P@Ni2P, the introduction of
sulfur doping initiates a redistribution of electrons. This alteration thermodynamically
enhances reactant adsorption and product desorption, consequently enhancing the kinetics
of the UOR (Figure 4e). Following sulfur doping, a marked augmentation in positive charge
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is discerned in the Co centers at the interface of the heterogeneous S-Co2P@Ni2P structure,
which plausibly serve as active sites for the UOR.
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Since the discovery of single-atom doping, researchers have chosen to co-dope two or
more atoms into nickel-based catalysts to further enhance their catalytic performance. A
solid NiMoO4 nanorod array on an NF substrate was synthesized using a hydrothermal
method by Guo et al. [48]. Afterward, submerging the NiMoO4 nanorod array into an
aqueous solution containing Ru facilitated the creation of Ru-NiMoO4@NF nanorods
(Figure 4f). After this, a multi-channel Ru/P co-doped hollow NiMoO4@NF nanorod (Ru/P-
NiMoO4@NF) was prepared via a thermal phosphorylation reaction. The catalyst exhibited
bifunctional electrocatalytic activity, driving high current density towards both the HER
and UOR directions in an alkaline seawater electrolyte. Specifically, the optimized Ru/P-
NiMoO4@NF demonstrated remarkable performance. For the HER, it achieved a working
potential of 3000 mA cm−2 with a voltage of 0.23 mV (vs. RHE). For the UOR, it reached a
working potential of 1000 mA cm−2 with 1.46 V (vs. RHE) in an alkaline seawater electrolyte
(Figure 4g,h). The electrolyzer composed of Ru/P-NiMoO4@NF||Ru/P-NiMoO4@NF
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for urea electrolysis achieved impressive results. The system reached 500 mA cm−2 at an
exceptionally low voltage requirement of only 1.73 V (Figure 4i). Furthermore, it sustained
a current density exceeding 100 mA cm−2 for an extended period, lasting up to 145 h.
Analysis of the Ru/P-NiMoO4@NF samples’ XRD patterns at varying Ru concentrations
demonstrated the absence of addition besides NiMoO4 and the Ni substrate (Figure 4j).
This observation suggests the effective incorporation of Ru and P into NiMoO4 without the
formation of novel phases.

2.3. Amorphization

Amorphous catalysts exhibit unique characteristics not found in crystalline catalysts,
including isotropic atomic environments that differ markedly from the structured arrange-
ments of crystalline counterparts. These traits confer excellent electrochemical performance
upon amorphous catalysts, particularly in the UOR process, where they are more prone to
initiating in situ structural reconstruction, thereby accelerating the formation of electroac-
tive species. Raman spectroscopy, by analyzing the molecular vibration modes of materials,
can identify amorphous regions, lattice defects, and changes in chemical bonds within
crystal structures, thereby providing direct spectroscopic evidence for determining the
types and concentrations of defects in materials. Cao et al. [77] designed a crystalline NiO–
amorphous CrOx mixed oxide electrocatalyst (NiO-CrOx) through a simple hydrothermal
and oxidation process. In situ Raman analysis confirmed the facilitation of NiO reconstruc-
tion into active NiOOH species and enhanced urea molecule adsorption by the presence of
the amorphous CrOx phase. The authors conducted a comparative tracking of NiO-CrOx
and NiO during the reaction process. The results showed that for NiO, the peak corre-
sponding to NiOOH could only be observed when the voltage increased to 1.5 V (vs. RHE),
and the peak intensity was relatively low. However, peaks corresponding to NiO and urea
were observed at 1.25 V for NiO-CrOx. At 1.3 V, the NiO peak vanished, giving way to the
NiOOH peak, identified as the primary active site for the UOR. This result indicates that
the addition of amorphous CrOx promotes the transformation of NiO into NiOOH. The
findings of other researchers also support the conclusion that amorphous CrOx promotes
the transformation of NiO into NiOOH. For instance, Xu et al. [78] obtained Ni/NiO@CrOx
through hydrothermal hydrogenation of nickel foam and utilized in situ Raman spec-
troscopy to elucidate the role of amorphous CrOx during the UOR process. They conducted
in situ Raman measurements on NiO, Ni/NiO, and Ni/NiO@CrOx, revealing that at lower
potentials, characteristic peaks corresponding to Ni(II)-O were detected. As the poten-
tial increased, new characteristic peaks corresponding to Ni(III)-O appeared. However,
there were significant differences in the potentials required for generating NiOOH species
among three catalysts. Ni/NiO exhibited a reduced potential (1.354 V vs. RHE) compared
to NiO (1.364 V vs. RHE), while Ni/NiO@CrOx demonstrated the lowest potential for
triggering the formation of NiOOH species (1.334 V vs. RHE) (Figure 5a–c). The pres-
ence of metallic Ni and CrOx was observed to enhance the catalytic performance of NiO
in the UOR. At 1.334 V, in situ Raman characterization of Ni/NiO@CrOx over various
time intervals revealed the emergence and evolution of peaks. These peaks are associated
with the stretching vibrations at 471 cm−1 and bending vibrations at 554 cm−1 of NiOOH
(Figure 5d). This indicates that dynamic surface structural changes are related to NiOOH
species. Peaks corresponding to Cr-O bonds also evolved with potential and time, eventu-
ally disappearing, suggesting restructuring of the Ni/NiO@CrOx surface. In conclusion,
during the UOR process, the dynamic changes and surface reconstruction of Ni/NiO@CrOx
are associated with the formation of the active NiOOH species. The presence of amorphous
CrOx promotes the generation of NiOOH species, thereby enhancing both the catalytic
activity and stability in UOR, consistent with previous conclusions.
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Chen et al. [49] created NF coated with amorphous nickel selenide deposited on
Ni(OH)2 nanosheets (Figure 6a). The incorporation of sulfur into nickel selenide increases
the electroactive surface area and enhances its affinity for water, thereby providing ideal
adsorption sites for hydrogen atoms. This property bestows the Ni-S-Se/NF catalyst
with remarkable performance in the HER, as evidenced by overpotentials of 98 mV and
206 mV (vs. RHE) at 10 and 100 mA cm−2 (Figure 6b), respectively. Due to the in situ
generation of amorphous hydroxides as the true active components, the Ni-S-Se/NF
demonstrates outstanding UOR activity, with electrode potentials reaching 1.38 V (vs.
RHE) at 10 mA cm−2 and 1.42 V (vs. RHE) at 100 mA cm−2. At 200 mA cm−2, the UOR
potential is approximately 190 mV lower than the OER potential, indicating that urea
electrolysis requires lower energy (Figure 6c). To assess the effectiveness of Ni-S-Se/NF in
catalyzing H2 production via urea oxidation, a comprehensive electrolytic configuration
was devised, incorporating dual Ni-S-Se/NF electrodes. Testing conducted in a solution of
1 M KOH and 0.5 M urea revealed that as the current density increased from 10 mA cm−2

to 100 mA cm−2, and then to 200 mA cm−2, the cell voltage correspondingly escalated
from 1.47 V to 1.60 V, ultimately reaching 1.66 V. Notably, these voltages exhibited a
significant decrement compared to those requisites for water decomposition (1.57, 1.74,
and 1.81 V, Figure 6d), thereby accentuating the efficacy of urea oxidation in mitigating
hydrogen production energy consumption. Moreover, via sustained current assessments,
the researchers assessed the resilience of Ni-S-Se/NF within HER-UOR electrolytic settings.
After 24 h of electrolysis, the cell voltage increased by only 20 mV, a minor increment that
indicates the excellent durability of Ni-S-Se/NF during urea-assisted water electrolysis
for H2 production, thereby confirming its potential as an efficient and reliable electrode
material. They posit that within the catalyst composition, the presence of sulfur in Ni-S-
Se/NF plays a pivotal role in augmenting HER activity. Additionally, in the context of the
UOR process, the hydroxide species originating from sulfur-substituted selenide stands as
the predominant active entity. Structurally, amorphous catalysts exhibit a propensity for
revealing a larger quantity of active sites relative to their crystalline counterparts, coupled



Energies 2024, 17, 3801 12 of 24

with notable attributes of flexibility and inherent self-repair mechanisms. In addition to
fabricating amorphous catalysts, doping crystalline catalysts with amorphous compounds
to utilize their synergistic effects for enhancing the electrochemical activity of catalysts is
also a common strategy. Qiao et al. [50] successfully synthesized a hierarchical structured
composite material of crystalline nickel cobalt phosphide/amorphous phosphorus-doped
manganese oxide (c-CoNiPx/a-P-MnOy) through hydrothermal and high-temperature
phosphorization methods (Figure 6e). This composite material exhibits excellent HER and
UOR activity in alkaline media. Specifically, when evaluated in a 1 M KOH solution, the
overpotentials required to reach 10, 100, and 500 mA cm−2 were 100, 184, and 321 mV,
respectively (Figure 6f). During electrochemical performance testing, the potential required
for the OER to achieve a current density of 100 mA cm−2 is 1.623 V (vs. RHE), which is
273 mV higher than that required for the UOR (Figure 6g). This indicates that the UOR
can replace the OER in traditional water electrolysis, thus reducing the energy required
to produce H2. Further comparative experiments showed that when using c-CoNiPx/a-
P-MnOy in dual roles as cathode and anode for water electrolysis and urea electrolysis,
the urea electrolysis system requires 330 mV less battery voltage to achieve 100 mA cm−2

compared to the water electrolysis system (Figure 6h). The amorphous P-MnOy possesses
numerous active sites, promoting the adsorption of urea and water molecules, thereby
exhibiting higher catalytic activity. Additionally, the combination of the amorphous P-
MnOy with the high conductivity and electron transfer capability of the crystalline CoNiPx
makes c-CoNiPx/a-P-MnOy an efficient catalyst for both UOR and HER.
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electrolysis and urea electrolysis of Ni-S-Se/NF, Reprinted with permission from Ref. [49]. Copyright
2021, Elsevier. (e) Preparation diagram of c-CoNiPx/a-P-MnOy. (f) Electrochemical performance
comparisons among electrodes for HER. (g) Polarization curves of Ni-S-Se/NF in UOR and OER.
(h) LSV curves of water and urea electrolysis of c-CoNiPx/a-P-MnOy, Reprinted with permission
from Ref. [50]. Copyright 2023, Elsevier.

2.4. Single-Atom Design

Single-atom catalysts (SACs) have represented a novel field in catalytic science in
recent years. Compared with traditional heterogeneous catalysts, SACs exhibit the highest
atomic efficiency and unique physicochemical properties, local coordination, and electronic
configurations. SACs can reduce the loading of precious metals and demonstrate excellent
catalytic activity in various catalytic reactions. As a powerful analytical technique, X-ray
absorption spectroscopy (XAS) not only provides more accurate information than XPS
but also possesses unique advantages in studying the local structure, chemical state, and
electronic properties of materials. Through XAS analysis, various defects such as vacancies,
interstitial atoms, and lattice distortions can be accurately identified and quantified. This
renders XAS an indispensable tool for investigating defects in various catalysts, thereby
offering crucial support for gaining a deeper understanding of the defective structure of
materials and its impact on catalytic activity.

Zhang et al. [79] synthesized AC-Co2(OH)3Cl-V-n catalysts doped with single-atom V
through a process involving propylene oxide-induced hydrolysis to form the precatalyst, fol-
lowed by electrochemical reconstruction. Afterward, X-ray absorption fine-structure (XAFS)
spectroscopy was applied to ascertain the exact V structure within the AC-Co2(OH)3Cl-
V-n samples. Firstly, V K-edge XANES spectra of the AC-Co2(OH)3Cl-V-n samples were
obtained (Figure 7a). The results indicated that the spectra of these samples differed in
shape from those of V foil and V2O3, indicating unique arrangements in the local geometry.
Additionally, the AC-Co2(OH)3Cl-V-n series exhibited higher absorption edges compared
to V foil and V2O3. This result suggests that V attained a high valence state following
voltage-induced reconstruction (Figure 7b). To further explore the electronic structure
surrounding the V atoms, an analysis using Fourier Transform Extended XAFS (FT-EXAFS)
was performed. In the R-space spectra, the AC-Co2(OH)3Cl-V-n samples showed a domi-
nant peak positioned at 1.32 Å. This observation further validates that V is in a single-atom
configuration (Figure 7c). Moreover, WT-EXAFS plots demonstrated that the local con-
figuration of V within the AC-Co2(OH)3Cl-V-0.1 sample was regulated (Figure 7d). In
summary, the XAFS characterization provided strong evidence for the presence of V atoms
in a single-atom form.

Besides V single atoms, other single-atom catalysts can also be detected using XAS.
Chen et al. [73] synthesized an Ir-NiFe-OH catalyst by growing a NiCrOx precursor on
NF via hydrothermal methods, followed by hydrogenation of the NiCrOx precursor in
a reducing environment. They employed XAS to conduct a detailed characterization of
the Ir-NiFe-OH catalyst. The results indicated that the average oxidation state of Ir atoms
in Ir-NiFe-OH ranges between 0 and +4. Subsequent EXAFS analysis demonstrated that
the Ir-Ir peak, corresponding to 2.6 Å in the Ir powder standard, is absent in Ir-NiFe-OH,
further confirming that the Ir atoms in Ir-NiFe-OH are in a state of isolated dispersion. In
Ir-NiFe-OH, the coordination number of the Ir-O shell was determined to be 3.9, suggesting
that Ir atoms are coordinated with only a few O atoms in the support. Therefore, XAS
characterization confirmed that Ir atoms in Ir-NiFe-OH exist in a single-atom form.
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Khalafallah et al. [51] utilized an electrochemical deposition method paired with al-
kali etching to position Pt atoms on amorphous NiCo LDH nanosheet arrays that were
generated in situ (denoted as Pt1/D-NiCo LDH-24 SAC) (Figure 8a). Aberration-corrected
transmission electron microscopy demonstrated that the nanoscale defects introduced by
etching significantly strengthened the interaction between individual Pt atoms and the
LDH substrate (Figure 8b). This led to the development of a robust hybrid bifunctional
single-atom catalyst, effectively preventing the clustering of Pt active sites down to the
atomic scale. The Pt1/D-NiCo LDH-24 SAC exhibited outstanding HER and UOR perfor-
mances, attaining 10 mA cm−2, requiring voltages of just 37 mV and 1.25 V. (vs. RHE),
respectively (Figure 8c,d). Using a Pt1/D-NiCo LDH-24||Pt1/D-NiCo LDH-24 config-
uration for the electrolytic cell, the urea electrolyzer exhibited outstanding performance
in the electrolysis tests, achieving 10 mA cm−2 at 1.32 V, which is 0.3 V lower than that
required for pure water electrolysis (Figure 8e). They attribute the enhanced activity and
longevity of the electrocatalyst to multiple factors, such as (i) 3D layered porous framework,
composed of 2D nanosheets, which provides numerous accessible active sites. Addition-
ally, it minimizes the aggregation tendency of Pt single atoms during catalytic reactions.
(ii) Isolated atoms generally possess a precisely adjustable coordination environment and
exhibit excellent structural uniformity. These atoms feature uniformly coordinated active
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centers composed of metals and support materials. The optimized LDH matrix, containing
an appropriate concentration of Pt single atoms, enhances the surface distribution of active
single atoms on the support material, increasing their overall density. (iii) Boosting electro-
catalytic activity hinges on a substantial count of stable active catalytic sites. (iv) Defect
engineering strengthens electron bonding, promoting the formation of active NiOOH sites
and accelerating the electrochemical reaction process. Apart from Pt single atoms, there
has been widespread research interest in other noble metal-based single-atom catalysts
as well. Kumar et al. [52] utilized liquid nitrogen to achieve an ultrahigh cooling rate,
enabling the sample to maintain its morphology, crystal phase, and elemental composition
while expanding the unit cell lattice parameters (Figure 8f). This expansion caused tensile
strain on the Co3O4 support surface, greatly reducing the tendency of Rh single atoms
(RhSA) to migrate and thereby stabilizing their placement. The resulting RhSA-S-Co3O4/NF
exhibited exceptional UOR activity, achieving 10 mA cm−2 at 1.28 V in KOH, surpassing
Pt/Rh-C (Figure 8g). Furthermore, the urea electrolyzer assembled with dual-functional
RhSA-S-Co3O4/NF operated at 1.33 V, achieving and maintaining 10 mA cm−2 for 120 h.
(Figure 8h). According to DFT analysis, RhSA plays a crucial role in stabilizing CO* and
NH* intermediates, thereby enhancing the adsorption and activation of urea molecules and
improving the sluggish UOR kinetics (Figure 8i). Furthermore, the treated support surface
hinders the movement of Rh single atoms, thereby preventing the aggregation of noble
metals. Therefore, RhSA-S-Co3O4/NF exhibits outstanding UOR activity.

2.5. Other Defects

In addition to the previously listed defects, many types of lattice defects (such as lattice
dislocations, expansions, and distortions) can also significantly alter the physicochemical
properties of oxides. Numerous studies have reported the positive effects of these lattice
defects in enhancing electrocatalytic performance. These defects not only enhance the
conductivity of materials but also offer more sites for electrochemical reactions [80–83].
Huo et al. [53] synthesized M-FeNi LDH for UORs using a simple one-pot self-template
strategy (Figure 9a). In the presence of Ni2+, high-valence metal ions were introduced
to form trimetallic M-FeNi LDH. The high-valence metal ions, with their larger atomic
radii compared to Fe/Ni in FeNi-LDH, caused lattice expansion. HRTEM revealed that
Mo-FeNi had a lattice fringe spacing of 0.2 nm, consistent with the (110) plane of FeNi, but
significantly larger than the 0.15 nm spacing of undoped FeNi. Meanwhile, V-FeNi and Mn-
FeNi exhibited lattice fringe spacings of 0.18 nm and 0.17 nm, respectively, corresponding
to the atomic radii of the high-valence metals—1.46 Å for Mo, 1.44 Å for V, and 1.29 Å
for Mn—indicating lattice expansion after Mo doping (Figure 9b,c). Electrochemical tests
indicated that Mo-doped FeNi had superior electrochemical activity, achieving 1.32 V at
10 mA cm−2, which is lower than the potentials required by V-FeNi (1.39 V) and Mn-FeNi
(1.37 V) at the same current density (Figure 9d). Efficient H2 production was achieved
using Mo-FeNi and Pt/C in urea-assisted dual-electrode water electrolysis. The results
showed that using Pt/C||Mo-FeNi significantly reduced the hydrogen evolution voltage
to 1.38 V at 10 mA cm−2 in an alkaline solution containing urea, which was much lower
than the 1.49 V required for traditional water electrolysis at the same current density
(Figure 9e). These results indicate that lattice expansion, caused by the high valence and large
atomic size of the metals, optimizes the electronic structure. This enhancement improves
performance in urea oxidation reactions and promotes urea-assisted water splitting for
H2 production. Jin et al. [54] prepared a versatile Ru-NiO/p-Ni catalyst by doping with
a small amount of Ru and annealing Ni(OH)2 nanosheets that were grown in situ on the
surface of ordered porous Ni (Figure 9f). XRD analysis revealed that the NiO diffraction
peak of Ru-NiO/p-Ni shifted to a smaller angle by 0.13◦ compared to Ru-p-Ni (Figure 9g),
indicating unit cell volume expansion, which suggests lattice distortion. Electrochemical
measurements showed that Ru-NiO/p-Ni could achieve 100 mA cm−2 at 1.39 V in 1.0 M
KOH with 0.33 M urea, demonstrating efficient UOR activity (Figure 9h). Furthermore,
using a Ru-NiO/p-Ni||Ru-NiO/p-Ni configuration for the electrolytic cell, a current
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density of 100 mA cm−2 was achieved during urea-assisted water splitting with only 1.58 V,
representing 170 mV reduction compared to the 1.75 V required for pure water electrolysis
(Figure 9h). Introducing urea-rich wastewater into the alkaline electrolyte and employing
a UOR instead of the OER established a system for H2 production that is energy-efficient
and demonstrates high H2 production activity. In Ru-NiO/p-Ni, the increased amount
of high-valence nickel induced by ruthenium provided sufficient active sites, effectively
enhancing the UOR kinetics and thus promoting H2 generation.
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High-index facets (HIFs) typically have a higher density of low-coordination atoms
and structural features such as atomic steps, kinks, and edges. During the preparation
of catalysts, researchers control the reaction conditions to expose more of these specific
facets, usually high-index facets. Those atoms on HIFs have fewer coordination atoms
compared to those on low-index facets, resulting in higher surface energy and a greater
propensity to interact with reactants, thereby reducing side reactions. The high density of
steps, kinks, and edges provides more active sites for reactants. Additionally, high-index
facets generally have higher surface energy, making them more active during catalysis.
Currently, research on high-index facets is primarily focused on water electrolysis, with
relatively few studies on their application in the UOR. Deng et al. [55] reported a simple
low-temperature sulfuration strategy, wherein Ni3S2 nanosheet branches were grown on
an atomic layer deposition TiO2 framework to synthesize TiO2@Ni3S2 core/branch ar-
rays (Figure 10a). These arrays were used as binder-free electrodes in alkaline solution
water-splitting electrolyzers. The core/branch array framework highlights a substantial
active surface area, alongside a consistent porous structure, and the exposure of abundant
(210) high-index facet active sites within the Ni3S2 nanosheets. Additionally, an angle of
approximately 70◦ is observed between the (003) and (021) planes, aligning closely with the
theoretical 70.8◦ (Figure 10b,c). This suggests that the (210) high-index facet is the exposed
surface of the Ni3S2 nanosheets. Therefore, in alkaline media, the TiO2@Ni3S2 core/branch
arrays exhibited significant electrocatalytic activity. Specifically, at 10 mA cm−2, the over-
potentials were 220 mV for the OER and 112 mV for the HER (vs. RHE), respectively
(Figure 10d,e). The TiO2@Ni3S2 electrode demonstrates outstanding catalytic activity for
the OER and HER. Testing it as both the cathode and anode in overall water electrolysis
revealed 10 mA cm−2 at 1.58 V (Figure 10f). These electrochemical performance tests
indicate that the designed TiO2@Ni3S2 core/branch arrays possess excellent electrocatalytic
properties, making them promising candidates for practical alkaline water-splitting applica-
tions. Compared to traditional TiO2 nanowire array structures (NWAs), TiO2 nanopyramid
arrays (NPAs) were synthesized through the modulation of F- ion concentration in the
growth medium (Figure 10g) by Li et al. [56]. Unlike NWAs, NPAs expose more (001)
facets. The (001) facets have higher surface energy and more low-coordination active sites,
providing stronger adsorption sites for Ni nanoparticles. Subsequently, they used atomic
layer deposition to grow Ni3S2 nanosheet branches on the TiO2 framework, constructing
TiO2@Ni3S2 core/branch arrays. This method retains the activity of the TiO2 high-index
facets while optimizing catalytic activity through Ni3S2 incorporation. The authors used
HRTEM to observe the lattice fringes on the top and side walls of the TiO2 NPAs. The
HRTEM image in Figure 10h shows lattice spacings matching the (001) facets, confirming
the presence of (001) facets. The corresponding SAED pattern (Figure 10i) shows clear
and orderly diffraction spots, indicative of a typical single-crystal structure. The specific
arrangement and symmetry of the diffraction spots correspond to the (001) facets of anatase
TiO2, further confirming the presence and dominance of the (001) facets. Additionally,
SEM images demonstrate the pyramid morphology of the TiO2 NPAs, with side-view SEM
images clearly showing four isosceles trapezoidal sidewalls and a flat top surface in each
nanostructure (Figure 10j). HER activity tests also showed that TiO2 nanopyramid arrays
have better performance compared to TiO2 nanowire array structures. Ni/TiO2 NPAs
exhibit a low overpotential of 88 mV at 10 mA cm−2. In contrast, TiO2 NPAs achieve 10 mA
cm−2 at a higher overpotential of 418 mV (Figure 10k). However, to date, there have been
few reports on the application of HIFs in UORs. Therefore, more theoretical calculations
and experimental studies are needed to explore efficient UOR electrocatalysts with HIFs.

In addition to various defect types mentioned previously, the choice of a suitable
substrate is crucial for enhancing UOR activity. Among the many substrates, nickel foam
has garnered the most attention. Tu et al. [84] immersed nickel foam in a solution containing
thiourea and I2/KI, forming a new active layer on the surface of the nickel foam through
chemical etching. In this process, NF serves not only as a substrate but also as a nickel
source, playing an important structural and functional role. Additionally, its inherent
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fluffy nanosheet structure exposes more active sites, thereby enhancing UOR activity. He
et al. [85] treated nickel foam more simply by directly oxidizing it at low temperatures
to form amorphous NiO nanoclusters with a high defect concentration. The high defect
concentration in amorphous NiO nanoclusters provides more active sites. Studies have
shown that the high defect concentration in NF, including vacancies and dislocations,
enhances its catalytic activity. These defects act as active sites, improving the adsorption
and interaction of reactants, thereby increasing overall electrocatalytic performance. For
example, defects in nickel foam are associated with improved performance in hydrogen
evolution reactions due to increased active site availability and enhanced electron transfer
capabilities. Moreover, the inherent properties of NF make it durable in alkaline environ-
ments, which is beneficial for processes such as the UOR. Using nickel foam in UORs not
only leverages its structural advantages but also provides a direct source of nickel.
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3. Conclusions and Outlook

This paper reviews the application of defect engineering in nickel-based compounds
for the UOR, aiming to replace the OER with the UOR to achieve energy-saving H2 produc-
tion. Various synthesis strategies can introduce specific types and concentrations of defects
in electrocatalysts, including heteroatom doping, vacancy creation, amorphization, single-
atom catalysts, and high-index facets. These strategies significantly affect the electronic
structure, surface properties, and catalytic activity of nickel-based compounds, thereby
enhancing their performance in energy-efficient hydrogen production. Furthermore, we
have introduced advanced characterization techniques for defect confirmation, which
supports better a understanding of the nature of defects. For example, these techniques
include HRTEM for visualizing atomic-scale defects, XPS for analyzing surface chemical
states, XAFS for probing local structural changes, and Raman spectroscopy for detecting
vibrational modes of defect states. These methods provide multifaceted insights into how
defects influence the catalytic activity of nickel-based compounds. Despite significant
progress in defective engineering of electrocatalysts, several key challenges lie ahead.
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(i) The controllable synthesis of catalysts: Currently, most catalysts possess multi-
ple types of defects, rather than a single defect type tailored for specific reactions. This
multiplicity makes it difficult to elucidate the relationship between defects and catalyst per-
formance. If synthesis strategies could be improved to control the type and concentration
of defects, it would not only facilitate the study of the impact of defects on performance
but also enhance performance while minimizing side reactions.

(ii) The application of defect engineering in the UOR: While previously mentioned
defect engineering strategies (such as amorphization, single-atom catalysts, and heteroatom
doping) have been applied in UORs, the strategy of utilizing high-index facets in UORs
is scarcely explored, primarily due to the difficulty in synthesizing HIF materials. In
future, the application of HIF materials in water electrolysis can be leveraged and further
developed for urea electrolysis reactions.

(iii) Defect engineering in catalysts aims to enhance their performance by disrupting
the catalyst’s original structure. However, this process also renders the catalyst itself
unstable. Therefore, functionalizing the catalyst is necessary to improve performance
while enhancing its stability. Feasible methods include inducing partial amorphization or
employing heteroatoms to fill the defects.

(iv) The need for more precise and advanced in situ characterization techniques:
Current characterization methods are often indirect and lack precision when describing the
local coordination environment of defects. Advanced techniques are required to explore
the evolution of catalyst defects during urea oxidation processes, thereby deepening our
understanding and laying the foundation for future practical applications.

(v) The cost of catalyst preparation: Large-scale efficient production of defect-engineered
electrocatalysts remains impractical at present. Despite the promising prospects of defect
engineering in catalyst modification, current research in defect engineering of catalysts
remains at the laboratory scale and has not yet transitioned to industrial applications. There-
fore, reducing catalyst costs and simplifying preparation processes are crucial for achieving
industrial applications of defect-engineered electrocatalysts.
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