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Abstract: The increasing demand for wireless power transfer (WPT) systems for electric vehicles (EVs)
has necessitated advancements in charging solutions, with a particular focus on speed and efficiency.
However, power transfer efficiency is the major concern in static and dynamic wireless charging
(DWC) design. Design consideration and improvements in all functional units are necessary for an
increase in overall efficiency of the system. Recently, different research works have been presented
regarding DWC at the power converter, coil structure and compensators. This paper provides
a comprehensive review of power converters incorporating high-order compensation topologies,
demonstrating their benefits in enhancing the DWC of EVs. The review also delves into the coupling
coil structure and magnetic material architecture, pivotal in enhancing power transfer efficiency
and capability. Moreover, the high-order compensation topologies used to effectively mitigate low-
frequency ripple, improve voltage regulation, and facilitate a more compact and portable design
are discussed. Furthermore, optimal coupling and different techniques to achieve maximum power
transfer efficiency are discussed to boost magnetic interactions, thereby reducing power loss. Finally,
this paper highlights the essential role of these components in developing efficient and reliable
DWC systems for EVs, emphasizing their contribution to achieving high-power transfer efficiency
and stability.

Keywords: electric vehicle; dynamic wireless charging; inductive power transfer; power converter;
resonant compensator; health and safety

1. Introduction

Wireless Power Transfer (WPT) technology has emerged as a promising solution for
charging EVs without the need for physical connectors. This technology operates on the
principle of magnetic resonance coupling, involving two coils: one connected to a power
source and the other linked to the EV’s battery [1,2]. However, the efficiency of WPT
systems is often limited by factors, such as coil distance, coupling coefficient, and frequency
of operation [3]. To address these limitations and enhance the efficiency of WPT systems,
power converters with high-order compensation topologies and dynamic coils with mag-
netic materials have been proposed [4]. The power converter is a critical component in
WPT systems, converting AC power from the source into DC power necessary for charging
the EV battery. The efficiency of the power converter significantly influences the overall
effectiveness of the WPT system. High-order compensation topology is a technique em-
ployed to boost power converter efficiency by incorporating additional passive components
into the converter circuit. These components help compensate for power losses during the
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conversion process, mitigating parasitic effects, and thereby enhancing power conversion
efficiency [5].

The magnetic coil’s structure plays a critical role in improving the efficiency of WPT
systems. These coils are designed to adjust the resonance frequency of the system in real-
time based on the distance between the coils. By integrating magnetic materials into the
design of magnetic coils, a high coupling coefficient is maintained, which in turn enhances
system efficiency. Magnetic materials can increase the flux density of the coil, improving
the coupling between the coils and thus the overall system performance. Research into the
architecture of coupling coils with magnetic materials for WPT systems in EVs is ongoing.
One approach involves using a multi-layered coil design with magnetic materials, such as
ferrites or permalloy, which provide a larger surface area and increased coupling between
the coils. Another approach utilizes metamaterial-based coil designs. Metamaterials,
which are artificial materials with unique electromagnetic properties, can manipulate
electromagnetic waves to increase the magnetic field intensity and reduce energy losses,
thereby improving WPT efficiency. Selecting the appropriate magnetic material for WPT
systems is crucial and depends on the operating frequency of the system. Commonly used
materials include ferrites and permalloy, known for their high magnetic permeability, which
concentrates the magnetic field and enhances coil coupling. Ferrites are more effective at
low frequencies, while permalloy performs better at high frequencies.

In summary, the use of power converters with high-order compensation topologies
and dynamic coils with magnetic materials holds significant potential for improving the
efficiency of DWC for EV applications. As the demand for EVs continues to grow, develop-
ing effective WPT technology is essential for promoting sustainable practices and reducing
dependence on fossil fuels. This paper explores these advanced techniques and their impli-
cations for enhancing WPT, aiming to contribute to the development of more efficient and
effective wireless charging solutions for EVs. The rest of the paper is organized as follows:
Section 1 covers a bibliometric analysis of the WPT system. Section 2 discusses power
converter topologies for the WPT system. Section 3 examines compensation topologies for
the WPT system. Section 4 delves into the magnetic coil structure. Section 6 focuses on
magnetic materials for WPT. Finally, Section 7 addresses safety and health standards.

2. Methodology
2.1. Extraction of Bibliometric Data

The collection of data from published research was vital in achieving the research
objectives, as it allowed for the identification of relevant academic publications to reference
when making conclusions based on the study’s findings. SCOPUS was selected as the
database for this research due to its extensive coverage of various studies, which exceeds
that of other databases, such as WOS (Web of Science), Google Scholar (GS), PubMed, and
many more [6]. For interdisciplinary study domains like the one discussed in the essay,
SCOPUS is also a much better choice. Nonetheless, it should be underlined that materials
generated in the engineering industry are similarly covered by both WOS and SCOPUS.
In June 2024, a bibliometric search was conducted on the SCOPUS database to review
published English language research on wireless power transfer (WPT) and electric vehicles
(EVs) [7]. The search involved analyzing the co-occurrence of keywords, including “Energy
Transfer”, “Magnetic Couplings”, “Inductive Power Transmission”, “Electric Vehicles”,
“Wireless Charging”, “Inductive Power Transfer”, and “Inductive Couplings”, to locate
relevant literature on the application of WPT in EVs [8]. Using integrated lists of targeted
keywords and the Boolean logic operators AND and OR, 2163 records were retrieved. The
search criteria on the SCOPUS database were configured to locate all appropriate records
that included the selected keywords in the title, abstract, or specified keywords area. The
search was restricted to articles published between 2011 and 2022, and only records related
to the research topic were included.
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2.2. Exclusion & Inclusion Criteria

During the initial keyword search, only articles that were relevant to the study were
manually screened. This was accomplished by removing papers that did not directly
relate to the application of wireless power transfer to electric vehicles. Figure 1 shows
the distribution of bibliometric analysis documents. The following criteria were also used
for inclusion:

(a) In order to encompass all possible materials related to the topic, no specific document
type (such as articles, books, lecture notes, etc.) was selected in the search.

(b) The study period ran from 2011 to 2024. Any document produced during that time
was considered. Any publication that fell outside of this range was disregarded.

(c) The applicability of the abstracts’ descriptions of the document’s title and content.
This was important in order to remove any documents that had no bearing on the
study’s subject.
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Figure 1. Distribution of Bibliometric Analysis Documents.

2.3. Scientometric Study

Co-occurrence, co-authorship, co-citation, and citation were evaluated using scien-
tometric metrics (units of measure). In the co-occurrence research, units of measurement
included keywords, nations, and co-authors [9]. Co-authorship used authors, nations, and
organizations as the measuring units. Co-citations were measured in terms of authors
and sources. The use of authors, papers, organizations, and sources was examined in
the analysis of citations. Using network visualizations and density maps, the intellectual
topography was mapped.

2.4. Keyword Co-Occurrence Study

The choice of keywords is crucial in reflecting the essence and scope of research in
any given field. To establish and visualize the knowledge domain between WPT and EVs,
this study utilized VOSviewer1.6.20 to analyze co-occurrence data for selected terms. The
fractional computation method was used to weigh the links, hierarchically organizing the
weight of each link [10]. The resulting term network visualization presented the findings of
the bibliometric analysis, where the distance between two nodes indicated the intensity of
their association. A greater distance between two nodes indicated a weaker association.
To ensure the best clustering, a threshold was set to include only nodes that appeared at
least five times, resulting in 698 out of 8053 entries meeting the criteria. The diagram in
Figure 2 illustrates a network of co-occurring terms that contains eight groups of related
terms, 30,876 connections between these terms, and a combined strength of 6829 for all of
the connections.
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Figure 2. List of Co-authorships with Measures for the Top 10 Items for Author.

Keyword co-occurrence networks offer a stationary depiction of the topic and do not
account for any alterations that may occur over time. However, VOSviewer was used
to display nodes according to the typical year that the term was used in the literature,
showing a decline in the development of WPT applications in the EV sector in recent years.
General terms, such as “inductive power transmission”, “wireless charging”, “electric
power systems”, and “electric cars”, were popular around 2018, possibly due to research
focus or saturation [11]. The focus of recent studies appears to have shifted from exploring
the potential of different wireless power transfer methods to addressing specific concerns,
such as inductive power transfer and electromagnetic shielding for safety. This is evident
from the emergence of research topics, such as “object detection” and “shielding efficacy”,
which suggest a change in research priorities. Only a few innovative techniques, like
“compensation topology” or “internet of things”, stood out.

2.5. Analysis of Author, Country, and Organization Co-Authorship

The bibliographic information available in publications provides details on authors,
their affiliations, and countries of origin, which can be used to identify top scholars and pro-
mote research collaborations. VOSviewer can be used to construct co-authorship networks
and analyze scientific data to visualize knowledge domains. Some frequently cited authors,
such as C.C. Mi, did not collaborate frequently with other writers or publish much material,
while authors with fewer citations, such as V.P. Galigekere, had strong links, as shown in
Figures 2 and 3 [12]. The distribution of publications on WPT uses in EVs was analyzed by
constructing a network of research contributions from various nations. The publications in
the area benefited greatly from the contributions of the US, China, UK, Italy, and Australia.
The engagement between academic institutions and organizations on challenges related
to this area of study was found to be unusual, and increased collaboration across research
institutes is needed to produce more valuable work. Table 1 shows the list of co-authorships
with measures for the top 10 Items for organization. Figure 4 shows the general layout
structure of keyword search analysis.
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Table 1. List of Co-authorships with Measures for the Top 10 Items for Organization.

Organization Citations Total Links Documents

SEE, Southeast University, China 24 7 12

KLSGT and E In Jiangsu Province, China 26 6 8

DECE, San Diego State University, United States 892 5 15

SA, North-western Polytechnical University, China 632 3 6

SEE, Beijing Jiaotong University, China 75 2 10

DEEE, Imperial College London, United Kingdom 752 1 7

DEEE, University of Hong Kong, Hong Kong 241 1 5

SA, Nanjing University of Science and Technology, China 7 1 5

CA, Chongqing University, China 26 0 7

CEIE, Zhengzhou University of Light Industry, China 57 0 5
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3. Power Converter for EVs in Dynamic Wireless Charging

Power converters for Dy need further improvement to enhance energy transfer effi-
ciency and achieve high-power density [13,14]. An uncontrolled rectifier connects the AC
power source via filter, which then interfaces with the inverter and resonance circuit and an
inductive coil [15]. Secondary side rectifiers can be either regulated or unregulated based
on the need for power flow regulation [16,17]. Before connecting the load, an unregulated
bridge rectifier, filter, and secondary pickup coils are attached. Some contemporary works
employ a boost converter to increase the quality factor and control power supply before
the load [18,19]. Resonance is essential in WPT, as it determines the magnitude, frequency,
and phase of the current waveform. Various power conversion topologies, their operating
environments, and benefits are described in detail, considering misalignment, operating
frequency, and load changes [20,21]. The high-frequency inverter generates high-frequency
magnetic waves in the coils, and the generated voltage in the secondary coil is fixed by
high-frequency alternating current before being connected to the battery [22,23]. A stable
AC power supply linked to a grid, or disconnected sources provides the DC source for the
inverter. Converter topologies employ an uncontrolled rectifier followed by a DC-to-DC
power converter to achieve a high-power factor [24,25]. Several resonant converters are
popular for these applications. Compared to traditional converters, resonance converters
place higher voltage strains on switches [26–28]. Similarly, high-frequency alternating
current can be produced using AC–AC matrix converters [29,30]. However, the waveform
disruption increases with the number of switching events, raising disruption factors and
decreasing the power factor of the entire methodology. The power converter components
and energy-containing factors will cause the circuit to reach resonance at the appropriate
operating frequency [31,32].

Types of the most commonly used inverters include:

• Full-bridge single-phase inverter
• Direct AC–AC Conversion Topology
• Class-E WPT system with inverter

3.1. System Using H-Bridge Inverters for WPT

Energy transfer efficiency is higher for the resonance-based H-bridge inverter system
than for non-resonance-based systems, as shown in Figure 5. The WPT system can now be
operated under various loading scenarios thanks to the potential for distinct hybrid reso-
nance topologies [33]. Below are some important resonance topologies from the literature:
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• LCL resonance with high gain
• LCL resonance
• SLC resonance
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This H-bridge high-frequency inverter is given the rectified DC supply (VDC). An
output voltage (Vs) with RMS value of VDC is provided by the inverter. In addition,
the resonance branch causes a resonance dependent on placement of power containing
components.

VS = Vm × sin(2π f0t) (1)

VS is chosen, using VDC as

VS =

[
2
√

2 VDC
π

]
× sin

(
ωo tP

2

)
(2)

The gate pulse’s phase shift time delay is known as tp. Similarly, fo represents the
inverter’s operating resonance frequency in Hz. The operation’s resonance frequency (ωo)
is given in rad/s.

3.2. H-Bridge Inverter Configured Using LCL Resonance for High Gain

High DC–DC voltage gain is a particular goal of the high-gain LCL architecture, which
lowers the level of input voltage needed. Figure 6 depicts the simplified circuit of the
high-gain LCL-based WPT system [34]. The current can flow in both directions when
a pair of back-to-back semiconductor switches are linked. The main parallel capacitor
is a more reactive power-efficient compared to the usual LCL configuration, thanks to a
modification [33]. The equivalent secondary capacitance can be written as:

Cseq =
1

Ceqω2 (3)

Here, Cg and Cp together make up Ceq capacitance. The reflected capacitance in each
of these topologies is expressed as

Cr
(

Req, M
)
=

R2
eq
(
ω2CspLseq − 1

)2
+

(
ωLseq

)2

(ω4M2)
[

R2
eqCsp

(
ω2CspLseq − 1

)2
+ Lseq

] (4)
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This equation clearly shows that the reciprocal inductance depends on the reflected
capacitance. The mismatched distance between the coils affects the mutual inductance. Fur-
thermore, reflected capacitance affects the resonance’s operating frequency. Consequently,
reflected resistance [34] Rr is denoted by the following formula:

Rr
(

M, Req
)
=

[
ω2CsLse −

(
ω2CsLse − 1

)]
Req(ωM)2

R2
eq(ω

2CsLse − 1)2 + (ωLse)
2 (5)

In a WPT system, the voltage gain under misalignment is higher for the high-gain WPT
system that uses an LCL-based design compared to the conventional SLC and LCL-based
designs. This is even true at a loosely linked range. Therefore, this converter is suitable
for a WPT system that has a significant misalignment. During the resonance period, the
component that depends on R vanishes. This ultimately implies that this system’s resonance
frequency will not be affected by variations in load during the resonance. The relationship
between mutual inductance and primary current determines the open circuit voltage.

Consequently, the secondary current is likewise decreased for a loosely linked system.
The magnitude of the primary current and operating frequency is significantly influenced
by the secondary resonance. Based on how the secondary circuit elements are arranged,
the reflected capacitance is determined.

3.3. H-Bridge Inverter Configured Using LCL Resonance

Figure 3 shows a standard H-bridge inverter, while Figure 6 illustrates the arrangement
of energy storage components for the equivalent LCL resonance architecture, which allows
the hybrid resonance to feed the input AC voltage. This is an LCL with LCC compensation.
Primary equivalent inductance (Lpeq):

Lpeq = Lp −
1

ω2Cr
− 1

ω2CPL
(6)
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Primary series capacitor (CPS):

CPS =
Lseq

ω2
o
[
L∆PLseq − M2

] (7)

Lseq =
1

ω2CPP
(8)

Here, Cr equals capacitance, M represents mutual inductance between the coils, and
CPL is the principal series variable capacitor [35]. An equivalent primary inductance is
created by modifying the circuit’s series capacitance and the primary inductor. The H-
bridge inverter’s output current is constrained by the bridge inductor Lb. The principal
equivalent inductor Lpeq and the capacitor CPS are in resonance. Adjusting the main
compensation capacitances enables the LCL-based WPT system to handle a large load.
Misalignment affects the reflected capacitance, but significant changes in misalignment
have a limited impact on equivalent inductance. This results in a progressively reduced
frequency change required to maintain resonance under misalignment.

3.4. H-Bridge Inverter Configured Using SLC Resonance

Figure 6 shows how the energy storing elements are arranged for the similar SLC
resonance structure. According to this case, primary compensation capacitance (Cp) is:

CP =
Lseq

ω2
0
[
LseqL∆P − M2

] (9)

Because of primary equivalent inductance, change in inductance (L∆P) is:

L∆P = LP − Lpeq (10)

Different arrangements of energy storage components can generate the second-order
resonant frequency in WPT, such as SP, SS, PP, and PS [36–38]. The efficiency of the SLC
design is high even under heavy load, but its light load efficiency is relatively low.

3.5. Direct Conversion of AC-to-AC Energy Topologies

This high-frequency inverter used in typical WPT applications transforms a DC source
into a high-frequency inverted AC supply [27,39]. This technique for generating high-
frequency AC from lower frequency AC was less power efficient, since there were more
conversion processes involved.

3.5.1. Converter Matrix Topology 1

Matrix converters were able to do this task satisfactorily in the given circumstances.
Compared to older converters, the matrix converters made the bidirectional power transfer
easier. This system displayed remarkable power density due to the energy storage compo-
nents being lowered more than usual. This increased the system’s dependability. However,
the operation is difficult since there are more bidirectional semiconductor switches, as
shown in Figure 7 [27]. This method resulted in output voltage and current of subpar
quality. Semiconductor switches required specific consideration in order to operate concur-
rently. To ensure increased efficiency, the switches are required to be soft-switched. The
resonant current for fundamental harmonic (Imn

1 ) is:

Imn
1 =

Vmn
1

Req
=

±(m + n)|Vac|
4πReq

(11)
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Power transfer rate (Pt) is:

Pt =
1
2

Req(Imn
1 )2 =

V2
ac(m + n)2

32π2Req
(12)

Here, Average power transfer rate (Pm) is:

Pm =
V2

AC(m + n)2

32π2Req
(13)

Here, Req means reflected equivalent resistance for the primary side.

3.5.2. Direct AC-to-AC Converter Topology 2

The use of a direct AC–AC converter can address the key issues associated with
matrix converters. This converter has the capability to convert less-frequency power into
large-frequency alternating current [40]. One normal converter is shown in Figure 8, which
operated by free oscillation to regulate the energy it injects. The design allows bidirectional
energy transfer, and reflections from other circuit components are detected by the primary
side. Resonance is caused by the circuit’s lumped inductor and series tuning capacitor. The
voltage across switch is Vp. If Vp = Vac sinβ, then it is injection and, similarly, if Vp = 0,
then it is oscillation.
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The complete expression for track current (iL) is:

iL =
−VC(0)

ωL
e
−t
τ sin ωt + iL(0)

ω0

ω
e
−t
τ cos(ωt + θ) (14)

Here iL(0) is inductor’s current similarly and VC(0) is initial voltage of capacitor,
respectively. [ 2L

Re
= τ]. Resonance frequency: ω0 = 1

LC . These matrix converters’ greater
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switching density will result in a worsened THD and power factor. This converter needs
much work before it can be used to charge electric vehicles. Testing for EMC compliance
will be difficult now because of the converter. Therefore, the converter is a poor choice for
the WPT system. The next part covers the Class-E-based WPT mechanism.

3.6. Class-E Inverter

Class-E inverters are commonly used for the low-power applications due to high
switching stress. However, the high efficiency required to transmit power effectively is pro-
vided by the Class-E based architecture, with fewer semiconductor switches. Additionally,
it will make the system more compact [41,42]. The traditional Class-E converters that are
now on the market operate with a high frequency and high-quality factor. Because of this,
the components of the circuit are reduced. This is yet another core part for producing the
large alternating current required by the inductive coil. The magnetic coil and included
resonance architecture simplify and condense the circuit. All secondary linearly calculated
energy storage devices [43], together with their equivalent circuit, are referred to against
the main wing for analysis, in order to determine effective impedance disclosed from
source. The inverter runs in the MHz band for preservation of the quality factor of the
receiver side [44,45]. Figure 9 depicts the impedance transformation capacitance CP and
the resonance series capacitor C1. Here Lin and Rin are represented as

Rin =

(
Req + rL1

)
C2

Pω2
(

ωLeq − 1
ωCp

)2
+

(
Req + rL1

)2
(15)

Lin =
Leq

(
1 − ω2CPLeq

)
− CP

(
Req + rL1

)
2

C2
Pω2

(
ωLeq − 1

ωCp

)2
+

(
Req + rL1

)2
(16)

Here Rin and Lin are the equivalent inductance and resistance values for a simplified
inverter when compared to other circuit components. A series resonance circuit is created
by connecting capacitor C1 in series with Lin and Rin. A good examination can yield the
inverter’s switching pattern.
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3.6.1. Class-E2 WPT System

A single switched device called a Class-E rectifier is used to diagnose greater fre-
quency of switch with reduced voltage ripple. As a half-wave rectifier, a single diode is
connected [46,47]. The Class-E2 WPT system is seen in Figure 10. Class-E inverters and
rectifiers keep the system functioning. According to Figure 9, the Class-E inverter is made
up a single coupled switch S.

Here input capacitance (Ci) is:

Ci =
4πCd

(4π(1 − Dd) + 4sin(2πDd)−
2sin(2∅d)− sin(4πDd)cos(2∅d))

(17)
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Here, CD is MOSFET-’s parasitic shunt capacitance and Ci means input capacitance [22,23].
Equivalently, rectifier’s input resistance (Ri) is:

(Ri) = 2RLsin2∅d (18)

As for the phase shift (∅d ):

∅d = tan−1
(

1 − cos(2πDd)

2π(1 − Dd) + sin(2πDd)

)
(19)

Here, ∅d is phase change between voltage and current and Dd is diode on duty ratio
circuit of Coupling. Equivalent resistance (Req) is:

Req =
k2ω2L1L2(rL2 + Ri)(

ωL2 − 1
ωCr

)2
+ (rL2 + Ri)

2
(20)

Equivalent inductance (Leq) is

Leq = L1

(
1 − k2

)
+

k2L1⟨(rL2 + Ri)
2 − L2

Cr
+

(
1

ωCr

)2
⟩

rL2
(21)

Here, L1, L2 are the primary and secondary inductances and k the coupling factor. Like
this, rL2 equals the secondary pickup coil’s internal resistance [44,46]. Cr is the reflected
capacitance the Class-E inverter may be broken down into using Req and Leq. Using Class-E
based as well as derived circuit topologies in future solutions looks promising. However,
a major improvement is required if the circuit architecture is to be employed for electric
automobiles [22]. The next part, which examines the circuit from a different angle, addresses
the drawbacks of these Class-E converters.

3.6.2. Compact High-Efficiency WPT System

This is another unique technology that operates differently than the standard [48]. The
pulse position is employed for operating a higher-frequency inverter in this case. With
a proper compensating capacitor combination, an unregulated rectifier is linked to the
secondary pickup coil.

A low pass filter is also used to link the rectifier to the load [49]. By using S1 and
S2 switches and D1 and D2 diodes, high-frequency alternating current is generated, as
shown in Figure 11. The architecture incorporates the resonance circuit in such a way
that energy storage and transmission occur via semiconductor components. Furthermore,
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compared to the LCL architecture, this converter can provide superior control over the
resonance [47,48,50].
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3.6.3. Equivalent Circuit of Class-E WPT

Figure 12 depicts the analogous circuit of the small, high-efficiency WPT system. The
fundamental components of the WPT system are usually referred to as the analogous
secondary circuit parts. The secondary circuit receives the energy used by the reflected
branch. When switch S1 is activated, diode D1, used as a forward-biased diode, charges
inductor LC. Switches are switched on in tandem. After switch S1 removes the gate pulse,
the body diode’s conduction causes the current to flow via inductor Lc. Switch S2 and the
matching body diode conduct if the inductor current discharges. As a result of this process,
the inverter operates on pulse position as opposed to pulse span.
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Primary current passing through inductive coil (Ip):

Ip =
VdcωCp1

RrωCp1 − J
(
1 − ω2LseqCp1

) (22)

Correspondingly, secondary track current [is(t)]:

is(t) = Ism sin(ωt −∅) (23)

Here:

∅ = − tan−1
{

ω

Lseq
Req

(
1 − ω2LseqCsp

)}
(24)

3.7. Comparison of Topologies

Depending on the kind of load attached to it, every topology provides a different set
of advantages. The prevalent topologies now in use are compared based on variations
in efficiency and voltage gain. Additionally, several influencing factors on the resistance,
SOC and SOH are all important for the state estimation of lithium batteries. If the charging
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current together with voltage fluctuates, the steady-state resistance of the battery will
also change [48,51,52]. While the battery is being charged, the average current gradually
decreases. If not, the initial charging period will have a high current. In turn, this results
in high steady-state resistance. For the same reason, there is also a change in the reflected
resistance from the load side. This section examines the influence of this variation based on
research [53,54]. At the receiving end, the diode bridge is not linear. The diode bridge’s
projected equivalent linear resistance is derived by dividing the fundamental RMS voltage
by the fundamental RMS current.

Now equivalent resistance (Req) is:

Req =
π2RL

8
(25)

Here, Req stands for state resistance and RL represents load resistance. The coil changes
affect the current due to load fluctuations. In the event of a failure or short circuit, a
significant amount of electricity may be drawn from the source. This can be anticipated,
and the converter can be designed to accommodate these conditions [55]. A compact, high-
efficiency design uses fewer semiconductor components compared to other topologies,
while a high-gain LCL architecture employs more semiconductor components. These two
topologies have distinct applications and display different characteristics under varying
load conditions. The standard LCL architecture is well regarded for its reliable performance
in this field. Similarly, the high-gain LCL architecture achieves exceptionally high voltage
gain with lower coupling coefficients. Its high-efficiency capability ranges from 85% to
90%, depending on the load, whereas LCL efficiency ranges from 73% to 86%. Class-E
based devices operate at frequencies in the MHz range and can comply with SAE and QI
standards. The high-gain LCL can be used in both LCL and high-gain modes, achieving
similar properties to LCL while offering greater control flexibility compared to other
topologies. Advanced near-field wireless energy transfer technology, such as the powerful
electromagnetic wireless power transfer (WPT), is the most sophisticated. Despite certain
limitations, the complexity of the WPT system has enabled testing and implementation of
various proposals for variable charging of top devices through electromagnetic fields.

4. High-Order Compensation Topology

Inductive resonant couplings are used in WPT, which have recently undergone ex-
tensive study, particularly for wireless EV charging systems. Wireless charging provides
a contact-free energy transfer method, avoiding the need for bulky connectors or wires,
making it more practical and versatile. This allows for charging in diverse situations and
locations [56,57]. Dynamic charging solutions, such as in-motion charging, are a significant
research focus to address the range anxiety associated with low battery capacity. While
significant advancements have been made in stationary wireless power technology, there
is growing interest in quasi-dynamic charging solutions. The literature on WPTs utilizing
resonance principles predominantly focuses on the fixed frequency technique [58–60]. De-
signing, analyzing, and operating WPTs requires a comprehensive approach, considering
factors that enhance efficiency and power output, various potential resonant frequencies,
Zero Phase Angle (ZPA) or Unity Power Factor (UPF) efficiency, Constant Current (CC) and
Constant Voltage (CV) modes, fixed or variable frequency schemes, and hybrid CC/CV
profiles for Li-ion batteries, which are the most common type for EVs.

4.1. Fundamental Resonance Blocks for Power Transfer Systems

LC (inductor–capacitor) resonant circuits are essential components of efficient WPT
to EV. In designing WPT, both single and double resonant blocks based on LC resonance
are commonly used [60]. Two main types of resonance blocks influence the design of the
primary and secondary coils: the S-block and the T-block. The T-block serves as a double
resonance block and is especially beneficial for analyzing dynamic systems.
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4.1.1. Single Resonance System for WPT

Based on LC resonant circuits, basic single-resonance blocks are available in series
(S) and parallel [(P), (Γ), and (7)] configurations to connect resonance components, as
shown in Figure 13. Each block in the WPTs represents an energy transfer system that uses
power sources in either Constant Current (CC) or Constant Voltage (CV) modes to transfer
energy to load Zo [60–62]. Generally, the source is modeled as an ideal CV or CC source
with internal impedance ZVI or ZCI, respectively, using Thevenin’s theorem or Norton’s
theorem. The parasitic resistance Rs of the components in the transmitting blocks using
resonant LC circuits is equal to the equivalent resistance Ro of the load Zo. To determine
the effects of resonance on efficiency, input impedance, and output power, a thorough
analysis of the S-block transfer system with a non-ideal CV source is conducted.
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Resonance on efficiency:

ηCV
S = R0/(R0 + Rvi + Rs)

∣∣∣ Rs = Rr + Rl (26)

When using a CV source, the resonant condition on Xs does not impact on efficiency
of energy transfer [63]. On the other hand, the efficiency decreases when the parasitic
resistance Rs is increased.

ηCC
S =

R0

Rs + R0 + ∥ Z0+Zs
Zci

∥2
Rci

(27)

Resonance condition with Z0 minimizes energy loss in CC source, which improves
efficiency. When the load is purely resistive, resonant condition for highest efficiency is
Xs = 0.

Output power:

PCV
S =

V2
i R0

∥Z0 + Zs + Zvi∥2

∣∣∣∣∣ Zs = Zl + Zr (28)
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The S-block’s resonance condition with Z0 along with source Z0 (Xs + Xvi + X0 = 0)
results in maximum power output for (CV) source. When the source is the ideal CV
source, the resonance condition simplifies to Xs + X0 = 0, which corresponds to UPF
(unity power factor) conditions for that circuit from the CV source. ZPA/UPF gives peak
effectiveness and the highest possible power output to the load. Table 2 shows the single
and double-resonance blocks for wireless power transfer systems.

PCC
S =

I2
i R0

∥Z0/Zci + Zs/Zci + 1∥2 (29)

Table 2. Single and double-resonance blocks for wireless power transfer systems.

Transfer Block Efficiency and Benefits of Resonance

CV Source CC Source
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resistive load. Pout is increased when current is
reducing through Zp. CC source to CC source

Energies 2024, 17, x FOR PEER REVIEW 16 of 43 
 

 

Transfer Block Efficiency and Benefits of Resonance 
 CV Source CC Source 

S-BLOCK

jX+Rl -jX+Rr

 

𝜂ௌ஼௏ = 𝑅଴𝑅଴ + 𝑅ௌ + 𝑅௩௜ , 𝑅଴ = 𝑅௟ + 𝑅௥ 𝑋଴ + 𝑋ௌ = 0 
η is same. UPF/ZPA is achieved by adjusting 
for reactance. Pout can be enhanced and 
maximized by lowering overall reactance. CV 
source to CV source 

𝜂ௌ஼஼ = 𝑅଴𝑅଴ + 𝑅ௌ + ቛ𝑍଴ + 𝑍௦ 𝑍௖௜ൗ ቛଶ 𝑅௖௜ X଴ + Xୗ = 0 
η enhance by lowering loss in Zci (non-ideal CC 
source). UPF/ZPA is achieved by adjusting for 
reactance. Pout is increased by reducing overall 
reactance. CC source to CV source 

P-BLOCK

jX+Rl

-jX+Ry

 

𝜂௉஼௏= 𝑅଴ 𝑅ௌ + ቛ𝑍଴ 𝑍௉ൗ ቛଶ 𝑅௉ + ቛ𝑍଴ 𝑍௉ൗ + 1ቛଶ 𝑅௩௜൙  𝑋௉ = ∞ 𝑜𝑟 𝑋଴ + 𝑋௉ = 0 
η increase by canceling loss on parasitic Rp 
and reduce losses in source resistance Rvi. 
UPF maintained, UPF/ZPA achieved in case 
of pure resistive load Pout improved by 
reducing current through Zp CV source to CV 
source 

𝜂௉஼஼ = 𝑅଴ 𝑅ௌ + ቛ𝑍଴ 𝑍௉ൗ ቛଶ 𝑅௉ + ቛ𝑍଴ 𝑍௖௜ൗ ቛଶ 𝑅௖௜൙  𝑋௉ = ∞ 
η maximized by canceling loss in RP. UPF maintained, 
UPF/ZPA achieved in case of pure resistive load. Pout 
is increased when current is reducing through Zp. CC 
source to CC source 

7-BLOCK

-Jx+Rm

Jx+Rl

 

𝜂଻஼௏= 𝑅଴ 𝑅ௌ + ቛ𝑍଴ 𝑍௠ൗ ቛଶ 𝑅௠ + ቛ𝑍଴ 𝑍௠ൗ + 1ቛଶ 𝑅௟௩௜൙  𝑋௠ + 𝑋௟ + 𝑋௩௜ = 0 
η unchanged. UPF/ZPA unchanged CV-CC 
mode changed and CC source improved with 
large Xm 

𝜂଻஼஼ = 𝑅଴ 𝐶 + ቛ𝑍௟𝑍௠ + (𝑍௟ + 𝑍௠)𝑍଴ 𝑍௠𝑍௖௜ൗ ቛଶ 𝑅௖௜൙  X୫ + X୪ = 0 
η improved by reducing loss in non-ideal CC source 
Zci. UPF/ZPA changed. 

Γ-BLOCK

jx+Rr

-jX+Rm

 

𝜂୻஼௏ = 𝑅଴ 𝑅௥௢ + ቛ𝑍଴ + 𝑍௥ 𝑍௠ൗ ቛଶ 𝑅௠+ ቛ𝑍଴ + 𝑍௥ + 𝑍௠ 𝑍௠ൗ ቛଶ 𝑅௩௜
൚  

𝑋௠ + 𝑋௟ + 𝑋଴ = 0 
η improved by reducing loss in non-ideal CV 
source Zvi. ZPA changed by adding Xm to Zm 
as Xm increased, the loss in Rvi decreased 

𝜂୻஼஼ = 𝑅଴ 𝑅௥௢ + ቛ𝑍଴ + 𝑍௥ 𝑍௠ൗ ቛଶ 𝑅௠+ ቛ𝑍଴ + 𝑍௥ 𝑍௖௜ൗ ቛଶ 𝑅௖௜
൚  

𝑋௠ + 𝑋௟ + 𝑋଴ = 0 
η unchanged CC-CV mode changes, CV source 
improved. UPF/ZPA changed by adding Xm to Zin. 
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Rr-jX
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Resonance condition enhances the power output, Xs + X0 = 0, and Xci is high in case 
of Constant Current. Input impedance is 

ηCV
7 =

R0
/

RS + ∥ Z0
Zm

∥2
Rm + ∥ Z0

Zm
+ 1∥2

Rlvi
Xm + Xl + Xvi = 0
η unchanged. UPF/ZPA unchanged CV-CC mode
changed and CC source improved with large Xm

ηCC
7 =

R0
/

C + ∥ Zl Zm+(Zl+Zm)Z0
Zm Zci

∥
2
Rci

Xm + Xl = 0
η improved by reducing loss in non-ideal CC
source Zci. UPF/ZPA changed.
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Resonance condition enhances the power output, Xs + X0 = 0, and Xci is high in case 
of Constant Current. Input impedance is 

ηCV
Γ =

R0

/
Rro + ∥ Z0+Zr

Zm
∥2

Rm

+∥ Z0+Zr+Zm
Zm

∥2
Rvi

Xm + Xl + X0 = 0
η improved by reducing loss in non-ideal CV
source Zvi. ZPA changed by adding Xm to Zm as Xm
increased, the loss in Rvi decreased

ηCC
Γ =

R0

/
Rro + ∥ Z0+Zr

Zm
∥2

Rm

+∥ Z0+Zr
Zci

∥2
Rci

Xm + Xl + X0 = 0
η unchanged CC-CV mode changes, CV source
improved. UPF/ZPA changed by adding Xm to Zin.
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Resonance condition enhances the power output, Xs + X0 = 0, and Xci is high in case 
of Constant Current. Input impedance is 

ηCV
T =

R0

/
Rro + ∥ Zr+R0

Zm
∥2

Rm+

∥ R0+Zr+Zm
Zm

∥2
(Rvi + Rl)

Xm = Xl = Xr; Rm = 0
η increased by lowering loss in Zvi and Zl
UPF/ZPA maintained with double resonance
CV-CC, CC-source increased with large Xm
As value of Xm increased the loss in Rvi decreased

ηCC
T =

R0

/
Rro + ∥ Zr+R0

Zm
∥2

Rm+

∥ R0+Zr+Zm
Zm

∥2
Rl + ς(Rci)

Xm = Xl = Xr; Rm = 0
η increased by reducing loss in Zvi and Zl.
Maintaining UPF/ZPA by double resonance.
CC-CV, CV-source increased with large Xm. As
value of Xm increased the loss in Rvi decreased, then
η is improved.

Resonance condition enhances the power output, Xs + X0 = 0, and Xci is high in case
of Constant Current. Input impedance is

Zin
S = ZS + Z0 (30)
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Impedance Zin of the circuit satisfies ZPA/UPF state, where Zin = Rs + R0 and
Xin = Xs + X0, equals zero. By employing absolute source in S-block, this identical synchro-
nization situation is present for attaining ZPA/UPF with peak effectiveness and the highest
possible power output to the load.

4.1.2. Double Resonance System for WPT

In dynamic wireless charging, double resonance block (T-block) [64] has an important
role. Figure 14, A generalized block diagram of inductive coupling systems. T block is
made by combining parallel single resonance block (7) and (Γ). Therefore, it has more
advantages than other resonance blocks. Efficiency of T-block is given as

ηCV
T =

R0
/[

Rro +
(

R2
ro + X2

ro

)Rm

Z2
m
+

(
R2

mro + X2
mro

)Rlvi
Z2

m

]
(31)

where Zro = Zr + Z0; Z2
m = R2

m + X2
m; Zmro = Zm + Zr+ Z0; and Rlvi = Rl + Rvi. Subscript Zl,

Zr, and Zm represents similar characteristic impedance of T-block’s left, right, and middle
components, respectively. Maximum efficiency:

Xr0 = arg max
(

ηCV
T

)
= − RlviXm

(Rlvi + Rm)
(32)
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Figure 14. A generalized block diagram of inductive coupling systems with an ideal T-block 
segregated from self-inductances. 

It should be emphasized that the resonance situation is beneficial in minimizing 
parasite and inner source resistance losses (Rlvi = Rl + Rvi), which is why T-blocks are used. 
The resonance condition in this case depends heavily on Rm. This is influenced mostly by 
the ESR of parallel capacitors [65–67] in compensating tanks in linked coils. When Rm 
deviates from null, it becomes an issue to consider in mistuned settings in WHPT systems. 
Zm’s value has a significant impact on efficiency. The value of Xm has notable effect on 
loss in Rlvi, which is important to observe in weak-coupling systems. When Rm = 0, the 
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Figure 14. A generalized block diagram of inductive coupling systems with an ideal T-block segre-
gated from self-inductances.

It should be emphasized that the resonance situation is beneficial in minimizing
parasite and inner source resistance losses (Rlvi = Rl + Rvi), which is why T-blocks are used.
The resonance condition in this case depends heavily on Rm. This is influenced mostly
by the ESR of parallel capacitors [65–67] in compensating tanks in linked coils. When Rm
deviates from null, it becomes an issue to consider in mistuned settings in WHPT systems.
Zm’s value has a significant impact on efficiency. The value of Xm has notable effect on
loss in Rlvi, which is important to observe in weak-coupling systems. When Rm = 0, the
resonance condition Xro = −Xm, as illustrated in Table 2 [64,68,69]. The single requirement
for a-block is set for optimal efficiency. It is vital to remember that, in the case of CV sources,
the resonant block determines efficiency.

Figure 15 shows the four typical methods for compensating for and/or improving the
efficiency of WPT systems. Compensation can be achieved using four basic forms based
on self-inductance: S/LC compensation, LCL compensation, LCCL compensation, and
intermediate coil addition compensation. Self-inductance is converted into resonant S- or
T-blocks using capacitors, inductors, and capacitors in LC-/LCC circuits, or intermediary
coils connected in series with capacitors. The S-block aids in power transfer and maintains
Unity Power Factor (UPF) or Zero Phase Angle (ZPA) but does not enhance efficiency [68].
Due to its simple construction and absence of inactive components, the S–S topology has
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fewer parasitic resistances. However, this topology’s efficiency is significantly reduced
under weak coupling conditions (small Am) with non-optimal power sources (presence of
Rvi). T-blocks with large inductors (Lf) are not ideal as they exhibit high parasitic resistance
and potential core loss. To reduce the Lf value and lower inductor costs, the LCC topology
is used instead of the LC topology, incorporating an additional capacitor in series with the
original coils [70,71].
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4.1.3. T-Block Model Appropriate for DWPT

In EV charging systems, the main coupling resonators in each inductive wireless
power transfer (WPT) system are modeled using a T-block, as shown in Figure 13. However,
designing the inductive coupling coils is challenging due to variations in mutual inductance
(Lm) or coupling coefficient (k) [64,69,72–74]. A T-model, built on a loosely coupled
transformer with components for mutual and leakage inductance, is often used to address
this issue. Strategies can also be employed to account for self-inductance. The ideal T-block
for main couplers in inductive WPT can be connected to other built-in elements to achieve
resonance at a specific frequency [73,75]. This double-resonance condition can be met at any
frequency and with any value of mutual inductance (Lm), simplifying the design process.
The T-block can be linked to additional blocks, such as the S–S topology. Compensation
techniques can maintain resonance conditions on both the primary and secondary sides
by accounting for self-inductances (LTx and LRx). However, when there is no load or no
coupling between coils, the T-model used to transform the initial CV source into a CC
source may encounter problems [75]. To address this, T-model-based solutions can be used
to mitigate the effects of Rvi and small Xm on efficiency. The CC/CV characteristics under
loads with large coupling coefficients can also be adjusted by adding additional T-blocks.

4.1.4. Highly Flexible Compensation Topologies

In a WPT system with loosely coupled primary and secondary coils, there is a signifi-
cant amount of reactive power [75]. Compensation topologies are necessary to offset this
reactive power, essential for achieving high-power density, efficiency, and flexible output.
However, misalignment between primary and secondary coils can introduce variations
in mutual inductance, resulting in fluctuations in input impedance, reduced stability of
output power, and decreased overall system efficiency.

4.2. High-Order Topologies

Higher-order compensation topologies, incorporating additional inductor (L) and ca-
pacitor (C) components, are utilized in WPT to improve misalignment tolerance. While the
inclusion of extra components can reduce system efficiency, it enables the attainment of de-
sired characteristics, such as load-independent input impedance, stable output, high-power
density, and enhanced misalignment tolerance. Various higher topologies have been de-
veloped, including S/SP [76,77], S-LC [77,78], S-CLC [78,79], CLC-S [80,81], LCL-S [82,83],
LCC-S [84–86], LCC-P [87,88], LCL-LCL [89–91], and LCC-LCC [63,92,93], alongside pa-
rameter design strategies aimed at mitigating coil misalignment and accommodating load
variations. Table 3 shows the various hybrid compensation topologies.
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Adding more compensation components to a WPT system provides greater design
flexibility [94–96]. The CLC, LCL, and LCC topologies allow for adjustment of the constant
output amplitude by varying the values of Lf and Lf1 [97–99]. However, the LCL topology’s
lack of design flexibility is due to the necessity for equal inductance values between the
main coil and compensation inductance [100–102]. CLC-S compensation allows for a
smaller compensation inductor (Lp) than LCC-S topology, leading to reduced system
volume and power losses [103,104]. However, operating angular frequency of S/SP and
LCC-P compensation is a function of Mps, making system design more difficult and
complex [105–107].

Table 3. Hybrid Compensation Topologies.

Topology Diagram Parameters

S/SP topology
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Table 3. Cont.

Topology Diagram Parameters

LCC-S topology
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5. Magnetic Coupled Transmitter Pad Architecture

Electric vehicles can now be charged while in motion thanks to dynamic magnetic
power transfer systems, obviating the need to halt and wait for charging to finish [108–111].
This seeks to enhance long-distance motorway travel by significantly extending the range of
electric vehicles with a small onboard battery [112]. Storing a transmitter coil and securing
the receiving coil to the vehicle’s undercarriage allows for active charging. However, there
are several obstacles to the widespread adoption of dynamic charging, including the high
installation costs, the need for a dedicated charging lane [113,114], and the requirement for
precise alignment to avoid power losses. DIPT devices have two transmission options: a
segmented coil array or a lengthy single coil track.

5.1. Track with a Single Long Coil

The DIPT system includes a transmitter with a long coil track that is lengthier than a
receiver pad, allowing charge of many vehicles at the same time. It comprises a resonant
network transmitter station, an HF inverter, and a rectifier-like device (Figure 16). This
system is straightforward to configure and design, making it simple to operate [115,116].
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The fixed mutual coupling within track and receiver coil provides various advantages. In
South Korea, the OLEV system was demonstrated in shuttle services.
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Figure 16. Components of a DIPT device with a single lengthy coil track.

Although the long single coil track for dynamic charging has some advantages, such
as easy operation and constant mutual inductance [117], it also has some disadvantages,
such as high losses and maintenance costs. Moreover, coupling coefficient is decreased
when the car does not travel along the transmitter track, resulting in low transmission
efficiency. To address these issues, the transmitter track has been divided into various
shapes, including type-U [118] type-E [119], type-I [120–122], and type-S [123–126], based
on the magnetic core’s form. The effectiveness of these types is compared and summarized
in Figure 17 and Table 4.
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Figure 17. In a DIPT system, single transmitting wire tracks are used: (a) U-type, (b) E-type, (c) I-type,
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Table 4. Performance comparison of different single transmitting wire tracks used in DIPT system.

Parameters Type-U Type-E Type-I Type-S Type-Ultra Slim S Track-X

EMF Max Min Moderate Little Min Min

Air gap Moderate Min High High High High

Track width Max Moderate Little Little Little Little

Efficiency Little Max Max Min Little Max

Output power Little Little High Max Max Max

Lateral misalignment Max Little High High Very high High

Dynamic inductive power transfer (DIPT) systems need a long transmitter track that
is only activated when electric vehicles (EVs) travel over it and deactivated when they do
not [127–129]. To achieve this, the extended transmitter track is segmented into several
sub-tracks. Each sub-track can be activated by supplying a high-frequency current through
an inverter-powered switch box [130]. One type of segmented track is the centralized
switching track, which includes multiple sub-tracks, a set of connectors, and a central
switching box, as illustrated in Figure 18 [131,132]. The switch box connects one of several
pairs of supply lines to the inverter at any given time, necessitating numerous power cable
bundles, which leads to high installation and maintenance costs. Another type of long
partitioned track is the scattered switching track, which features multiple switch boxes
placed between sub-tracks and connected to a pair of standard power supply cables.
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This design is more cost-effective than the centralized switching track because it re-
quires the least cable length and fewer power cable bundles [133,134]. Additionally, a single
inverter can operate multiple sub-tracks, further reducing costs. Another advancement is
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the cross-segmented track, or X-track (Figure 8). This design includes auto-compensation
switch boxes that redirect electricity from one pair of power cables to trigger leads from
two pairs of power cables [135]. The X-track employs twisted power lines, a core, and
copper nets to generate compliant electromagnetic fields that adhere to ICNIRP standards.

5.2. Segmented Coil Array

This coil matrix technology uses multiple coils, connected either in series or parallel
and buried underground, to form the charging track, as illustrated in Figure 19. Each
segment of the transmitter coil is similar in size to the receiver coil and includes its own
compensating circuit, similar to the RIPT system [136]. Although this technology requires
numerous compensating elements, inverters, and transmission coils, which increases
material costs, costs can be reduced by designing the system with a series of coils sharing
the same electronic power converter. A challenge with the coil array is the spacing between
the transmitter coils due to their self-coupling. When the receiver coil is positioned between
two transmitter coils, it results in a power potential of zero [137–141]. The resonant
circuit design needs many coils to cover the same distance, even when the transmitter
coils are placed close together to minimize power pulsation [142,143]. When the distance
between the transmitter coils is approximately 31% of the transmitter length, the energy
pulsation remains within 48% of the maximal power [144,145]. There are various alternative
designs for the segmented coil array, each with its advantages and disadvantages. Using
multiple coils is more demanding in terms of setup and operation but can be technically
resolved. A long single coil is easier to install and use but emits a harmful magnetic
field that reduces system efficiency. In a dynamic charging device with ground-based
segmentation coils, there are two primary feeding techniques: the HF inverter and an
independent compensating circuit [146,147]. The HF inverter allows the system to activate
and deactivate based on the car’s alignment with the segmented coil, enabling the use of
low-power inverters. Although straightforward to construct and operate, the compensating
network enhances performance and reliability but requires numerous inverters and sensors.
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There are two main configurations for feeding segmented coils using a high-frequency
(HF) inverter (Figure 19) [148]. The first configuration involves each segmented coil having
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its own compensating circuit and switching device. The switching device activates and
deactivates the system as the EV enters and leaves the charging lane. Although this setup
utilizes a single inverter [149], the overall cost is higher due to the need for numerous
charging segments.

In the second configuration, a single HF inverter feeds multiple segmented coils. This
design mitigates safety concerns by using high frequency, allowing individual transmitter
segments to extend from the transmitter power facility. However, it requires numerous
switching and sensing devices, which increases the overall cost. A detection mechanism
was developed to determine the EV’s position, charging the coil towards the receiver using
a high-frequency current. The position of the reception coil can be identified by detecting
the output current at the appropriate frequency. Alternatively, the phase angle between
voltage and current is monitored to reverse without a location-detecting sensor [150]. To
address the complexity and cost of these configurations, a new arrangement called reflexive
segmentation was developed (Figure 20). This system uses a shared high-frequency inverter
and non-resonant capacitors to compensate for the transmitter self-inductance. The current
flowing through uncoupled transmit coils is low, producing a weak field. When the
transmitting and receiving coils are coupled, the transmitter coil reaches resonance at the
operating frequency due to the reflected impedance of the receiver. This enhances the
transmitter’s EMF output, increasing the transmitted voltage.
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Figure 20. Arrangement of reflexive segmentation.

In a DIPT system utilizing a segmented transmitter track, a bidirectional AC switch
manages the charging of individual segments. Additionally, switching boxes can alter the
current’s direction when it navigates a turn. Although only a few connections are needed,
all charging segments are connected in series, requiring the complete current capacity
certification for all switching boxes. The dynamic charging systems mentioned above face
several challenges that hinder their practical application [66,151]:

• Except for one, these systems lack isolation devices between the power supply and
charging parts, increasing the risk of system failure if one section fails.

• The presence of electrical circuits on highways is problematic due to vibrations and
pressures from vehicles driving over them. The system must operate even if one or
more transmitter parts fail, as component replacement and maintenance are costly and
impractical.

• The absence of communication protocols between EVs and charging infrastructure
can lead to traffic congestion from multiple vehicles charging simultaneously and
increased strain on the electrical network during peak hours. Power loss can also occur
when additional equipment, such as entertainment systems or cabin heating/cooling,
is used.
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• Most dynamic charging systems operate at 20 kHz, which is below the 85 kHz required
by SAE J2954 regulations [152]. Meeting this standard requires a power supply capable
of hundreds of kVA, which is challenging. Finding semiconductor switches that can
efficiently function at this power level and frequency is particularly difficult, as IGBTs
can handle high-power ratings only at low frequencies, while the latest MOSFET
devices can handle higher frequencies but at lower power ratings.

A proposed solution for feeding the DIPT system is a double-coupled system involving
an underground high-frequency power line and an intermediate coupler circuit (ICC) at
the designated section [153,154]. By connecting the transmitted power twice—first between
energy sources and the ICC, and second with the transmitter segments—this technology
reduces transmission track losses. Figure 21 shows the additional supply solutions for
DIPT system segmented transmitters that allow control of individual charging segments.
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of individual charging segments: (A) using a common HF inverter with a long magnetic route and
(B) utilizing a common HF inverter with transmitter segment series connection.

By operating at a low frequency while the transmitter part runs at a high frequency,
this system mitigates the impact of dynamic recharging on the electrical system during
peak hours. However, the use of a centralized power supply unit presents challenges, such
as high costs for power electronics and limited stability. To achieve optimal conditions for
EV operation, researchers have investigated using a split coil array as a transmitter. They
suggest that factors like vehicle speed, energy consumption per kilometer, power loss, and
charging efficiency should determine the length of the transmission coil.

Figure 22 shows the schematics of a doubled coupled system and intermediate coupler
circuit (ICC). The study utilized various techniques to enhance power transmission effi-
ciency and stability in dynamic charging systems. These techniques included employing a
lengthy transmitter pad and an oblong receiver coil with LCC–S compensation [155–157].
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Researchers investigated the optimal size and horizontal separation between transmitter
pads to optimize system properties [158]. To further improve power transmission efficiency,
transmission distance, and tolerance for linear misalignments, a double-spiral repeater
was utilized [159]. Additionally, a coil combination was implemented in the track, and a
double-coupled system was used for the segmented transmitter dynamic charging system
to increase the number of active transmitters and reduce output voltage volatility. Six
parallel coils were placed side by side to minimize power fluctuations [160]. Three methods
were applied to reduce magnetic field loss on the I-Type core: ISEC, linkage-free EMF
cancellation, and 3 dB dominant EMF cancellation. These approaches helped lower the
leaking EMFs to levels within the permitted safety limits. The research also introduced
an improved LCC circuit designed to deliver consistent and highly efficient output power
under varying mutual induction conditions. In summary, the study employed a variety of
techniques, including coil combinations, parallel coils, and LCC-S compensation topology,
to improve power transmission efficiency and stability for dynamic charging [161]. Addi-
tionally, it used different methods to mitigate the magnetic field’s impact on the I-Type core
and presented an enhanced LCC circuit for stable output power.
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5.3. Structure of the DIPT Receiver Pad

Recipient side coils used for dynamic charging are similar to those used in static
charging. The number of receiver pads needed varies based on the vehicle’s size and
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weight. Small, lightweight EVs might only need one pad, whereas medium and heavy
EVs may require multiple pads [162]. Using multiple-receiver pads allows the system to
support a broader range of vehicle types. To ensure optimal transmission efficiency, a
dedicated compensation network is used to compensate each receiver pad individually.
Figure 23 shows the schematic of receiver pad in DIPT system
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An electromagnetic integrated topology was developed to address the issue of output
voltage and power volatility caused by transmitter switching during EV driving. An ex-
perimental platform was created to investigate a one-transmitter multiple-receiver system,
achieving an efficiency of over 80% under optimal conditions [163]. The authors analyzed
the impact of cross-coupling on system efficiency and found that appropriate load reac-
tance can improve efficiency while maintaining other essential system features [164–167].
Additionally, the authors investigated the use of a Z-source grid coupled to a three-coil
MTSR system with S–S–S compensation to achieve Constant Voltage and zero-phase angle
features without requiring switch dead time, enhancing the converter’s reliability. The
MTSR system can also be used for EV dynamic charging and communication. A flexible
moving STMR system with a compensation topology was designed to allow for simultane-
ous charging of multiple devices, such as 1–3 cellphones. By connecting a transmitter as
a series-compensated, multi-level converter, the STMR system can be applied in various
contexts, such as Maglev trains. The LCL–T was equipped with an MTMR device [161]
and a compensation architecture to extend the magnetic transmission distance and achieve
optimal efficiency at optimal power. These systems offer advantages like higher voltage, a
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more reliable power source, and improved signal quality, but they also increase in size and
cost with the charging system.

6. Magnetic Materials of Wireless Power Transfer Systems
6.1. Brief History of Soft Magnetic Materials

Michael Faraday developed the law of induction in 1831 and, initially, iron was used
as the magnetic core due to its high permeability, low coercivity, and maximum saturation
magnetization. Soft magnetic ferrites, developed in the late 1940s [168,169], are now widely
used in electromagnetic induction and high-frequency equipment, with manganese zinc
ferrite being the most common in wireless power transfer systems. However, the energy
density of components using ferrite cores is limited by the minimal value of saturation
flux density. Amorphous soft magnetic alloys were first produced in 1967 and, by the
mid-1970s [170,171], Fe- and Co-based amorphous alloys became popular due to their
high saturation magnetic density and minimal power loss. Recently, various metals with
low power loss and comparable saturation flux density have been developed, potentially
reducing the lifetime cost of power electronics and motors. Granular core or soft magnetic
composites (SMCs) were introduced in the 1990s [172,173]. These cores are created by
mixing magnetic particles, typically iron or alloys, with insulating materials and then
solidifying them under high pressure [174–176]. This manufacturing process allows for
the production of complex magnetic core shapes, significantly reducing production costs.
SMCs are ideal for use in electrical machines due to their isotropy, low cost, and ability to
create complex shapes. They are also advantageous in high-frequency inductor design, as
adjustments in powder size, insulating material [177–179], and pressure during production
can minimize air gap losses and streamline inductor construction. Figure 24 shows the
research progress and a brief history of soft magnetic materials.
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6.2. Comparison of the Typical WPT Materials

Soft magnetic materials most commonly used in wireless power transfer (WPT) for
electric vehicles (EVs) include amorphous and nanocrystalline alloys. Fe-based amor-
phous [172,173] and nanocrystalline alloys possess higher saturation flux densities com-
pared to other materials, reducing their sensitivity to temperature fluctuations and enhanc-
ing their adaptability to various operating environments. Nanocrystalline alloys combine
the transparency of Co-based amorphous alloys with the strong magnetic moment of
Fe-based amorphous alloys [170], thereby increasing tolerance and reducing losses. Soft
magnetic ferrites [170,171] have high resistance but are suitable for high-frequency and
medium-frequency operations. The nanocrystalline alloy FeCuNbSiB and the amorphous
Fe-based alloy FeSiB exhibit excellent magnetic characteristics and are well-suited for
medium- and high-frequency systems due to their low resistivity. With the increasing
demand for wireless fast charging, coils generate stronger alternating magnetic fields,
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leading to core saturation, decreased magnetic permeability, and reduced magnetic cou-
pling efficiency. High-power WPT applications can cause magnetic saturation in ferrite
cores. One practical solution is to increase the number of magnetic cores [175,176], but this
also increases the system’s weight and size. Ferrite cores are also not ideal for onboard
receiver applications in EVs due to their brittle and weak structure, which can lead to
changes in system parameters and reduced efficiency. Table 5 shows the comparison of
the characteristics between different amorphous. Also, Table 6 give the comparison of the
EV–WPT system’s properties utilizing PC-95 Mn-Zn ferrite core.

Table 5. Comparison of the characteristics between amorphous (0.015 mm), amorphous (0.025 mm)
and nanocrystalline [173,174].

Magnetic
Material

Material
Type

Bs
(T)

Hc
(A/m) µr Tc

(°C)
ρc

(µΩ·cm)
Pc

(mW/cm3)

2605SAI (0.0250 mm) Amorphous 1.591 3.2 45, 0.01 392.03 130.02 180.0 (0.41 T, 10.1 kHz)

2713A (0.0150 mm) Amorphous 0.572 0.2 170, 0.1 225.01 142.01 91.12 (0.56 T, 21 kHz) 302.65
(0.21 T, 100.01 kHz)

Fe_Cu_Nb_SiB
(0.0180 mm) Nanocrystalline 1.243 0.53 157,000, 0.02 843.03 120.001 15.4 (0.22 T, 100.2 kHz)

280.02 (0.199 T, 100.1 kHz)

Table 6. Comparison of the EV–WPT system’s properties utilizing PC-95 Mn-Zn ferrite core and
Hitachi Finemet nano-crystalline elements [175,176].

Items Finemet (Nanocrystalline) PC95.1 (Mn-Zn Ferrite)

Limitation of Magnetic Saturation 1.24 T 0.532 T

Additional Eddy Loss Slight High Low

Mechanical Properties Flexibility Brittleness

Weight of core 1.9 kg (3 milli) 2.8 kg (5 milli)

Core Reduction 280 (0.22 T, 100.02 kHz) 280 (0.2 T, 100 kHz)

Shielding Performance Acceptable (Slight Weak) Good

Coupling Performance Acceptable (Slight Weak) Good

Cost ≈40 USD/kg ≈14 USD/kg

7. Safety and Health Concerns

When designing WPTs, it is crucial to consider their impact on human health and their
interaction with other devices. Several significant factors should be taken into account [179]:

• Electromagnetic Interference (EMI): WPT technology should be designed to minimize
EMI emissions, which can interfere with other electronic devices and affect their
performance.

• Human Exposure to Electromagnetic Fields (EMFs): The system should limit human
exposure to EMF radiation, as high levels can have adverse effects on health.

• Efficiency: Design the system to be highly efficient to minimize energy loss during
transmission.

• Safety: Ensure the system is safe for use, incorporating proper insulation and shielding
to prevent electrical hazards.

• Environmental Impact: Consider the materials used and their environmental impact
in the construction of the system.

By addressing these factors during the design phase, WPT systems can be developed to
be efficient, safe for use, and environmentally friendly, while minimizing interference with
other electronic devices [180]. To ensure safety in WPT systems, the ICNIRP standard sets
threshold limits for magnetic field and electric field densities, which are lower compared
to other norms. The frequency ranges covered are 1 Hz to 100 kHz for low frequency
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and 100 kHz to 300 GHz for high frequency. Specific Absorption Rate (SAR) values
must be determined, especially for frequencies above 100 kHz, considering the potential
impacts of electromagnetic radiation on human and animal health. Studies indicate that
exposure to wavelengths between 10 MHz and several GHz can cause a 1–2 ◦C rise in
body temperature [181]. Prolonged exposure to such frequencies has also been linked to
increased risks of leukemia and other cancers, though definitive conclusions are challenging
due to small sample sizes in studies. During the design phase, it is critical to carefully
evaluate how WPT systems will affect human health, considering the specific conductivity
and relative permittivity of human tissue at frequencies such as 100 kHz. Various strategies,
supported by research, have been proposed to ensure compliance with acceptable threshold
values. One approach involves using a shielding detection coil in a 500 W WPT device, with
measurements aligned with SAE standards to minimize leakage magnetic fields. In another
study, shielding with an aluminum plate was employed to reduce magnetic field densities
for a 2 kW WPT system operating at 20 kHz, commonly used in EV operations [182,183].
Finite element analysis demonstrated the effectiveness of aluminum shielding for a 1 kW
WPT system with a 20 kHz operating frequency and hexagonal coil configuration. Figure 25
shows the effect of aluminum shielding on magnetic field density values.
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This design approach highlights that the development of wireless power transfer sys-
tems for electric vehicle charging necessitates consideration of a wide array of factors, such
as frequency range, conductor cross-sections, shielding materials, and intermediate coils.
Addressing these factors through innovative solutions can lead to the creation of wireless
power transfer systems that are both efficient and safe for users. Despite potential health
and safety concerns associated with Wireless Electric Vehicle Charging Systems, these
systems offer several advantages over traditional plug-in charging systems. For instance,
the convenience and ease of use provided by wireless charging can encourage more people
to switch to electric vehicles, thereby reducing carbon emissions and promoting sustain-
ability [184]. To ensure the safety of portable electric vehicle charging systems, adherence
to established safety regulations and standards, such as those set by the International
Electrotechnical Commission (IEC) and the Institute of Electrical and Electronics Engineers
(IEEE), is crucial. These organizations provide guidelines and standards for the safe design,
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installation, and use of wireless charging systems. Ongoing research and development
efforts are also focused on enhancing the safety and user-friendliness of Wireless Electric
Vehicle Charging Systems. This includes testing new materials and designs to mitigate
potential health risks associated with magnetic fields and electromagnetic radiation. As
technology advances, Wireless Electric Vehicle Charging Systems are expected to become
even safer and more widely adopted in the future [185]. Ensuring that Wireless Electric
Vehicle Charging Systems are designed, constructed, and installed according to health and
safety standards is essential to mitigate potential hazards. This involves considering factors
such as weather conditions, exposure to electrical and magnetic fields, fire hazards, and
risks of electrical shock. Compliance with regulations and standards must be maintained
throughout all stages, from manufacturing to installation and operation, to safeguard users
and the environment. Regular inspections and maintenance of the charging system are also
critical to prevent unexpected malfunctions or breakdowns.

7.1. Safety and Health Standards

One of the major obstacles to the deployment of WEVCS is the lack of standardization
and interoperability. Different manufacturers may utilize varying frequencies, power levels,
and operating principles, leading to compatibility issues between vehicles and charging
stations. This diversity can necessitate different charging stations for different vehicles,
thereby hindering widespread adoption of WEVCS. Furthermore, differing regulations
and safety standards across countries and regions can exacerbate these compatibility chal-
lenges. The lack of standardization also raises safety concerns, as varying safety standards
may result in inconsistent safety performance among different manufacturers. Therefore,
developing international standards and interoperability guidelines is crucial for the suc-
cessful deployment and adoption of WEVCS [186]. Similarly, the IEC has published several
standards for WEVCS, including IEC 61980, which outlines general requirements and
tests for WEVCS. These standards covers safety guidelines, electromagnetic compatibility
(EMC), performance criteria, and test methodologies to verify these requirements. IEC
61980-1 [187] specifies the wireless power transfer system’s specifications, while IEC 61980-
2 [188] provides guidance on ensuring interoperability between different systems. Overall,
these standards are essential to ensure that WEVCS are safe, efficient, and interoperable.
As technology advances, additional standards are expected to be developed to address
emerging challenges and issues [189].

7.2. Hazard Based Safety Engineering

The HBSE approach can be utilized to identify and mitigate potential safety hazards
in the design and implementation of wireless electric vehicle charging systems, such as
thermal hazards, electrical shocks, and fire hazards. By employing the three-block model
to assess hazardous situations [186], engineers can develop safer wireless charging systems
that comply with safety standards and regulations. This method involves identifying
potential hazards and risks associated with the technology, evaluating their likelihood
and severity, and implementing appropriate safety measures to minimize or eliminate
these risks. For instance, engineers can integrate safety features, like emergency shut-
off switches, ground fault protection devices, and thermal overload protection, into the
design of wireless charging systems to mitigate the risks of electrical shock or fire hazards.
Additionally, following proper installation and maintenance procedures ensures the safe
operation of these charging systems. Moreover, the HBSE approach enables the evaluation
of the environmental and public health impacts of wireless charging systems, such as
exposure to magnetic fields. This ensures adherence to regulatory standards and minimizes
potential adverse effects on the community [190].

Figure 26 illustrates how the HBSE approach provides a proactive and systematic
method for addressing safety concerns associated with wireless electric vehicle charging
systems, while also considering factors such as performance, aesthetics, and cost. HBSE is a
methodology focused on identifying and quantifying potential hazards during the product
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or system design phase. By analyzing hazardous energy sources, transfer mechanisms,
and their effects on humans, engineers can predict injury likelihood and make design
adjustments to mitigate or eliminate risks. While thermal, electrical, and fire hazards are
the primary focus, HBSE can be adapted to address a broad spectrum of safety concerns,
ultimately leading to safer designs and reduced user risk.
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UL provides various training courses on HBSE, including online courses, on-site train-
ing, and customized programs tailored to specific needs. These courses cover topics such as
hazard analysis, risk assessment, safety requirements [190], and compliance testing. They
are designed for engineers, designers, project managers, and other professionals involved in
product development and safety compliance. Additionally, UL offers certification services
to assist manufacturers in ensuring their products meet safety standards and regulations.
This process involves comprehensive testing, inspection, and evaluation of both product
design and manufacturing processes. Upon meeting the requirements, UL grants a certifi-
cation mark indicating compliance with safety standards. Integrating safety compliance
at the outset of the product development cycle can help manufacturers reduce the risk of
safety incidents, enhance product quality, and expedite market acceptance. UL’s HBSE
training and certification services support manufacturers in achieving these objectives
while ensuring adherence to safety standards and regulations [191].

7.3. Potential Safety Concerns for EV Wireless Charging

The following list of potential safety concerns for under-car EV charging systems is
important to note. However, it is essential to understand that, while these concerns have
been identified, they are not exhaustive, nor do they imply that all hazards exist universally
for these charging systems. Instead, they provide context for the development of safety
standards and testing methods for EV charging systems, which Underwriters Laboratories
(UL) can assist in addressing. Additionally, similar safety considerations may apply to
other wireless systems capable of transmitting large amounts of power [191]. Table 7 shows
the WPT safety limits.

Table 7. WPT Safety concern table.

Parameter Action Level Persons in Controlled Environment

Exposed tissue E0(rms) (V/m) E0(rms) (V/m)

Brain 14.725 44.25

Heart 282.3 282.3

Extremities 31.3 31.3

Other tissues 10.5 31.3

8. Power Fluctuations in DWPT and Mitigation Techniques

A number of factors can cause power fluctuation in Dynamic Wireless Charging
Systems (DWCS), such as variations in the air gap between the vehicle’s receiving coils and
the road-embedded coils as it moves, misalignment between the transmitting and receiving
coils, variations in the vehicle’s speed, and shifts in operating conditions and load. These
elements have the potential to greatly affect the charging process’s stability and efficiency,
making the creation of sophisticated techniques to reduce these oscillations necessary for
steady and dependable power transfer [191,192].
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Integrated Magnetic Coupler Approach

The purpose of an integrated magnetic coupler is to reduce these oscillations. Here
are the tactics used and how they operate:

• To produce a strong and steady magnetic field, an integrated magnetic coupler usually
incorporates a number of coils and magnetic materials. Better alignment and less
sensitivity to positional changes are ensured by the design.

• By putting adaptive control algorithms into practice, power transfer can be modified
in response to real-time information regarding the load, position, and speed of the
vehicle. These algorithms dynamically optimize the power output and magnetic field.

• Stable power transfer is maintained by the use of strategies like resonant compensation
and impedance matching. By using these methods, the circuit parameters are modified
to account for variations in the inductive coupling.

• To maintain a constant charging rate, real-time feedback systems instantly adapt based
on power transfer monitoring. In this feedback loop, sensors and communication
systems are essential components.

9. Conclusions

In conclusion, WPT technology offers a compelling solution for charging electric
vehicles (EVs) without physical connectors, though its efficiency is constrained by factors
such as coil distance, coupling coefficient, and operational frequency. The integration
of power converters employing high-order compensation topology and dynamic coils
with magnetic materials presents promising strategies to enhance WPT efficiency. Power
converters play a critical role by converting AC power to DC for battery charging, with
high-order compensation topology mitigating conversion losses through additional passive
components that counteract circuit parasitic. Dynamic coils adjust resonance frequencies in
real-time to optimize coupling coefficient, leveraging magnetic materials like ferrites and
permalloy to augment magnetic flux density and inter-coil coupling. Ongoing research
focuses on optimizing dynamic coil designs, including multi-layer configurations with
soft magnetic materials and metamaterial-based innovations, tailored to improve magnetic
field intensity and minimize energy losses. The choice of magnetic material is pivotal, with
ferrites excelling at low frequencies and permalloy at higher frequencies, ensuring optimal
system performance across varied operational conditions.

The adoption of these advanced technologies holds significant promise in reducing
power loss and energy consumption in WPT systems for EVs, crucial for advancing sus-
tainability and reducing reliance on fossil fuels. As EV demand continues to rise, further
refinement and widespread implementation of efficient WPT systems will be essential to
support a cleaner environment and sustainable energy practices. In summary, the inte-
gration of power converters with high-order compensation topology and dynamic coils
using magnetic materials represents a notable advancement in enhancing WPT efficiency
for EVs. Continued research and development are necessary to refine these technologies,
optimize system designs, and accelerate the global adoption of EVs, thereby contributing
to a greener and more sustainable future.
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Nomenclature

EVs Electric Vehicles Class-E2 A variation of Class-E circuit used in WPT systems
with a single switched device for rectification.

WPT Wireless Power Transfer WHPT Wireless High-Power Transfer

SCOPUS
Source Comprehensive One stop Platform for
University Students

CC/CV Constant Current/Constant Voltage

SS Series-Series (SS) Li-ion Lithium-ion
SP Series-Parallel (SP) LC inductor-capacitor
PS Parallel-Series (PS) WHPT wireless high-power transfer
PP Parallel-Parallel (PP) CC Constant Current
EMC Electromagnetic compatibility CV Constant Voltage
LCL Inductor-Capacitor-Inductor ZPA zero-phase-angle
Ceq Equivalent Capacitance UPF unity-power factor
Cg Parasitic Capacitance of the Generator Rs parasitic resistance
Cp Parasitic Capacitance of the Power Stage Ro equivalent resistance of load
Cseq Equivalent Secondary Capacitance Zvi internal impedance of ideal Constant Voltage source
Cr Reflected Capacitance Zci internal impedance of ideal Constant Current source
Req Equivalent Resistance S-block series resonance block
M Mutual Inductance T-block double resonance block
Lseq Equivalent Secondary Inductance P-block parallel resonance block
Lse Equivalent Secondary Resonant Inductance UPF Unit Power Factor
Cs Series Capacitance ZPA Zero Phase Angle
SLC Series-Parallel Compensated ESR Equivalent Series Resistance
H-bridge Full-bridge Inverter LCC L–C Circuit
LCC Inductor-Capacitor-Capacitor L Inductor
CPL Principal Series Variable Capacitor C Capacitor
SLC Series Inductor-Capacitor Lm Mutual Inductance
DC Direct Current k Coupling Coefficient
AC Alternating Current LRX Self-Inductance in Receiver Side
Fo inverters operating resonance frequency LTX Self-Inductance in Transmitter Side
ωo Operation’s resonance frequency Rvi Internal Resistance
tp gate pulse’s phase shift time delay Xm Magnetizing Reactance
Lpeq principle equivalent inductance S/SP Series/Series-Parallel
Rl Load resistance S-LC Series-Inductor-Capacitor
Pt rate of Power transfer S-CLC Series-Capacitor-Inductor-Capacitor
Pm rate of Average power transfer CLC-S Capacitor-Inductor-Capacitor-Series
Il track current LCL-S Inductor-Capacitor-Inductor-Series
Is secondary track current LCC-S Inductor-Capacitor-Capacitor-Series
Lc Charging inductance LCC-P Inductor-Capacitor-Capacitor-Parallel
THD Total Harmonic Distortion LCL-LCL Inductor-Capacitor-Inductor-Capacitor-Series
EMC Electromagnetic Compatibility LCC-LCC Inductor-Capacitor-Capacitor-Inductor-Capacitor
MHz Megahertz CLC capacitor-inductor-capacitor
Cp Impedance Transformation Capacitance LCL inductor-capacitor-inductor
C1 Resonance Series Capacitor LCC inductor-capacitor-capacitor
Lin Equivalent Inductance Lf primary resonant inductance
Rin Equivalent Resistance Lf1 secondary resonant inductance

Class-E
A type of power amplifier circuit designed for
high-efficiency power amplification

Cc compensation capacitor

SAE Society of Automotive Engineers Cs series resonant capacitor
FT Finemet Cx resonant capacitor for the primary or secondary side
MPP Metal Powder Core DIPTs dynamic inductive power transfer systems
EMI Electromagnetic Interference HF high frequency
EMF Electromagnetic Fields OLEVs On-Line Electric Vehicles
SAR Specific Absorption Rate RIPT Resonant Inductive Power Transfer

WEVCS Wireless Electric Vehicle Charging Systems ICNIRP
International Commission on Non-Ionizing
Radiation Protection

IEC International Electro-technical Commission ISEC Independent self EMF cancel
HBSE Hazard-based Safety Engineering MTSR Multiple Transmitter Single Receiver
UL Underwriters Laboratories STMR Single Transmitter Multiple-Receiver
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