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Abstract: Energy-consuming rights trading policies (ECRTPs) represent a significant institutional
innovation for China aimed at achieving the dual control targets of total energy consumption and
energy consumption intensity. However, the effectiveness of these policies in curbing air pollution
remains uncertain. This study treats ECRTPs as a quasi-natural experiment to empirically analyze
their impact on air pollution, utilizing panel data encompassing 277 prefecture-level cities in China
covering the period from 2011 to 2021. Analytical methods applied include a Difference-in-Differences
model, a mediation effects model, and a triple differences model to explore the effects of ECRTPs
on air pollution. The findings reveal that ECRTP can significantly suppress air pollution, and this
conclusion remains valid even after conducting robustness tests. Mechanism analysis indicates
that ECRTPs suppress air pollution by boosting energy efficiency, advancing industrial structure
upgrading, and facilitating technological innovation. Further heterogeneous studies show that
ECRTPs have a more pronounced inhibitory effect on air pollution in cities that are economically and
socially developed, exhibit greater energy-saving potential, are characterized as resource-based cities,
and serve as key regions for the prevention and control of air pollution. The research conclusion
provides empirical evidence and policy implications for evaluating the environmental effects of
ECRTPs and further improving China’s energy-consuming rights trading system, as well as offering
references and guidance for other developing countries to put forward ECRTPs.

Keywords: energy-consuming rights trading policy; air pollution; industrial structure upgrading;
energy efficiency; technological innovation; heterogeneity; mechanism

1. Introduction

The detrimental effects of global environmental pollution and the threats stemming
from extreme climate conditions have serious adverse impacts on both the economy and
human health [1,2]. Following hypertension and smoking, air pollution is the third leading
risk factor involved in global mortality [3]. The “2023 Global Air Quality Report” released
by the IQAir global air quality data platform pointed out that, among the 134 countries
and regions studied, 124 did not meet the WHO PM2.5 guideline standards, reaching as
high as 92.5%. Air pollution not only alters the frequency of extreme climate events [4]
but also harms human health [5–7] and affects economic development [8], all of which are
closely related to people’s production and livelihood. Therefore, identifying the influencing
factors of air pollution and implementing effective control measures have become central
concerns for both the academic community and the government. Numerous scholars,
both domestically and internationally, have discerned economic activities [9], population
factors [10], environmental regulations [11], rail transportation [12,13], openness to interna-
tional trade [14], industrial structure [15], financial development [16], and urbanization [17]
as significant factors influencing air pollution. Of all these factors, environmental regula-
tions are regarded with high expectations and have the potential to serve as an effective
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tool for controlling air pollution. As a result, various countries worldwide have imple-
mented a range of environmental regulations, such as the White Certificate System in the
European Union [18], renewable energy policies in Latin American nations [19], the carbon
emissions trading system in China [20], and the Energy-Consuming Rights Trading Policy
(ECRTP) in China [21]. Among them, the ECRTP is particularly noteworthy as a novel
institutional innovation that fills the gap in the forefront governance of environmental
regulation. Whether it can achieve environmental benefits while driving energy efficiency
improvement is a question of concern for policymakers and researchers.

Currently, research on ECRTP can be classified into three main categories. The first
category pertains to the design of institutional systems, with a focus on ECRTP’s regulatory
objectives [22], legal systems [23], trading rules [24], and implementation paths, as well as
issues related to the connection with carbon emission trading systems [25,26]. The second
category involves simulating the economic benefits of ECRTP as well as its potential for
energy savings and emission reduction. For example, Liu et al. used non-parametric
DEA to simulate energy policy combinations under three different scenarios and found
that the combination of ECRTP and carbon emission trading policies can achieve optimal
economic dividend effects [27]. Li Yuan et al. developed a mathematical model where
ECRTP coexists with the carbon market, and the results showed that these two policies are
complementary in reducing energy consumption [28]. Zhang et al. discovered, through
constructing a non-parametric optimization model, that ECRTP can bring higher average
economic potential and energy-saving potential at the industrial level in comparison
to command control policies [29]. The third category relates to evaluating the policy
effects of ECRTP. Research in this area primarily focuses on the impact of ECRTP on
economic benefits [30], technological innovation or green innovation [31,32], total factor
productivity [33], industrial structure [34], energy consumption intensity [35], energy
utilization efficiency [36], energy consumption structure [37], as well as the effects on
carbon emissions [30,38].

While the existing literature predominantly focuses on the institutional design of
the ECRTP, as well as its economic benefits, potential for energy conservation, emission
reduction, and policy implications, research on the impact of the ECRTP on air pollution is
still in its nascent stage. Wang et al. conducted a study utilizing data from 282 prefecture-
level cities in China, covering the period from 2013 to 2019, employing a Difference-in-
Differences (DID) model to investigate the effects of the ECRTP on pollution and carbon
reduction. Their findings demonstrated that the ECRTP achieved dual environmental
benefits by simultaneously reducing pollution and carbon emissions [39]. In another study,
Wang et al. analyzed panel data from 290 cities in China spanning the years 2010 to
2021, utilizing the Propensity Score Matching-Difference in Differences (PSM-DID) model
to examine the impacts of the ECRTP. They found that pilot cities participating in the
ECRTP experienced substantial improvements in pollution and carbon reduction levels
compared to non-pilot cities [40]. Similarly, Han et al. carried out regression analyses
on panel data from 266 prefecture-level cities in China from 2011 to 2020, employing a
DID model. Their research revealed that CO2 and SO2 emissions in pilot cities decreased
by 84.8% and 34.5%, respectively [41]. Additionally, Song et al. undertook an empirical
analysis to assess the impact of the ECRTP on the environment, utilizing panel data from
Chinese prefecture-level cities over the period of 2012–2019. They employed a multi-period
PSM-DID approach in their study. The results demonstrated that the ECRTP effectively
reduced both the total emissions and the emission intensity of soot pollutants, exhibiting a
more pronounced inhibitory effect on the emission intensity [42]. In contrast, Wang et al.
investigated the impacts of the ECRTP on various pollutants, including nitrogen oxides
(NOx), sulfur dioxide (SO2), carbon dioxide (CO2), and smoke, and they concluded that the
estimated coefficients were not statistically significant [43].

Existing studies reveal several limitations. Firstly, although some of the literature has
begun to explore the impact of ECRTP on air pollution, there remains a lack of consensus
regarding the research findings. The effectiveness of ECRTP in suppressing air pollution
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lacks robust empirical support. Secondly, the existing literature predominantly focuses on
ECRTP’s effects on pollutants, such as CO2, SO2, NOx, and smoke, while neglecting to assess
the policy’s impact on air pollution through the lens of PM2.5, a crucial representative of air
pollutants. Thirdly, current research is deficient in regard to providing a comprehensive
analysis of the transmission mechanisms and the heterogeneity of effects related to ECRTP.
Consequently, further research is warranted. This study applies the DID model, mediation
effect model, and triple differences model to explore the influence of ECRTP on air pollution
and its intrinsic mechanisms, leveraging panel data encompassing 277 prefecture-level
cities in China during the period of 2011–2021.

Compared to the existing literature, this study offers innovations in the following four
aspects. Firstly, this study delves into the theoretical aspects of ECRTP by analyzing its
impact on air pollution from multiple perspectives and exploring the mechanisms of action
involved. In contrast to previous studies, this paper provides a more comprehensive obser-
vational viewpoint in its theoretical analysis, thereby enriching the theoretical framework.
Secondly, considering that the governance of PM2.5 has emerged as a global challenge, this
study notably departs from existing research by employing PM2.5 as a proxy variable for
air pollution in evaluating the policy effects of ECRTP. This approach effectively bridges
a substantial gap in the current literature. Thirdly, the study identifies and examines the
intrinsic mechanisms of ECRTP’s impact on air pollution through three pathways: energy
efficiency, industrial structure upgrading, and technological innovation, providing new
insights for addressing urban air pollution issues.

This article identifies and examines the intrinsic mechanisms of ECRTP’s impact on air
pollution through three pathways: energy efficiency, industrial structure upgrading, and
technological innovation, providing new insights for addressing urban air pollution issues.

Fourthly, to comprehensively evaluate the policy effects of ECRTP on air pollution,
this study investigates the heterogeneous impacts of ECRTP on air pollution from various
perspectives, including geographic location, resource endowment, energy-saving potential,
and environmental protection types. This analysis offers more targeted support and
decision-making grounds for air pollution governance in cities with diverse characteristics.

The structure of the remaining sections of this paper is organized as follows: Section 2
entails theoretical analysis and research hypotheses. Section 3 covers research design,
including model construction, variable design, and data description. Section 4 is dedicated
to empirical analysis, encompassing variable descriptive statistics, parallel trend tests,
baseline regression analysis, and robustness tests. Section 5 focuses on mechanism testing,
while Section 6 explores heterogeneity analysis. Section 7 provides a discussion, and
Section 8 presents the conclusions, policy implications, and limitations.

2. Theoretical Analysis and Research Hypotheses
2.1. ECRTP and Air Pollution

ECRTP pertains to the comprehensive energy consumption quota acquired through
issuance or transactions within a specific period, enabling the consumption of a specific
amount of integrated energy consumption units under the premise of controlling the
total amount and intensity of energy consumption. Energy-consuming rights trading
refers to the activities of relevant entities engaging in market-based transactions of energy-
consuming rights indicators in compliance with the law [44]. According to the definition
established by the International Organization for Standardization (ISO), air pollution refers
to the introduction of certain substances into the atmosphere due to human activities or
natural processes. When these substances accumulate to sufficiently high concentrations
over extended periods, they pose a threat to human comfort, health, and welfare, as well as
to the environment. Recognizing that PM2.5 is a major pollutant with serious implications
for human health, this paper employs PM2.5 concentration as a metric for assessing air
pollution. If ECRTP demonstrates the ability to reduce PM2.5 levels in the atmosphere, it
would indicate its potential in alleviating air pollution. Moreover, ECRTP represents a
form of market-based environmental regulation, possessing policy attributes similar to
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general environmental regulations. It can incentivize micro-enterprises to engage in green
production through cost-increasing effects and the Porter hypothesis effect, thereby influ-
encing air pollution. Unlike pollution rights and carbon emission trading policies, which
are market-based environmental regulations relying on end-of-pipe governance, ECRTP
focuses on achieving energy saving and emission reduction through controlling energy use
at the source, optimizing energy structures, and enhancing resource allocation efficiency on
the supply side. According to the Coase theorem of property, as long as property rights
are well defined and the transaction costs are zero or very low, the outcome of market
equilibrium is efficient, achieving Pareto optimality in resource allocation. Applying the
Coase theorem of property to the field of ECRTP can bring two main advantages. Firstly,
ECRTP can leverage market forces to find the marginal cost of energy conservation and
emission reduction, consequently minimizing the overall cost of energy conservation and
emission reduction while achieving optimal energy resource allocation within the region.
Secondly, as long as the cost of technological improvements is lower than the price of
resource and environmental rights certificates, ECRTP will incentivize companies to adopt
more advanced and environmentally friendly production technologies, thereby reducing
emissions of PM2.5 air pollutants [45]. Given this, the following hypothesis is proposed:

H1: ECRTP can significantly suppress air pollution.

2.2. The Conduction Mechanism of ECRTP on Air Pollution
2.2.1. Energy Efficiency Effect

ECRTP can enhance energy efficiency through three primary avenues. Firstly, it guides
decision-making by price signaling. According to the environmental economics theory,
ECRTP influences energy-consuming enterprises to purchase or sell energy-consuming
rights indicators through price signals, which can greatly promote the rational flow and
efficient allocation of energy resources, thereby remedying the limitation of government
direct control measures in tackling energy efficiency concerns. Secondly, ECRTP imposes
cost constraints. In ECRTP pilot areas, the total energy consumption index is regulated.
If the actual energy consumption of controlled energy-consuming enterprises exceeds
the energy-consuming rights allocated by the government, they have to purchase excess
quotas at market prices. To lower costs, enterprises must optimize production processes
by actively adjusting production modes, incorporating energy-saving technologies, and
implementing other strategies to boost efficiency, ultimately decreasing overall energy
consumption. Thirdly, ECRTP provides reward incentives. Enterprises holding surplus
energy-consuming rights indicators can benefit from energy savings by trading these indi-
cators in the energy-consuming rights market. Motivated by these additional incentives,
enterprises are prompted to optimize production processes, upgrade production technolo-
gies, and promote energy efficiency. Furthermore, researchers like Song [43], Gong [46],
and Xu [47] suggest that improving energy efficiency is vital in reducing air pollution and
controlling pollutant emissions from unit energy consumption. Given this, the following
hypothesis is proposed:

H2: ECRTP suppresses air pollution by enhancing energy efficiency.

2.2.2. The Industrial Structure Upgrading Effect

Industrial structure upgrading refers to the process or trend of the transformation of
the industrial structure from a lower-level form to a higher-level form, mainly manifested
by the continuous increase in the proportion from the primary industry to the secondary
industry and then, further, to the tertiary industry [48]. On the one hand, the ECRTP pilot
projects are primarily situated in vital energy-consuming industries. When high-energy
consumption and high-emission enterprises encounter constraints on energy-consuming
rights quotas, they are compelled to transform, upgrade, relocate, or exit. As a result,
this restructuring induces a shift in production factors, including capital and talent, from
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energy-intensive to technology-intensive sectors, driven by market mechanisms. This
transition ultimately fosters the optimization and advancement of the industrial structure.
On the other hand, the government’s allocation of energy quotas tends to favor advanced
manufacturing, high-tech industries, strategic emerging industries, and modern service
sectors, thereby aiding in the optimization and advancement of the industrial structure.
Moreover, the technology spillover effect resulting from industrial structure upgrading can
promote the efficient use of energy, facilitate the transition of industries towards cleaner
sectors with higher outputs and lower emissions, expedite the elimination of obsolete
production capacity, reduce resource wastage, and effectively decrease the emission of air
pollutants. Building on the previous discussion, the following hypothesis is proposed:

H3: ECRTP alleviates air pollution by promoting industrial structure upgrading.

2.2.3. Technological Innovation Effect

According to the Porter hypothesis, the implementation of ECRTP may increase pro-
duction costs for enterprises, resulting in negative cost effects. However, a well-designed
ECRTP can also generate innovation compensation effects, partially or fully offsetting
the costs and thereby stimulating technological innovation within enterprises [49,50]. On
the one hand, to alleviate the cost burden of implementing ECRTP, enterprises may opt
for technological innovation to decrease unit production energy consumption, thereby
circumventing the expenses associated with acquiring energy-consuming right indicators.
Simultaneously, technological innovation paves the way for enterprises to attain economies
of scale by enhancing overall production levels and cutting production costs, which offsets
research and development expenditures, establishing a virtuous cycle that constantly drives
technological innovation within enterprises [33]. On the other hand, the establishment of
the energy-consuming rights trading market presents opportunities for technical cooper-
ation and transfer among enterprises. This kind of technical cooperation and transfer is
beneficial for the exchange of knowledge and experience, thereby broadening and deepen-
ing the dissemination of innovative knowledge. This process simplifies the achievement of
economies of scale, leading to significant innovation benefits and accelerating the spread
and adoption of technologies. [51]. Furthermore, technological innovation, especially green
innovation in the low-carbon and green energy-saving fields, can help drive enterprises to-
wards clean production, accelerate the optimization of energy usage structure, and improve
energy efficiency. This can reduce energy consumption both in the areas of production
and consumption, thus reducing air pollutant emissions from business operations and
residential consumption. Simultaneously, it can achieve the primary objectives of energy
saving and emission reduction. In consideration of this, the subsequent hypotheses are
formulated:

H4: ECRTP inhibits air pollution by fostering technological innovation.

2.3. The Heterogeneity Analysis of the Effects of ECRTP on Air Pollution

The impact of ECRTP on air pollution may exhibit regional heterogeneity, meaning
that the air pollution mitigation effects of ECRTP can vary due to differences in factors
such as urban geographic location, energy-saving potential, resource endowments, and the
types of environmental protection measures implemented. Firstly, regions characterized by
advanced economic and social development typically exhibit a high degree of industrial
agglomeration, robust government regulatory oversight, and a substantial pool of human
capital in relevant sectors. These factors contribute to the effective implementation of
the policy benefits associated with ECRTP, leading to a more pronounced suppressive
effect on air pollution. Secondly, in areas with considerable potential for energy savings,
the efficiency of energy utilization tends to be relatively low, and the costs associated
with energy conservation are comparatively minimal. This situation creates a pronounced
marginal effect of ECRTP on energy savings, thereby enhancing its overall effectiveness
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in mitigating air pollution. Thirdly, resource-based cities, in contrast to non-resource-
based cities, often possess a more simplistic industrial structure, being predominantly
centered around the extraction and processing of natural resources, such as minerals and
forests. This reliance on resource extraction frequently leads to considerable air pollution.
The implementation of the ECRTP can assist these cities in restructuring their industries,
allowing them to diminish their long-standing dependence on fossil fuels and, consequently,
improving their capacity for air pollution reduction. Fourthly, key control cities, as opposed
to those where air pollution is not prioritized for control, serve as principal targets for
national and local government initiatives aimed at improving air quality management.
These governments implement preferential fiscal and taxation policies, facilitating the
concentration of talent, technology, and financial resources. Furthermore, key control
cities adopt supplementary environmental regulations that enhance the effectiveness of the
ECRTP in reducing air pollution, thereby intensifying their air pollution mitigation effects.
Based on this analysis, the following research hypothesis is proposed.

H5: ECRTP can more effectively mitigate air pollution in cities that are economically and socially
developed, demonstrate significant energy-saving potential, are categorized as resource-based cities,
and serve as critical areas for air pollution prevention and control.

Following the theoretical analysis and research assumptions above, the theoretical
framework and study hypotheses of this paper are illustrated in Figure 1.
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3. Research Design
3.1. Model Construction

To address the limitations of traditional regression models in assessing policy effects,
this study utilizes a DID model for its analysis. In this model, individuals affected by
the policy are classified as the treatment group while those not impacted by the policy
serve as the control group. The differences observed in the control group before and
following policy implementation are interpreted as a pure time effect. The net effect of
the policy implementation is derived by subtracting the changes recorded in the control
group before and after the policy was enacted from the changes observed in the treatment
group during the same intervals. The “Trial Scheme for Paid Use and Trading System of
Energy-Consuming Rights” initiated by China in 2017 constitutes an exogenous policy
shock to air pollution. This study regards it as a quasi-natural experiment and utilizes
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a DID model to evaluate the impact of ECRTP on air pollution. The baseline regression
model is set as follows:

lnpollit = α0 + α1ECRTPit + α2Xit + µi + ηt + εit (1)

where i and t denote cities and time, respectively. The variable “lnpoll” is the explained
variable representing air pollution while “ECRTP” stands for the dummy variable for
the pilot policy of energy-consuming rights trading. The variable “X” serves as a set of
control variables influencing “lnpoll”. The variables µi and ηt represent city-fixed effects
and year-fixed effects, respectively. The notation “εit” refers to the random disturbance
term. Of particular interest is the core variable “ECRTP”, with its estimated coefficient
α1 reflecting the net effect of ECRTP on air pollution. If α1 is significantly negative, it
means that ECRTP can effectively suppress air pollution. The theoretical analysis in the
preceding discussion suggests that ECRTP suppresses air pollution through three pathways:
enhancing energy efficiency, promoting industrial structure upgrading, and stimulating
technological innovation. Building upon the baseline regression, the following mediation
effect model is constructed to examine the action mechanism:

Mit = β0 + β1ECRTPit + β2Xit + ηi + ηt + εit (2)

lnpollit = φ0 +φ1ECRTPit +φ2Mit +φ3Xit + µi + ηt + εit (3)

Here, the symbol “M” represents the mediating variable, denoting three variables in
this study: energy efficiency (lnene), industrial structure upgrading (lnind), and techno-
logical innovation (lnpat), while other variables are explained as previously mentioned.
The baseline regression model has already evaluated the overall impact of ECRTP on air
pollution. Therefore, the focus is on the regression coefficients β1, φ1, and φ2 in the impact
mechanism under examination. If both β1 and φ2 are statistically significant, it indicates
that the mediating mechanism is established. If at least one of β1 and φ2 is not significant,
additional testing using the Sobel or Bootstrap method is necessary to examine whether β1
× φ2 = 0 holds. If β1 × φ2 is significantly deviated from 0, the mediating mechanism is
established; otherwise, it is not. Under the assumption of the mediating mechanism being
established, a significant φ1 indicates the presence of a partial mediation effect, whereas a
non-significant φ1 suggests a full mediation effect.

3.2. Variable Design
3.2.1. Explained Variable

The explained variable in this research is air pollution (lnpoll). Air pollutants typically
consist of fine particulate matter, sulfur dioxide, carbon monoxide, nitrogen oxides, etc. [52].
PM2.5, a component of fine particulate matter with an aerodynamic diameter of 2.5 µm
or less, contains a significant amount of toxic and harmful substances, remains in the
atmosphere for prolonged periods, and can travel long distances, resulting in substantial
impacts on both human health and atmospheric quality. To ensure data representativeness
and accessibility, the research designates PM2.5 concentration as the indicator for measuring
air pollution, denoted by lnpoll.

3.2.2. Core Explanatory Variable

ECRTP is the core explanatory variable, which reflects whether a city implemented
ECRTP in a given year. ECRTP is defined as ECRTPit = Treati × Timet, where Treati denotes
the dummy variable for pilot cities and Timet represents the dummy variable for the
implementation period of the policy. In the prefecture-level cities of the Zhejiang, Fujian,
Henan, and Sichuan provinces, Treati is designated as 1, while in the prefecture-level cities
of other provinces, Treati is set to 0. Although the National Development and Reform
Commission of China released the pilot program in September 2016, this paper designates
2017 as the year of policy implementation to account for delays in execution. In this context,
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Timet is set to 0 before 2017, and from 2017 onwards, Timet is set to 1. The magnitude
and sign of the estimated coefficients for ECRTP indicate both the size and direction of its
impact on air pollution. A significantly negative estimated coefficient implies that ECRTP
effectively mitigates air pollution, thereby supporting the research hypothesis H1.

3.2.3. Control Variables

To account for the influence of additional variables on air pollution, this study refer-
ences the STIRPAT model as well as the research conducted by Shao Shuai [53] and Luo
et al. [54]. Accordingly, six control variables have been selected: economic development
(lngdp), which represented by the ratio of gross domestic product to the total population;
population density (lnpop), which is determined by the ratio of urban total population to
the administrative area; foreign openness (lnfdi), which is indicated by the precise amount
of foreign capital utilized; financial development (lnfin), which is gauged by the year-end
RMB loan balance of financial institutions; urbanization (lnurb), which is determined by the
proportion of the urban population to the total population; and, lastly, government support
(lngov), which is inferred from the proportion of government public financial expenditure
to GDP.

3.2.4. Mechanism Variables

In consideration of the scientific foundation, the following mechanism variables are
selected. Firstly, we shall look at energy efficiency (lnene). Following the study by Li,
Yan et al. [55], energy efficiency is measured by the reciprocal of energy intensity, defined
as the ratio of energy consumption to GDP. Due to the unavailability of data on primary
energy consumption at the prefecture-level cities, the electricity consumption for the entire
city is used as a substitute for energy consumption. Secondly, we shall look at industrial
structure upgrading (lnind). Since the process of industrial structure upgrading is often
accompanied by a gradual rise in the proportion of the tertiary industry, the ratio of the
tertiary industry’s output value to GDP is chosen as a metric to evaluate industrial structure
upgrading. Thirdly, technological innovation (lnpat). Existing research commonly measures
technological innovation using two indicators: innovation input and innovation output.
Innovation output is preferred as it more accurately reflects the actual innovation level of a
region compared to innovation input. Among the various metrics for innovation output,
the number of patent applications and the number of patents granted are frequently utilized.
However, the patent granting process entails a lengthy approval procedure, resulting in
a time lag that complicates the measurement of innovation output for a specific year. In
contrast, the number of patent applications, especially those for invention patents, provides
a more immediate and accurate representation of a region’s innovation achievements within
a given year. Therefore, this paper utilizes the number of invention patent applications as a
measure of technological innovation.

3.3. Data Description

Considering the accessibility and comprehensiveness of the data, the study selected
panel data from 277 prefecture-level cities in China spanning from 2011 to 2021 as the
sample, systematically investigating the influence of ECRTP on air pollution. The original
data of PM2.5 is obtained from the openly available PM2.5 surface grid data provided by
the Atmospheric Composition Analysis Group at Washington University in St. Louis, USA.
To calculate the annual average PM2.5 concentration values for each prefecture-level city
in China from 2011 to 2021, ArcGIS was utilized to fit these data with the vector data of
China’s prefecture-level cities annually. The quantity of invention patent applications was
obtained from the CNRDS database, while additional data were gathered from the “China
Urban Statistical Yearbook”, “China Urban Construction Statistical Yearbook”, statistical
yearbooks of provinces and prefecture-level cities, and government work reports. Interpo-
lation methods were employed for individual missing values in the data. Furthermore, a
logarithmic transformation was utilized on variables outside the core explanatory variables
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to decrease data dispersion and address heteroscedasticity. It should be noted that the data
presented in this paper are sourced from reputable databases and research institutions and
have been processed using rigorous scientific methods to guarantee the authenticity and
reliability of the data. Table 1 presents the specific definitions of each variable and Table 2
offers the overall descriptive statistics for these variables.

Table 1. Definitions of each variable.

Variable Type Variable Name Variable Symbol Variable Description

Explained variable Air pollution lnpoll PM2.5 concentration

Core explanatory variable Energy-consuming rights
trading policies ECRTP

The interaction term between
pilot city dummy variable and

pilot implementation time
dummy variable.

Control variable

Economic development lngdp
The ratio of gross domestic
product (GDP) to the total

population.

Population density lnpop
The ratio of the total urban

population to the area of the
administrative division.

Openness to foreign lnfdi The actual utilized foreign
investment amount.

Financial development lnfin
The year-end balance of
various RMB loans from

financial institutions.

Urbanization lnurb
The ratio of the urban
population to the total

population.

Government support lngov
The ratio of government

public fiscal expenditure to
GDP.

Mechanism Variable

Energy efficiency lnene The reciprocal of energy
intensity.

Industry structure lnind

The ratio of the output value
of the tertiary industry to the

regional gross domestic
product (GDP).

Technological innovation lnpat The number of invention
patent applications.

Table 2. Descriptive statistics of all variables.

Variables N Mean SD Min Max

lnpoll 3047 3.6049 0.3445 2.3812 4.5227
ECRTP 3047 0.0903 0.2866 0 1
lngdp 3047 10.7762 0.5772 8.7729 15.6752
lnpop 3047 5.7621 0.9799 1.7077 9.0886
lnfdi 3047 11.8305 2.0291 −5.0146 16.8344
lnfin 3047 16.5767 1.1650 13.7234 20.5984
lnurb 3047 3.9993 0.2659 3.0445 4.6052
lngov 3047 2.9734 0.5299 1.4789 6.4037
lnene 3047 2.7388 0.8526 −1.1305 5.4134
lnind 3047 3.7314 0.2472 2.6644 4.4293
lnpat 3047 6.4445 1.7031 1.9459 11.6865
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4. Empirical Analysis
4.1. Descriptive Statistics of Variables

Descriptive statistics of the main variables grouped are shown in Table 3. Out of the
3047 observations, there are 605 observations in the treatment group and 2442 observations
in the control group. As there are significant differences in urban characteristics between
the treatment and control groups, it is necessary to incorporate control variables into the
regression model to control for these differences.

Table 3. Descriptive statistics of variable groups.

Variables
Treatment Group Control Group Comparison of

Mean DifferencesN Mean SD N Mean SD

lnpoll 605 3.6451 0.3948 2442 3.5950 0.3303 −0.0501 ***
lngdp 605 10.8195 0.5626 2442 10.7655 0.5803 −0.0540 **
lnpop 605 6.1490 0.7089 2442 5.6662 1.0137 −0.4828 ***
lnfdi 605 12.1581 1.6371 2442 11.7494 2.1075 −0.4087 ***
lnfin 605 16.7012 1.1093 2442 16.5458 1.1766 −0.1554 ***
lnurb 605 3.9551 0.2281 2442 4.0102 0.2734 0.0551 ***
lngov 605 2.8456 0.4744 2442 3.0050 0.5382 0.1594 ***

Note: *** and ** denote significance levels at 1% and 5%, respectively.

4.2. Parallel Trend Test

This study utilizes the DID model to examine whether ECRTP can suppress air pol-
lution. An essential assumption of this method is that both the treatment group and the
control group must meet the parallel trend hypothesis before the pilot implementation.
This analysis depicts the trend of lnpoll in ECRTP pilot and non-pilot cities, as illustrated
in Figure 2. It can be observed from the figure that, before 2017, the lnpoll in non-pilot and
pilot cities maintained a parallel trend, with no significant difference between them. After
2017, the amplitude of decline in lnpoll in pilot cities was greater than that in non-pilot
cities, and this trend continues until the end of the sample period. The findings above sug-
gest that employing the DID model to assess the policy impacts of ECRTP on air pollution
is feasible. To further ensure the identifiability of the regression results, an event study
method was utilized to perform a parallel trend test. This study employs dummy variables
for the five years preceding the implementation of ECRTP, the year of implementation,
and the four subsequent years as explanatory variables in the regression analysis. The
regression coefficients and their corresponding 90% confidence intervals are illustrated in
Figure 3. The results presented in Figure 3 indicate that all regression outcomes before
2017 are statistically insignificant, suggesting that, before the implementation of ECRTP, the
trends of change for the treatment and control groups were consistent, with no significant
differences being observed. This finding indicates that the research sample passes the
parallel trend test required by the DID model.
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4.3. Baseline Regression Analysis

Based on Model (1), the DID model is employed to evaluate the impact of ECRTP on air
pollution. The baseline regression estimations are detailed in Table 4. The table illustrates
that, when accounting for city-fixed effects, time-fixed effects and utilizing robust standard
errors clustered at the city level, the estimated coefficients of ECRTP remain consistently
negative in the regression results as control variables are added sequentially. Furthermore,
all coefficients pass the significance test at the 1% level. Therefore, it is evident that ECRTP
markedly inhibits air pollution. This inhibitory effect remains robust across the estimated
results with or without control variables, thus confirming research hypothesis H1. ECRTP
can address the issue of mismatched energy resource allocation at the source, aiding in the
achievement of the “dual control” objectives of regulating total energy consumption and
energy intensity, consequently curbing air pollution. Moreover, this pilot policy offers a
fresh strategy for other developing nations in regard to tackling air pollution challenges.

Table 4. Baseline regression results.

Variables (1) (2) (3) (4) (5) (6) (7)

ECRTP −0.0577 *** −0.0483 *** −0.0433 *** −0.0415 *** −0.0455 *** −0.0460 *** −0.0461 ***
(0.0112) (0.0112) (0.0114) (0.0110) (0.0103) (0.0104) (0.0103)

lngdp −0.0667 *** −0.0638 *** −0.0571 *** −0.0435 *** −0.0443 *** −0.0480 ***
(0.0144) (0.0137) (0.0130) (0.0113) (0.0114) (0.0119)

lnpop −0.1762 *** −0.1543 *** −0.1378 *** −0.1335 *** −0.1393 ***
(0.0395) (0.0370) (0.0355) (0.0347) (0.0348)

lnfdi −0.0080 *** −0.0063 *** −0.0062 *** −0.0062 ***
(0.0024) (0.0023) (0.0023) (0.0023)

lnfin −0.0828 *** −0.0842 *** −0.0849 ***
(0.0225) (0.0230) (0.0230)

lnurb 0.0332 0.0327
(0.0435) (0.0437)

lngov −0.0149
(0.0095)

Constant 3.6101 *** 4.3275 *** 5.3119 *** 5.2069 *** 6.3189 *** 6.1918 *** 6.3234 ***
(0.0010) (0.1555) (0.2496) (0.2305) (0.3759) (0.3894) (0.3942)

City effects Yes Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes Yes

N 3047 3047 3047 3047 3047 3047 3047
Adj. R2 0.9389 0.9404 0.9404 0.9420 0.9433 0.9433 0.9434

Note: *** reveals statistical significance at the 0.01 level, Robust standard errors are reported in parentheses.

The estimated coefficients in column (7) of Table 4 reveal that economic development
(lngdp) significantly inhibits air pollution, which is consistent with the findings of Deng
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Rongrong and Zhang Aoxiang (2022) [56]. Higher levels of economic development lead to
increased public awareness of environmental protection, stricter constraints on enterprise
environmental violations, and enhanced government supervision of pollution control, all
of which are conducive to inhibiting air pollution. Population density (lnpop) also shows
a pronounced inhibitory effect on air pollution, in line with Liang Wei et al.’s (2017) [57]
research, indicating that as population density rises, costs decrease and technological
spillovers aid in reducing air pollution. Foreign direct investment (lnfdi) demonstrates a
significant inhibitory effect on air pollution, supporting the “pollution halo hypothesis”,
which suggests that inflows of foreign capital bring advanced technology and management
expertise that greatly assist in air pollution control. Financial development (lnfin) also dis-
plays a pronounced inhibitory effect on air pollution, as the advancement of digital finance
and green finance guides resources towards low-energy consumption and low-pollution
industries, phasing out high-energy consumption and high-pollution enterprises, thus
benefiting the inhibition of air pollution. The estimated coefficient for urbanization (lnurb)
is positive but insignificant, indicating that current urbanization is not conducive to air
pollution governance, highlighting the necessity to enhance the quality of urbanization
development. Although the estimated coefficient for government support (lngov) is nega-
tive but insignificant, it suggests that government support has a certain inhibitory effect on
air pollution, implying there is still room for enhancement in the strength and direction of
government support.

4.4. Robustness Test
4.4.1. Placebo Test

Despite incorporating control variables that may affect air pollution into the baseline
regression model, there still exists a potential impact of unobserved omitted variables.
Therefore, this study conducts a placebo test on the baseline regression. From the research
sample, an equal number of cities to those involved in the ECRTP pilot are randomly
selected to serve as a pseudo-treatment group. Pseudo-policy times are then randomly as-
signed to these selected cities, whereas the other cities act as the control group. Subsequently,
a dummy policy variable Treati

false × Timet
false is created, and parameter estimation of the

baseline model is carried out using the new sample group. To avoid interference from other
low-probability events on the estimation results, the regression analysis process described
above is repeated 500 times. Figure 4 displays the kernel density and distribution of cor-
responding p-values for the estimated coefficients of the dummy policy variable over 500
random iterations. It is observed that the mean estimated coefficient of the dummy policy
is close to 0 and the majority of p-values are above 0.1. Additionally, the vertical dashed
line in Figure 4 denotes the real estimated results of ECRTP in column (7) of Table 4 of the
baseline regression model. These results appear as outliers in the estimated coefficients of
the placebo test. Thus, we can deduce that the estimation results of the baseline model are
not severely biased due to omitted variables.
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4.4.2. Instrumental Variable Test

The DID model to some extent excludes the effects of time-varying and other unob-
servable factors, yet the selection of ECRTP pilot cities may still be non-random, leading to
endogeneity concerns. Drawing on the practices of Li Shaolin and Bi Zhixue (2022) [33]
and Xiaoping He (2023) [58], we select the interaction term IV between city topography
undulation and ECRTP as instrumental variables. Topography undulation affects a region’s
population density, economic development, and industrial agglomeration, all of which are
closely linked to the selection of ECRTP pilot cities, thus establishing a correlation between
topography undulation and ECRTP. The topography undulation is a natural geographical
feature that is not directly related to air pollution. Apart from its impact on ECRTP, which
in turn affects air pollution, there are no other mechanisms of action. Therefore, this in-
strumental variable possesses exogeneity. The outcomes of the instrumental variable test
are presented in Table 5. Regardless of the inclusion of control variables, the estimated
coefficient of the IV in the first stage is significantly positive at the 1% level, indicating
that the instrumental variable satisfies the relevance conditions and passes the Kleibergen–
Paap rk Wald F statistic test, confirming the effectiveness of the instrumental variable. In
the second stage, the estimated coefficient of ECRTP is significantly negative, indicating
that the air pollution suppression effect is slightly weaker than the benchmark regression
results. These findings imply that, after excluding endogeneity issues arising from the
non-random selection of pilot areas, ECRTP continues to exhibit a notable inhibitory effect
on air pollution.

Table 5. The results of the instrumental variable test.

Variables
(1) (2) (3) (4)

The First Stage The Second Stage The First Stage The Second Stage

IV 0.6325 *** 0.6272 ***
(0.1266) (0.1228)

ECRTP −0.0349 *** −0.0323 ***
(0.0100) (0.0096)

Constant 0.0495 *** 3.7030 *** −2.7300 *** 6.1827 ***
(0.0082) (0.0272) (0.7877) (0.2428)

Controls No No Yes Yes
City effects Yes Yes Yes Yes
Year effects Yes Yes Yes Yes

N 3047 3047 3047 3047
Adj. R2 0.7091 0.9387 0.7158 0.9431

Kleibergen–Paap rk LM
statistic

360.3470
[0.0000]

372.4150
[0.0000]

Kleibergen–Paap rk
Wald F statistic

242.1170
{16.38}

252.5380
{16.38}

Note: The value in the square brackets of the Kleibergen–Paap rk LM statistic represents the p-value, while the
value in the curly braces of the Kleibergen–Paap rk Wald F statistic represents the 10% critical value for the
Stock–Yogo weak identification test. Robust standard errors are reported in parentheses, and *** reveals statistical
significance at the 0.01 level.

4.4.3. Estimation of the SC-DID Model

Although this article has a possibility of weak pre-parallel trends, it should be noted
that, even if pre-parallel trends are satisfied, it does not guarantee that post-parallel trends
will be met. The Synthetic Control Method (SCM) can assign weights to data from various
control groups, allowing the pre-trends of the synthetic control group to closely resem-
ble those of the treatment group, thereby effectively resolving the issue encountered by
traditional DID models related to meeting pre-parallel trends [59]. However, the SCM
method is unable to assign time weights and requires that there be only one treatment
group. Therefore, this study draws on the SC-DID model proposed by Arkhangelsky et al.
(2021) [60], which incorporates individual weights and time weights to match pre-trends in
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the control and treatment groups, considering both pre- and post-periods, thereby reducing
the dependence of parameter estimates on the assumption of parallel trends. The funda-
mental operational steps of SC-DID involve not only identifying control group individuals
that closely resemble the treatment group through unit-specific weights but also locating
pre-treatment periods that are analogous to the post-treatment period using time-specific
weights. In this process, greater individual weights and time weights are assigned to these
identified individuals and periods, respectively. This paper utilizes the SDID command for
estimating the SC-DID model. The estimated results of the SC-DID model are shown in
Table 6, as depicted in column (1). The average treatment effect of ECRTP is −0.0362, which
remains significant at the 1% level, signifying the effectiveness of ECRTP in suppressing air
pollution. Additionally, Figure 5 illustrates the dynamic effects of air pollution estimated
by the SC-DID model during each period, both when ECRTP was implemented and after
its operation. The results exhibit negative estimated coefficients of the policy intervention
for each period, with confidence intervals excluding zero, indicating the sustained and
dynamic impact of ECRTP in curbing air pollution. These findings suggest that the SC-DID
model’s estimates further validate the robustness of the baseline regression outcomes. The
data presented in Figure 5 reveal that the estimated coefficients of the pilot policies in
each period are negative, with confidence intervals excluding 0. This signifies the dynamic
persistence of the air pollution suppression effect resulting from ECRTP. Moreover, the
estimated results of the SC-DID model corroborate the robustness of the baseline regression
results.

Table 6. Robustness test results.

Variables
(1) (2) (3) (4) (5) (6)

SC-DID PSM-DID Entropy
Balancing

Environmental
Protection Tax

Carbon Emission
Rights Joint Policy

ECRTP −0.0362 *** −0.0402 *** −0.0366 *** −0.0467 *** −0.0536 *** −0.0536 ***
(0.0088) (0.0119) (0.0103) (0.0095) (0.0102) (0.0096)

EPT −0.0407 *** −0.0339 ***
(0.0097) (0.0096)

CER −0.1052 *** −0.0987 ***
(0.0147) (0.0148)

Constant 5.8094 *** 5.8799 *** 6.1559 *** 6.2729 *** 6.1363 ***
(0.6265) (0.5174) (0.3878) (0.3828) (0.3802)

Controls Yes Yes Yes Yes Yes Yes
City effects Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes

N 3047 1346 3047 3047 3047 3047
Adj. R2 0.9578 0.9633 0.9442 0.9453 0.9458

Note: *** reveals statistical significance at the 0.01 level, Robust standard errors are reported in parentheses.
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4.4.4. PSM-DID Model Estimation

The selection of ECRTP pilot cities in China may be selective. Therefore, there may
be differences in individual characteristics between pilot cities and non-pilot cities, which
can lead to sample selection bias. Propensity Score Matching (PSM) is a robust sample-
matching technique that addresses the effects of sample selection bias. However, PSM is
unable to avoid endogeneity issues resulting from omitted variables, while the DID model
can effectively tackle endogeneity concerns but falls short in adequately addressing sample
selection bias. To address this issue, a PSM-DID model is applied for robustness testing,
with the specific steps being outlined as follows: Firstly, using the control variables from
the baseline regression model as covariates, a logit model is employed with a 1:2 nearest
neighbor matching strategy with replacement to conduct propensity score matching (PSM),
aiming to match the treatment group with a control group that is as similar as possible. Sec-
ondly, the balance of the matched sample is tested and specific results are shown in Figure 6.
The standardized biases of each variable significantly decrease following matching, with all
biases falling below 10%, which indicates a strong matching effect. Ultimately, the matched
sample is employed for re-estimation using the DID model. The estimated results, as
displayed in column (2) of Table 6, exhibit that the estimated coefficient of ECRTP remains
significantly negative, validating the robustness of the baseline regression conclusions.
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While PSM can match the treatment group with a control group that has similar
characteristics, it depends heavily on the first-stage matching model and may lead to
sample loss during egression [61]. The entropy balancing (EB) method assigns weights
to the control group data to make the covariates as similar as possible to the treatment
group in terms of mean, variance, and skewness without sacrificing samples based on
matching. Therefore, additional reconstruction of the control group using the EB method
and regression with the matched sample yields the results shown in column (3) of Table 6.
These results demonstrate that the estimated coefficient of ECRTP is significantly negative
at the 1% level, still supporting the conclusions of the baseline regression.

4.4.5. Consideration of the Impacts of Other Policies during the Same Period

If other policy shocks highly correlated with air pollution occurred during the study
period, it could affect the accuracy of the baseline regression results. In addition to ECRTP,
the implementation of environmental protection taxes and carbon emission trading policies
is intricately linked to the research in this article. In the baseline regression, the dummy
variables EPT and CER, respectively representing the environmental protection tax and
carbon emission trading policy, are sequentially added to consider the impacts of other
policies. The results are presented in columns (4) and (5) of Table 6. Taking into account
the synergistic effects of policies, the dummy variables representing the two policies are
simultaneously included in the baseline regression, as displayed in column (6) of Table 6.
After removing the contemporaneous effects of other policies, the estimated coefficient of
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ECRTP remains significantly negative, indicating that the estimated results obtained in the
preceding section are not affected by the interference of other policies.

4.4.6. Other Robustness Tests

The study also conducted the following additional robustness tests. Firstly, the ex-
plained variable was replaced to alleviate potential measurement errors associated with
PM2.5 concentration. High-resolution PM2.5 concentration data released by the China
Qinghai-Tibet Plateau Data Center was employed as an alternative variable for air pol-
lution. The regression findings based on this substitution are displayed in column (1)
of Table 7. Additionally, considering the spatiotemporal correlation between PM2.5 and
harmful gases, such as SO2, this study employs SO2 as a proxy variable for PM2.5. The
regression results are presented in column (2) of Table 7. Secondly, the standard errors
were adjusted to account for potential spatial-temporal correlation within the error term.
This adjustment was accomplished through two-way clustering by city and year. The
regression results after standard error adjustment are demonstrated in column (3) of Table 7.
Thirdly, we controlled to province time-varying trends. Although city-fixed effects and
year-fixed effects were controlled in the baseline regression, the potential issue of omitted
variables may originate from time-varying macroeconomic conditions. To address this
issue, the product terms of province and year were added to the baseline regression, and the
regression results are shown in column (4) of Table 7. Fourthly, outliers must be removed.
To remove the influence of outliers on the regression results, a two-tailed winsorizing at
the top and bottom 1% was applied to all continuous variables. The regression outcomes
after excluding outliers are demonstrated in column (5) of Table 7. The estimated coeffi-
cients of the regression results above remain significantly negative, further confirming the
robustness of the baseline regression results.

Table 7. Other robustness test results.

Variables
(1) (2) (3) (4) (5)

Replaced Explained
Variable lnSO2

Adjusted Standard
Error

Controlled Province
Time Trends Winsorization

ECRTP −0.0347 *** −0.2235 * −0.0461 *** −0.0299 * −0.0480 ***
(0.0090) (0.1140) (0.0104) (0.0177) (0.0105)

Constant 5.3759 *** 11.2545 *** 6.3234 *** 4.2214 *** 6.1509 ***
(0.2841) (3.2798) (0.3961) (0.3045) (0.3948)

Controls Yes Yes Yes Yes Yes
City effects Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes

N 3047 3047 3047 3047 3047
Adj. R2 0.9713 0.8733 0.9428 0.9809 0.9413

Note: *** reveals statistical significance at the 0.01 level, and * indicates statistical significance at the 0.1 level.
Robust standard errors are reported in parentheses.

5. Mechanism Testing

To further explore the underlying reasons for the suppression effect of air pollution
achieved by ECRTP, this study utilized the mediation effect model to empirically investigate
the mechanisms through three paths: energy efficiency, industrial structure upgrading, and
technological innovation.

5.1. Path 1: Energy Efficiency

Energy efficiency is crucial to ensuring sustainable economic development, reduc-
ing environmental pollution, and guaranteeing national energy security. It reflects the
effectiveness and economy of energy utilization. Table 8 examines the existence of the
pathway in which ECRTP suppresses air pollution through energy efficiency in columns
(1) and (2). The estimated coefficient of ECRTP in column (1) is significantly positive,
indicating a significant improvement in energy efficiency due to ECRTP. Under the con-
straint of ECRTP, enterprises that exceed their energy usage limits are required to purchase
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energy-consuming quota indicators from the market, leading to increased production costs.
This compels enterprises to reconfigure production factors, enhance production processes,
decrease energy consumption, and consequently improve energy efficiency. Moreover, the
estimated coefficients of ECRTP and lnene in column (2) are both significantly negative,
suggesting a partial mediating effect of energy efficiency between ECRTP and air pollution.
As a result, research hypothesis H2 is confirmed.

Table 8. Results of mechanism test.

Variables
(1) (2) (3) (4) (5) (6)

lnene lnpoll lnind lnpoll lnpat lnpoll

ECRTP 0.1314 * −0.0451 *** 0.0865 *** −0.0429 *** 0.0881 * −0.0451 ***
(0.0788) (0.0106) (0.0211) (0.0106) (0.0500) (0.0103)

lnene −0.0203 ***
(0.0059)

lnind −0.0560 **
(0.0275)

lnpat −0.0104 **
(0.0041)

Constant 12.0083 *** 6.7394 *** 3.7624 *** 6.7066 *** 0.2815 6.3264 ***
(2.3564) (0.4242) (0.5725) (0.3905) (2.2274) (0.3970)

Controls Yes Yes Yes Yes Yes Yes
City effects Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes

N 3047 3047 3047 3047 3047 3047
Adj. R2 0.7962 0.9437 0.8601 0.9434 0.9340 0.9435

Note: *** reveals statistical significance at the 0.01 level, ** reveals statistical significance at the 0.05 level, and
* indicates statistical significance at the 0.1 level. Robust standard errors are reported in parentheses.

5.2. Path 2: Industrial Structure Upgrading

The upgrading of industrial structure is the process in which various production
factors exit from low value-added, low efficiency, and high consumption production sectors,
and subsequently shift towards high value-added, high efficiency, and low consumption
production sectors. This is mainly manifested in the service-oriented transformation of the
economic structure. Table 8 examines the existence of the pathway through which ECRTP
inhibits air pollution by promoting the upgrading of industrial structures. The estimated
coefficient of ECRTP in column (3) is significantly positive, indicating that ECRTP can
promote the upgrading of the regional industrial structure, leading to a transformation
from a lower stage to a higher stage. The estimated coefficients of both ECRTP and lnind in
column (4) are significantly negative, suggesting that the upgrading of industrial structure
has a partial mediating role in the relationship between the pilot of energy rights trading
and air pollution. It is evident that ECRTP can promote the optimization and upgrading of
industrial structures, leading to decreased resource consumption and reduced air pollution
emissions in cities. As a result, research hypothesis H3 is corroborated.

5.3. Path 3: Technology Innovation

Utilizing technological innovation as an endogenous driving force to address en-
vironmental and resource constraints is an important driver for high-quality economic
development. Table 8 examines the existence of the path through which ECRTP inhibits air
pollution through technological innovation. The estimated coefficient of ECRTP in column
(5) is significantly positive, indicating that ECRTP can significantly promote technolog-
ical innovation. The estimated coefficients of ECRTP and lnpat in column (6) are both
significantly negative, indicating that technological innovation plays a partial mediating
role in the relationship between ECRTP and air pollution. According to the innovation
compensation theory, ECRTP, as a market-oriented environmental regulatory tool, can
compel enterprises to engage in technological innovation activities such as production
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process optimization and process restructuring, thereby improving production efficiency,
lowering energy consumption, and ultimately curbing air pollution. Based on this, research
hypothesis H4 is validated.

To further validate the robustness of the mechanism test conclusions in this research,
the Sobel test and bootstrap test were conducted to determine whether the indirect effects
of energy efficiency, industrial structure upgrading, and technological innovation were
significant. The specific results are shown in Table 9. The Sobel test results indicate that the
indirect effects of energy efficiency, industrial structure enhancement, and technological
innovation all passed the significance test. Moreover, the bootstrap test results demonstrate
that the confidence intervals of the indirect effects for Bias-Corrected and Percentile do not
include 0 at the 95% level. As a result, research hypotheses H2, H3, and H4 are reaffirmed.

Table 9. Further mechanism test results.

Paths
Sobel Test Bootstrap Test: 95% Conf. Interval

Indirect Effect Z p > |z| Bias-Corrected Percentile

ECRTP→lnene→lnpoll −0.0027 −2.9649 0.0030 −0.0049 −0.0011 −0.0050 −0.0010

ECRTP→lnind→lnpoll −0.0048 −3.1489 0.0016 −0.0085 −0.0016 −0.0085 −0.0016

ECRTP→lnpat→lnpoll −0.0009 −1.7068 0.0879 −0.0021 −0.0002 −0.0020 −0.0001

Note: The bootstrap sample size is 2000 times.

6. Heterogeneity Analysis

Although the previous text has confirmed that ECRTP has a significant inhibitory
effect on air pollution, is there heterogeneity in the impact of pilot policies on different
cities? Based on this, this article further examines the heterogeneous policy effects of ECRTP
on air pollution in different cities using a triple differences model. The specified triple
differences model is as follows:

lnpollit = γ0 + γ1Treati × Timet × Cityi + γ2Xit + µi + ηt + εit (4)

Here, City represents the characteristic variables at the city level, including geographic
location (Geo), energy-saving potential (Sav), resource endowment (Res), and environmen-
tal type (Env). If γ1 passes the statistical significance test, it means that ECRTP will have
a heterogeneous impact on air pollution in various types of cities; conversely, there is no
heterogeneous impact.

6.1. Heterogeneity of Geographic Location

The impact of ECRTP on air pollution may exhibit heterogeneity due to differences in
the geographic location of cities. The Hu Huanyong Line, proposed by the geographer Hu
Huanyong in 1935, is a demarcation line for population density in China and also serves
as a dividing line for the level of economic and social development in China. The regions
located to the northwest of this line exhibit relatively lower population densities and
lower levels of economic and social development, while the southeast side displays higher
population densities and relatively higher levels of economic and social development [62].
Thus, in this study, a dummy variable, Geo, is constructed based on the Hu Huanyong Line
as a boundary. If a city is located to the southeast of the Hu Huanyong Line, Geo = 1; if it is
located to the northwest, Geo = 0. Subsequently, a triple difference Treat × Time × Geo
model is incorporated into the regression analysis, with the results being shown in column
(1) of Table 10. The estimated coefficient of Treat × Time × Geo is −0.0461, significant
at the 1% level, indicating that ECRTP has a stronger inhibitory effect on air pollution in
cities southeast of the Hu Huanyong Line. This variation could be attributed to the higher
levels of economic and social development in the southeast region of the Hu Huanyong
Line, leading to greater availability of funds, technology, and talent, thereby enhancing the
emission reduction effect of ECRTP.
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Table 10. Results of the heterogeneity regression.

(1) (2) (3) (4)

Variables Geographical Location Energy-Saving
Potential Resource Endowment Environmental

Protection Types

Treat × Time × Geo −0.0461 ***
(0.0103)

Treat × Time × Sav −0.0273 **
(0.0133)

Treat × Time × Res −0.0546 ***
(0.0143)

Treat × Time × Env −0.0382 ***
(0.0125)

Constant 6.3234 *** 6.3949 *** 6.4078 *** 6.3859 ***
(0.3942) (0.3879) (0.3947) (0.3899)

Controls Yes Yes Yes Yes
City effects Yes Yes Yes Yes
Year effects Yes Yes Yes Yes

N 3047 3047 3047 3047
Adj. R2 0.9434 0.9428 0.9431 0.9428

Note: *** reveals statistical significance at the 0.01 level, ** reveals statistical significance at the 0.05 level. Robust
standard errors are reported in parentheses.

6.2. Heterogeneity of Energy Saving Potentials

In general, the larger the energy consumption of a city, the greater its energy-saving
potential. ECRTP may have heterogeneous effects on air pollution in cities with differ-
ent energy-saving potentials. As it is difficult to obtain energy consumption data at the
prefecture-level city level in China, this study will use the total electricity consumption
of the whole society as a proxy indicator of urban energy consumption and construct a
dummy variable, Sav, representing energy-saving potential. If a city’s overall electricity
consumption exceeds the city’s average, Sav = 1; otherwise, Sav = 0. Subsequently, the triple
difference term Treat × Time × Sav is included in the regression model, and the specific
results are shown in column (2) of Table 10. The estimated coefficient of Treat × Time × Sav
is −0.0273, significantly negative at the 5% level, indicating that ECRTP exhibits a stronger
effect on air pollution control in cities with higher energy-saving potential. One possible
explanation is that the government prioritizes cities with higher energy-saving potential in
the implementation of ECRTP to effectively reach energy-saving and emission reduction
objectives. Therefore, more stringent energy consumption targets and intensity control
goals are set for these cities, which in turn compel companies to develop energy-saving
and emission reduction technologies, leading to a stronger air pollution control effect in
these cities.

6.3. Heterogeneity of Resource Endowment

Due to differences in resource endowment, resource-based cities and non-resource-
based cities exhibit variations in economic development, industrial structure, and energy
consumption [63]. Therefore, resource endowment may lead to heterogenous impacts in
regard to ECRTP and air pollution. According to the “National Sustainable Development
Plan for Resource-based Cities (2013–2020)” released by China, a corresponding dummy
variable, Res, is constructed. If it is a resource-based city, Res = 1, and if it is a non-resource-
based city, Res = 0. Subsequently, a triple difference interaction term, Treat × Time × Res,
is constructed to examine the impact of ECRTP on air pollution in cities with different
resource endowments, as shown in the regression results in column (3) of Table 10. It can
be observed that the estimated coefficient of Treat × Time × Res is −0.0546, significantly
negative at the 1% level, indicating that ECRTP has a stronger inhibitory effect on air
pollution in resource-based cities. This could be attributed to the fact that resource-based
cities possess abundant mineral, coal, and fossil fuel resources, which often leads to higher
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energy consumption and environmental pollution. Given that ECRTP is primarily designed
for such cities and faces more significant policy impacts, its air pollution mitigation effect is
more pronounced in resource-based cities.

6.4. Heterogeneity of Environmental Protection Types

In 2023, the Chinese government released the “Action Plan for Continuous Improve-
ment of Air Quality,” which not only outlined the overall ideology, goals, and key tasks
for the continuous improvement of air quality but also demarcated the scope of key pre-
vention and control areas for atmospheric pollution. Therefore, this article argues that the
impact of ECRTP on air pollution may exhibit heterogeneity due to different types of urban
environmental protection. As outlined in the “Action Plan”, which identifies key cities for
pollution prevention and control in the greater region, a corresponding dummy variable,
Env, is constructed where key prevention and control cities are represented as Env = 1 and
non-key prevention and control cities as Env = 0. Subsequently, a triple difference term
Treat × Time × Env is constructed to explore the heterogeneous impact of ECRTP on air
pollution in cities with different environmental protection types. The regression results
are shown in column (4) of Table 10. It can be observed that the estimated coefficient of
Treat × Time × Env is −0.0382, which is also significantly negative at the 1% level, indicat-
ing that ECRTP exerts a stronger inhibitory effect on air pollution in key prevention and
control cities. The reason for this may be that key prevention and control cities face more
environmental regulatory constraints, allowing ECRTP to have a greater policy synergy
with other environmental regulations, thereby demonstrating a stronger inhibitory effect on
air pollution. Based on the above analysis, it can be concluded that the research hypothesis
H5 has been verified.

7. Discussion

The establishment of a compensated use and trading system for energy rights repre-
sents a significant initiative for China in advancing the reform of its ecological civilization
system. This system is crucial for achieving the targets outlined in the “13th Five-Year
Plan”, which aims to implement dual control over total energy consumption and energy
intensity while also promoting green development. In this context, the National Devel-
opment and Reform Commission of China issued a document entitled “Notice on the
Pilot Implementation of Compensated Use and Trading of Energy Rights” in 2016. This
document designated the Zhejiang, Henan, Fujian, and Sichuan provinces as pilot areas
for ECRTP. The primary objective of this policy is to harness the market’s essential role in
resource allocation, thereby motivating enterprises to pursue green innovations and energy
conservation through market-driven mechanisms. This approach aims to achieve dual
gains in environmental performance and economic performance.

Upon reviewing the research presented in this paper, it can be concluded that ECRTP
significantly reduces PM2.5 concentrations in the pilot areas. This finding demonstrates
ECRTP’s effectiveness in mitigating air pollution and confirms its ability to adjust the
energy structure through market mechanisms. Additionally, ECRTP improves energy
efficiency, promotes energy conservation and emissions reduction, and facilitates the green
transformation of China’s economy. Nonetheless, the research reveals that ECRTP has
resulted in an average reduction of only 4.61% in air pollution levels in pilot cities compared
to non-pilot cities, which is substantially lower than the conclusions drawn by Han et al.,
who reported that CO2 and SO2 could be reduced by 84.8% and 34.5%, respectively. This
discrepancy may arise from the fact that ECRTP has not effectively suppressed PM2.5 con-
centrations across all pilot cities, indicating that the policy impacts of ECRTP may possess
a degree of uncertainty. However, the research indicates that ECRTP has led to an average
reduction of only 4.61% in air pollution levels in pilot cities compared to non-pilot cities,
which is significantly lower than the findings of Han et al., who concluded that CO2 and
SO2 could be reduced by 84.8% and 34.5%, respectively. This discrepancy may be because
the implementation of ECRTP has not comprehensively suppressed PM2.5 concentrations
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in every pilot city, suggesting that the policy effects of ECRTP may carry a certain degree of
uncertainty. The conclusions of this study align with actual observations, indicating that air
quality in some regions has not significantly improved and may have even degraded fol-
lowing the implementation of ECRTP. Several factors may contribute to this situation [64]:
Firstly, ECRTP in China remains in the pilot phase, and the top-level design, regulatory
framework, technological infrastructure, supportive policies, and trading systems require
further enhancement. The current level of marketization is noticeably insufficient, which
directly undermines the effectiveness of ECRTP implementation. Secondly, significant
variations exist in quota allocation schemes among different pilot regions. For instance,
Zhejiang Province focuses on controlling the newly added energy consumption while
optimizing existing energy usage. This strategy has a relatively small impact on existing
energy-consuming enterprises; however, it exhibits limited incentivizing capabilities, and
its effectiveness in fostering market-oriented resource allocation is not evident. In contrast,
the Henan and Fujian provinces adopt a quota trading method to control the total energy
consumption by managing the annual total quota. At the same time, they implement
classified management for various industries, existing production capacities, and newly
established production capacities. In this context, enterprises in the pilot regions are fre-
quently subject to dual regulation from both ECRTP and carbon emissions rights, leading
to insufficient activity in the trading market. Thirdly, considerable disparities exist among
cities regarding the intensity of policy implementation, the extent of support from local
governments, and their levels of economic development. These variations may result in
varied implementation outcomes of ECRTP.

8. Conclusions, Policy Implications, and Limitations

To evaluate the impact of ECRTP on air pollution, this paper takes the ECRTP pilot as
a quasi-natural experiment and constructs a DID model. Empirical tests were conducted
using panel data from 277 prefecture-level cities in China from 2011 to 2021. The conclusions
are as follows:

Firstly, the baseline regression shows that ECRTP has a significant inhibitory effect
on air pollution. This conclusion holds after a series of robustness tests. Secondly, the
mechanism analysis indicates that ECRTP suppresses air pollution through pathways
such as improving energy efficiency, promoting the upgrading of industrial structure, and
stimulating technological innovation. Lastly, heterogeneity analysis shows that ECRTP has
a stronger inhibitory effect on air pollution in areas that are economically and socially de-
veloped, possess greater energy-saving potential, are characterized as resource-dependent
regions, and function as major areas for the prevention and control of air pollution.

The policy implications are as follows: Firstly, in leveraging ECRTP as an opportunity,
it is essential to continuously summarize general rules and best practices to form replicable
and generalizable experiences, practices, and systems. This includes expanding the pilot
scope and promptly establishing a nationwide unified energy-consuming rights trading
market system. Secondly, there is a need to broaden the scope of the pilot and establish
more stringent targets for total energy consumption and intensity in the cities that are
economically and socially developed, demonstrate greater energy-saving potential, are
categorized as resource-based cities, and serve as key cities for the prevention and control
of air pollution. Lastly, the government should not only focus on the direct inhibitory
effect of ECRTP on air pollution but also consider comprehensively the formulation and
implementation of relevant supporting policies to enhance energy efficiency, promote the
upgrading of industrial structure, and stimulate technological innovation to maximize the
energy-saving and emission reduction policy dividends of ECRTP.

There are limitations in this study that require further expansion and improvement in
future research. Firstly, the research sample has certain limitations. This study only focuses
on China’s ECRTP, while the feasibility and effectiveness of ECRTP implementation in
other countries still need to be explored. Secondly, due to our being limited by the length of
the paper, more detailed categorization studies were not conducted on the research samples
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in terms of heterogeneity analysis. Lastly, while this study discusses potential underlying
mechanisms, there is still room for further analysis. Subsequent research could consider
mechanisms such as energy structure and green total factor productivity.
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