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Abstract: Microgrids (MGs) are the new paradigm of decentralized networks of renewable energy
sources, loads, and storage devices that can operate independently or in coordination with the primary
grid, incorporating significant flexibility and supply reliability. To increase reliability, traditional
individual MGs can be replaced by networked microgrids (NMGs), which are more dependable.
However, when it comes to operation and control, they also pose challenges for cyber security and
communication reliability. Denial of service (DoS) is a common danger to DC microgrids with
advanced controllers that rely on active information exchanges and has been recorded as the most
frequent cause of cyber incidents. It can disrupt data transmission, leading to ineffective control and
system instability. This paper proposes digital twin (DT) technology as an integrated solution, with
new, advanced analytics technology using machine learning and artificial intelligence to provide
simulation capabilities to predict and estimate future states. By twinning the cyber-physical dynamics
of NMGs using data-driven models, DoS attacks targeting cyber-layer agents will be detected and
mitigated. A long short-term memory (LSTM) model data-driven digital twin approach for DoS
attack detection and mitigation is implemented, tested, and evaluated.

Keywords: smart grid; cyber-physical microgrid; digital twin; denial-of-service attack

1. Introduction

Recently, electric power systems have transformed into intricately interlinked cyber-
physical systems, relying significantly on sophisticated communications. This dependence
stems from integrating networked physical and electronic sensing, monitoring, and control
devices connected to an energy control and protection system’s control center. This expan-
sion has increased the susceptibility of power systems to numerous cyberattacks, which
may have several negative repercussions and cascading failures, from the destruction of
interconnected critical infrastructure to the loss of life [1]. Therefore, resilient, secure grid
operation is even more critical because a disruption or loss of function could negatively
impact the security and resilience of other crucial infrastructure sectors. In the near fu-
ture, the number of devices owned and controlled by consumers will significantly expand
as distributed energy resources (DER) become more widely used through microgrids or
networked multi-microgrids [2]. However, while networked microgrids bring many advan-
tages to future smart grids, they also pose numerous problems, including a lack of centric
oversight and resilience against renewable uncertainties.

Furthermore, due to their heavy reliance on digital communication and control, the
power system has become a cyber-physical power system (CPPS) with deep integration
of information and physics, consequently more vulnerable to cyberattacks. The operation
of microgrids is impacted by physical events and cyberattacks in the information system,
or vice versa. For instance, if an attacker targets the control system by falsifying data or
denying the service of an agent information, it will force the control or protection system to
make a poor control decision that compromises the security of the power system [3].
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Undoubtedly, the operation of power systems has been improved through proper
integration and management of renewables, advanced control/protection schemes able
to detect events, and reliable communication systems [4,5]. However, maintaining cyber-
physical security and resilience under the rising frequency of successful cyberattacks is
a significant challenge, enhanced using innovative techniques that can offer appropriate
real-time or faster-than-real-time decisions. To deal with all these complex and critical
challenges, we propose digital twin (DT) technology as an integrated solution that can
cover every asset in the studied power system. A DT is defined as the virtual replicas or
models of the physical object/thing with bidirectional real-time data flow between them [6].
These data include physical measurements, manufacturing data, operational data, and
insights from analytics software. This allows the power system to enhance its operation by
implementing advanced and innovative techniques to detect and mitigate physical and
cyber events that target communication-based control and protection schemes.

The evolution of digitalization has gone through digital enablement, digitalization
assistance, digital control and link, and cyber-physical integration [7]. The basis for DT
cyber-physical interaction and data integration is created by the Internet of Things (IoT).
To develop a DT for a physical or cyber asset, the following data should be collected: the
asset’s states, manufacturing data, and operating data. In [8], the authors examine and
summarize commonly used enabling technologies and tools in the digital twin model to
provide a reference for future digital twin applications and make it easier for researchers
and practitioners to adopt DTs. However, digital twins are still far from reaching their
full potential because of their complicated system and drawn-out procedure. DTs can
offer more thorough support for decision-making on various activities by assessing current
states, diagnosing historical issues, and predicting future trends [9].

To the best of our knowledge, there have been little need for more research in the power
system security area, and the field has not been well examined despite growing concern
about the benefits and technical problems of digital twins in power system applications.
This emphasizes the importance of identifying alternative and smart countermeasures
that can minimize these types of attacks when the target is a power grid system while
maintaining the power system’s reliability, resilience, and security. With new, advanced
analytics such as machine learning and artificial intelligence, DT provides simulation
capabilities to predict, optimize, and estimate future states. This strategic solution can be a
fully integrated situational awareness platform for the system operator based on the digital
twin shadow and the machine learning insights for cyber threat events.

This paper applies the digital twin concept to develop a DoS attack detection and
mitigation approach. A digital twin is a digital simulation of a physical system that
accurately calculates its characteristic outputs in real time. It could be model-based or
data-driven, or a combination of both. The data-driven DT model uses a long short-term
memory (LSTM) neural network in this work. The digital twin concept is relatively new for
attack detection and mitigation in power systems and has yet to be applied to microgrid
security. We present the modeling and validation of a digital twin approach for cyber event
detection in a multi-agent control-based networked MG. The proposed approach performs
DoS attack detection of each MG’s agent and enhances the stability and resiliency of the
overall networked microgrid system through the mitigation scheme.

2. Cyber-Physical Power System and Cyber-Attacks

Cyber-physical power systems underpin many of our society’s critical infrastructures
and are the backbone of economic activity. The increasing prevalence of consumer-owned
and controlled devices is set to surge alongside the widespread adoption of distributed
energy resources (DERs) facilitated by microgrids or networked multi-microgrids. This
growth poses a resilience challenge amid uncertainties in renewable energy. Furthermore,
the need for advanced communications becomes paramount. Consequently, this expansion
amplifies the susceptibility of power systems to various cyber-attacks, including denial-of-
service attacks. The main challenge is detecting and understanding these emerging smart
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threats and system vulnerabilities linked with energy assets. This enables the development
of intelligent and efficient countermeasures while ensuring the energy system’s real-time
operation remains reliable and secure.

2.1. Cyber-Physical System (CPS) Layers and Attack Modeling

A typical cyber-physical system (CPS) combines computational and communication
components to control, protect, and manage physical assets, as shown in Figure 1. Under-
standing how cyber and physical components interact is critical for studying cyber-physical
issues. Sensors, which establish communication with field devices such as generators and
transmission lines, transmit measurements to control centers via dedicated communica-
tion protocols. The measurements y(t) may encompass voltage, current, and frequency at
the physical layer. These measurements undergo processing by a suite of computational
protection and control algorithms operating within the control center, facilitating opera-
tional decision-making. Actuators are then given the decision u(t) to alter the field devices.
Figure 1 fully represents the interaction between physical and cyber layers in the CPPS.
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Figure 1. Cyber–physical layer data and interaction in power system. 

A potential adversary could construct attack templates to modify the content of, in-

troduce a time delay to, or deny the communication of these control/measurement signals 

by exploiting vulnerabilities along the communication channels. In this scenario, the sen-

sor measurements employed as input to the control algorithm will deviate from the actual 

condition to f1.y(t − d1). Similarly, the control decision output will be deviated from the 

correct one to f2.u(t − d2). Given that such attacks can significantly jeopardize the security 

and reliability of the power system, it is imperative to research to comprehend and miti-

gate their effects. The impacts of these attacks can be measured in terms of load loss, fre-

quency and voltage deviations, and their subsequent repercussions. Additionally, exploit-

ing defenses against such attacks or strategies to mitigate their impacts will benefit from 

in-depth attack studies. Based on the modeling technique used, the attack can be simu-

lated, emulated, or even the real agent [10].  

2.2. Denial-of-Service Attack in Microgrids 

A denial-of-service (DoS) attack happens when legitimate users are denied access to 

information systems, devices, or other network resources as a result of the actions of a 

malicious cyber threat actor. DoS has been recorded as the most frequent cause of cyber 

incidents. Compared with other attacks, DoS attacks are more devastating as they disrupt 

communication channels and cause significant delays [11]. According to several online 

reports and statistics, DoS attacks are common, and it is estimated that malicious hackers 

Figure 1. Cyber-physical layer data and interaction in power system.

A potential adversary could construct attack templates to modify the content of,
introduce a time delay to, or deny the communication of these control/measurement
signals by exploiting vulnerabilities along the communication channels. In this scenario,
the sensor measurements employed as input to the control algorithm will deviate from
the actual condition to f 1.y(t − d1). Similarly, the control decision output will be deviated
from the correct one to f 2.u(t − d2). Given that such attacks can significantly jeopardize
the security and reliability of the power system, it is imperative to research to comprehend
and mitigate their effects. The impacts of these attacks can be measured in terms of load
loss, frequency and voltage deviations, and their subsequent repercussions. Additionally,
exploiting defenses against such attacks or strategies to mitigate their impacts will benefit
from in-depth attack studies. Based on the modeling technique used, the attack can be
simulated, emulated, or even the real agent [10].

2.2. Denial-of-Service Attack in Microgrids

A denial-of-service (DoS) attack happens when legitimate users are denied access to
information systems, devices, or other network resources as a result of the actions of a
malicious cyber threat actor. DoS has been recorded as the most frequent cause of cyber
incidents. Compared with other attacks, DoS attacks are more devastating as they disrupt
communication channels and cause significant delays [11]. According to several online
reports and statistics, DoS attacks are common, and it is estimated that malicious hackers
launch more than 7000 DoS attacks each day, with nearly 80% of electrical enterprises in
14 countries being victims of large-scale DoS attacks.
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DoS attacks can target a smart grid in different sections, from generation, transmission,
distribution, and consumption to control centers. DoS attacks can impede the transfer
of measurement data to the control center, impact the control center’s ability to update
commands and delay the control signals transmitted to the actuator, ultimately degrading
the operation of the power system [12]. DoS attacks can have disastrous consequences,
such as a cascading blackout that could leave thousands, if not millions, of consumers
without power for extended periods.

In DC MGs, the proper exchange of information significantly impacts its performance.
With the complex controllers in DC MGs that rely on active information exchanges, DoS
cyber-attacks can disrupt communication channels and jeopardize their stability, security,
and resiliency [13,14]. DoS, also known as jamming attacks, primarily target data availabil-
ity. DoS attacks aim to disrupt normal operations among networked MGs by overwhelming
one or more physical agents (such as controllers, actuators, sensors, and/or communication
channels) with excessive requests or data. DoS attacks with unlimited energy levels are
intermittent and destabilize the system. During these attacks, the information exchange
among the agents is disrupted and compromised, resulting in network topology change.
Due to energy limitations, the attacker needs to enter inactive sleep intervals. Two-time
sequences are needed to describe a DoS attack in the time domain: when the DoS attack
occurred and the duration of each attack. Let Γ(i,j)

DoS be the total DoS time intervals between
two agents as follows:

Γ(i,j)
DoS = (t1, t2)

⋂( mµ⋃
a=1

I(i,j)k

)
(1)

The kth interval during which a DoS attack takes place is denoted as Ik = [ta, ta + τa],
where ta, ta + τa, and τa are the DoS attack’s start time, end time, and duration, respec-
tively. mµ represents the number of DoS attacks that might occur during the interval
[t1, t2] ⊂ [0, ∞].

3. Background of Digital Twin Technology and Applications in Smart Grid

In the meantime, the Internet of Everything creates the framework for DT cyber-
physical interaction and data integration. A DT essentially entails building a virtual model
of a physical entity in a digital form to mimic entity behaviors, monitor ongoing status,
recognize internal and external complexity, detect aberrant patterns, represent system
performance, and forecast future trends. Digital twin concepts, paradigms, frameworks,
applications, and technologies are increasingly debated and discussed in academic and
industrial communities. The concept of a digital twin first appeared in 2003 and was
proposed by Professor Grieves in the product life cycle management course at the University
of Michigan. Later, the US Department of Defense introduced the concept of digital twins
to issues such as the maintenance of spacecraft [15]. According to Michael Grieves in a
white paper published in 2014 [16], “A Digital Twin concept model is constructed from
three basic components: Physical items in real space, virtual products in virtual space, and
connections of data and information that link the two together.”

Using digital twins, the complexity of the real world is reduced to essential data.
Because of this, the technology is welcomed by numerous industries. Twinning can be
carried out within these industries on various scales, from a single component to a complete
product to an operation to a system of systems. One of the most crucial and complex
industries is the smart grid, with huge power generation, transmission, and distribution
equipment. Figure 2a shows the three-dimensional digital twin model for the smart grid.
By comparing the actual system behavior and the twinning behavior, different types of
physical events and cyber-attacks can be detected and mitigated using the digital twin
model, as shown in Figure 2b. In [6], the authors examine and summarize commonly
used enabling technologies and tools in the digital twin model to provide a reference for
future digital twin applications and make it easier for researchers and practitioners to
adopt DTs. Most pertinent literature techniques discovered have been published within
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the last three years, demonstrating how widespread and quickly growing DT use in smart
grids is. However, because there is yet to be a common understanding of how DTs are
implemented and integrated with power system applications, more efforts are still needed
to comprehend and automate the operation of the grid.
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Regarding the use of DTs in power systems, there are different applications ranging
from low-level concerns like asset model parameters to high-level coordination like micro-
grid power distribution. In [17], the authors proposed a transformer DT model to predict
the parameters of the medium-voltage side based on the measurements received from the
low-voltage side and validated with historical field data. The behavior of an induction
machine was estimated in [18] using an analytical model based on an equivalent circuit.
In [19], a potential DT structure that links small energy communities to the electrical grid
was designed, with a brief discussion of the potential for modeling various system levels
and the resulting different timescales. The multi-agent system concept was introduced to
the DT system structure for control and management in power substations in [20]. Based
on its autonomy, fault tolerance, and consistency, the system allows for agents to share
data on a central database. In addition, DT technology offers a powerful tool that helps in
microgrid design, control and management, fault diagnostics, and security [21]. The DT,
which is a digital version of the physical MG, can be used in many hypothetical situations
to capture the behavior observed and replicate that behavior under various normal or
faulty operating conditions. As a result, necessary adjustments can be made early in the
development process [22]. During MG operation, the DT can be employed as an effective
tool for control and operation management that operates concurrently with the physical
system [23]. The operators benefit from the DT’s assistance in identifying critical operating
conditions, evaluating system performance, and acting quickly to adapt to system changes.
In the sense of fault diagnosis, a systematic comparison of the system’s performance with
the reference behavior can be used to identify instances of faulty operation. In [24], a
controller-embedded DT-based diagnostics monitoring system is presented to identify
anomalies in the physical subsystems of a power converter. From the aspect of grid security
and resiliency, the DT can offer a platform for MG attack scenario identification and simula-
tion. Therefore, by employing data-driven approaches or projecting the system’s behavior
using the DT-based simulation platform [25], it is possible to discover possible situations
promptly that could result in insecure operation followed by necessary corrective measures
to enhance the resiliency.



Energies 2024, 17, 3927 6 of 25

4. Proposed Multi-MGs with Multi-Agents Based Control Architecture

The microgrid concept is an efficient solution for integrating renewable energy sources
and energy storage systems (ESSs). MGs operate either in islanded mode or grid-connected
mode and offer increased flexibility and security of the electrical system [26]. Research
into DC and AC microgrids has been intensively conducted over the past decade. DC
microgrids present an appealing alternative to AC microgrids, efficiently integrating DC
energy generations and loads without additional AC/DC conversion stages. In addition,
DC microgrids avoid issues that exist in AC microgrids like frequency regulation, reactive
power flow, and synchronization. Conventional control methods, such as droop control
for DC MGs, have faced challenges, including bus voltage drop and inaccurate current
sharing due to real power line impedance [27]. Therefore, hierarchical control methods have
been introduced to overcome these issues and enhance system reliability, scalability, and
resilience. At the secondary level, conventional centralized control strategies rely on a single
central controller, which is set to collect information of each distributed generation (DG)
and then provide the control signals [28]. However, centralized control strategies present
several challenges due to their extensive computational requirements, inefficiency, and
vulnerability to a single point of failure. Recognizing these limitations, decentralized control
strategies distribute decision-making among multiple controllers or nodes, mitigating
the risk of single points of failure and offering flexibility in managing diverse DERs.
However, they may suffer from coordination challenges and increased communication
overhead. In distributed secondary control methods, each DG communicates with only its
neighboring agents, avoiding single points of failure and offering advantages in flexibility,
scalability, and computing performance [29]. Figure 3 shows the cyber-physical model of
three networked microgrids connected to the point of common coupling (PCC).
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4.1. Physical Layer Modeling

An islanded DC microgrid is envisioned, featuring a comprehensive setup with mul-
tiple distributed generators (DGs). Each DG unit comprises an ideal DC voltage source,
a DC/DC converter, and diverse load types. Initially, the focus is placed on a microgrid
system housing two DGs, namely, DG i and DG j, interconnected via a distribution line
denoted as ij, as illustrated in Figure 4. Depending on the application and voltage levels
at the source and load ends, various converter types, such as boost and buck converters,
may be employed within a DC microgrid. The average electrical models of buck and
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boost converters are delineated in Figure 4. The dynamic equations governing the system,
derived through the application of Kirchhoff’s circuit laws, are outlined as follows [30]:

DGi :

{ dVi
dt = 1

Cti
Iti − 1

Cti
ÎLi +

1
Cti

Iij
dIti
dt = − 1

Lti
Vi − Rti

Lti
ILi +

di
Lti

Vsi
(2)

where Vi signifies the voltage across the load and Vsi stands for the voltage of the distributed
generator (DG). The currents through the filter, load, and transmission line are denoted
as Iti, ÎLi, and Iij, respectively. Further, di represents the duty cycle of the converter. The
parameters Lti, Rti, and Cti refer to the filter’s inductance, resistance, and capacitance,
respectively. The transmission line connecting any two different nodes i and j can be
typically represented with the impedance of line resistance and inductance, Rij and Lij.
Hence, the current flowing between these two nodes can be expressed as follows:

Lineij :
dIij

dt
= −

Rij

Lij
Iij +

1
Lij

Vj −
1

Lij
Vi (3)
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Given that the impedance of the lines within the DC network predominantly comprises

resistance, i.e.,
dIij
dt = 0, the line dynamic in (3) is rewritten as follows [30]:

Iij =
Vj − Vi

Rij
(4)

The combined assets are linked to a shared DC bus via LC filters with varying param-
eters, forming a multi-DG and load single-bus DC microgrid. Owing to the swift dynamic
reactions of converters, the system dynamics can be modeled using LC-type output filters,
as described in [31].  vo =

∑n
j=1 ij

∑n
j=1 Cj

− 1
∑n

j=1 Cj
iload

ij = − 1
Lj

vo −
Rj
Lj

ij +
1
Lj

vj, j = 1, 2, . . . n
(5)

where vo is the DC bus voltage of the system, iload represents total load current, ij stands for
the inductor current of the output filter, vj signifies the control input of the converter, and Lj,
Rj, and Cj refer to the inductance, inductance resistance, and capacitance of the LC output
filter j. One major control objective of this study is to ensure the output bus voltage vo tracks
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a desired output trajectory vre f during steady operation. More precisely, the output voltage
needs to remain within the user-defined boundary, represented as vmin ≤ vo ≤ vmax. The
parameters vmin and vmax represent the lower and upper limits of the output voltage vo,
respectively, determined based on operational requirements adhering to the ±5% allowable
standard deviation. Additionally, the load current iload = ∑n

j=1 Cj is anticipated to be
equitably distributed among n DGs according to a predefined load-sharing strategy based
on the varying capacities of DGs. The local control system comprises both inner and outer
control loops responsible for regulating voltage and current. Proportional–integral (PI)
controllers are employed in the inner voltage and outer current control loops. The output
of each control loop can be computed as follows [32]:

Voltage control loop:

ire f =
(

Kiv
S + Kpv

)
.
(

vre f − vdcbus

)
︸ ︷︷ ︸

∆v

+
(Kip

S + Kpp

)
.
(

pre f − pout

)
︸ ︷︷ ︸

∆p

(6)

Current control loop:

d =

(
Kic
S

+ Kpc

)
.
(

ire f − iLi

)
︸ ︷︷ ︸

∆i

(7)

where S represents the Laplace operator, d stands for the duty ratio for the pulse width
modulation signal, ire f denotes the current reference, vdc bus represents the voltage reference,
vdc bus and iLi are the measured DC bus voltage and output current, ∆v and ∆i are the
voltage and current error signals, Kic and Kpc are the integral and proportional terms of
the current PI controller, Kiv and Kpv signify the integral and proportional terms of the
voltage PI controller and Kip and Kpp are the integral and proportional terms of the power
PI controller.

4.2. Communication Layer

This section briefly overviews graph theory properties as applied to microgrids. The
networked microgrids are conceptualized as a multi-agent system (MAS), with each MG
acting as a communicating agent or node. At the same time, communication links represent
edges forming a sparse communication network [33]. Within this network, each MG can
exchange information with its neighboring MGs. A directed (one-way) or undirected
(two-way) communication graph can visually depict the communication. G = (V , E, A)
represents the graph, where V = {v1, v2, . . . , vN} is a set of N nodes, E ⊆ V × V is a
set of edges, and A ≜

[
aij
]
∈ RN×N is the adjacency matrix. The edge

(
vj, vi

)
indicates

that node j transmits information to node i, with a weight of edge aij > 0 if
(
vj, vi

)
∈ E;

otherwise, aij = 0. Each node in a graph possesses an in-degree matrix D ≜ diag{di}, where
di ≜ ∑

j∈Ni

aij∀i = j. Additionally, the Laplacian matrix L ≜ D − A is defined as follows:

L ≜
[
↕ij
]

where ↕ij ≜
{

di = ∑j∈Ni
aij ∀ i = j

−aij ∀ i ̸= j
(8)

4.3. Cyber Layer

The DC microgrid’s power-sharing system depends heavily on the multi-agent control
scheme. The power balance criteria are as follows:

PMG + Pg − PLOAD = 0 (9)
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PMG = ∑q
m=1 PMG_m, m ∈ 1, 2, 3, . . . .., q (10)

PLOAD = ∑Nl
i=1 PLi, i ∈ 1, 2, 3, . . . .., Nl (11)

where PMG, Pg, and PLOAD are the generation power from the m DC MGs, the power
generated from the PCC, and the total load (Nl) power connected to the DC buses and the
PCC. The power constraints for each DCMG and the connected DGs are as follows:

Pmin
MG_m ≤ PMG_m ≤ Pmax

MG_m
Vmin

MG_m ≤ VMG_m ≤ Vmax
MG_m

Pmin
DG_i ≤ PDG_i ≤ Pmax

DG_i

(12)

where Pmin
MG_m and Pmax

MG_m are the minimum and maximum power limits of each DC MG,
respectively. Pmin

DG_i and Pmax
DG_i are the power limits of the ith DG. The parameters Vmin

MG_m
and Vmax

MG_m represent the lower and upper limits of the DC bus voltage for the mth MG.
Considering these factors, a consensus algorithm is formulated to ensure that the micro-
grids generate their output power relative to the maximum capacities of their distributed
generators (DGs) [34]. According to the consensus agreement protocol, the agents imple-
ment the following equation to solve the agreement problem, which is equivalent to the
dynamical system

.
x = u and u = −Lx:

.
xi = ∑j∈n aij

(
xj − xi

)
+ bli(x0 − xi) (13)

where bli is the weight of the edge between the leader and an agent with the state xi. The
node with the state x0 is called the leader, which is the PCC agent in this work. The PCC
agent calculates the sharing factor and propagates as follows in (14) and (15):

δxi = kP.
(

Pre f − PMG

)
︸ ︷︷ ︸

∆p

+ kv.
(

Vre f − VMG

)
︸ ︷︷ ︸

∆v

(14)

.
rMGi = ∑j∈n aij

(
rMGj − rMGi

)
+ bi(R − rMGi) (15)

where kP and kv are the proportional gain of the power and voltage control. The contribu-
tion factor rule at the PCC is R, while rMGi and rMGj are the contribution factors at MGi and
MGj, which is defined as the percentage of the maximum rating power available at each
MG. PMG and VMG are the sharing power and bus voltage for each microgrid, respectively.
Figure 5 shows the NMG cyber layer with the communication topology.
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5. Digital Twin-Based Attack Detection and Mitigation

The proposed framework for using a DT to enhance the security of microgrids and
increase resiliency is shown in Figure 6. In networked microgrids, the complexity comes
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from integrating different types of renewable resources and energy storage, which require
proper control and protection to mitigate uncertainty, especially under physical or cyber
threats. Strategies for attack detection have been explored to improve the security and
cyber tolerance of complex systems. To ensure a resilient operation of the microgrids
under a DoS attack, the DT comprises two functions: (1) attack detection, which is a
binary decision on the occurrence of a cyber event, and (2) attack mitigation, which is the
process of either adjusting the cyber-physical system’s operation or replacing functions.
The successful detection and mitigation in the microgrid system enable online attack
remediation, increasing the system’s resiliency and reliability.
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A data-driven-based digital twin is developed for each MG, including the physical,
and cyber layers. The digital and physical twins’ outputs are compared to generate an error
residual vector, producing alarms if one of these residual errors exceeds a specific threshold.
Each microgrid (MG) is twined with two models: (1) the first model embodies the physical
layer of each MG, encompassing the local controller response and the behavior of physical
components; (2) the second model simulates the cyber layer, incorporating multi-agent
control and communication network topology. The set of predicted parameters from the
data-driven-based digital twin of each cyber-physical MG is C f _MGi(twin), VMGi(twin), and
PMGi(twin). In this work, the focus is on detecting and mitigating the DoS attack on the
multi-agent control in the cyber layer. Therefore, the contribution factors generated from
the cyber twin layer C f _MGi(twin) are considered in this work as the reference behavior of
the twin agent. Hence, any observed deviation in the contribution factor generated by the
physical agent from the contribution factor predicted by the twin agent indicates a cyber
event (cyber-attack). Accordingly, the three main elements of the cyber-attack detection and
mitigation approach are (1) a digital twin, which estimates the measurable characteristic
outputs Cf_twin(t) of each MG in real time; (2) an error residual vector Error(t), which is the
difference between the estimated outputs and the measured outputs Cf_phy(t), and an alarm
methodology, which triggers alarm Ta = [Ta1 Ta2 Ta3] for attack detection in MG1, MG2, or
MG3 based on comparing the Error(t) with a threshold Th; and (3) a physical–digital twin
coordinator (PDTC) for obtaining the appropriate decision for attack mitigation. These
elements are described in detail in the subsequent sections.

5.1. Black-Box Model of Microgrids Based on LSTM

Over the years, considerable effort has been made to understand the dynamics of mi-
crogrids and describe them using complex models. Modeling a system can be approached
in two ways: (i) the physics-based approach and (ii) the empirical/data-driven approach. A
physics-based model, often called the first principle or white-box model, is used when de-
tailed system physics is available. This approach uses mathematical equations to establish
model dynamics. Creating an accurate mathematical model of a complicated power system
(MGs) is difficult due to the nonlinear structure of components and their relationships.
Therefore, establishing a digital twin using model-based approaches is challenging [35].
The empirical or data-driven approach, sometimes called the black-box model, uses data to
demonstrate a statistical correlation between input and output variables, thereby explain-
ing microgrid behavior. System identification and neural networks are two widely used
data-driven modeling methodologies.

A long short-term memory (LSTM) network is a sophisticated type of recurrent neural
network (RNN) utilized in deep learning. Traditional RNNs suffer from a significant lim-
itation known as vanishing gradients, where the network parameters primarily capture
short-term dependencies, causing information from earlier time steps to diminish. Addi-
tionally, the problem of exploding gradients can occur, leading to drastic increases in error
with each time step.

LSTM networks are designed to address the vanishing gradient problem through gates
that selectively retain pertinent information and discard irrelevant data. This mechanism
allows LSTM networks to maintain lower sensitivity to time gaps, making them more
effective than simple RNNs for analyzing sequential data. Consequently, LSTMs excel in
learning, processing, and classifying sequential information [36]. The cell state is crucial in
long short-term memory (LSTM) networks because it permeates every neural network (NN)
link. This unique feature enables LSTMs to retain information across extended sequences,
allowing data to flow freely along the cell state for as long as necessary. The movement
of information into and out of the cell state is regulated by specialized units known as
gates. As illustrated in Figure 7, the LSTM cell consists of an input gate it, a forget gate
ft, an output gate ot, and a memory cell with two outputs: the long-term state ct and the
short-term state ht. The input gate determines the extent to which the current input data
should be saved to the cell state; the forget gate decides how much of the previous unit
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state should be retained for the current moment; and the output gate controls the amount
of the current cell state that should be passed on to the current output value [30].
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To grasp the functioning of the LSTM, let us begin with the input signal xt. It is
important to note that ht−1 and ct−1 are inputs from the LSTM at the previous timestep.
Usually, the input signal xt comprises a sequence of features extracted from the time series
of sensor measurements. The forget gate ft governs the removal of information from the
previous long-term state ct−1 as follows:

ft = σg(W f × xt+U f × ht−1+b f ) (16)

Following that, the input gate it regulates which values are to be updated. Subse-
quently, a hyperbolic tangent (tanh) function generates a vector of new candidate values,
c′t, that could potentially be incorporated into the following state [35]:

it = σg(W i × xt+Ui × ht−1+bi
)

(17)

c′t = σc(W c × xt+Uc × ht−1+bc
)

(18)

ct = ft.ct−1 + it.c′t (19)

The output gate ot governs the creation of the current short-term state ht using infor-
mation from the current long-term state ct. Thus, the output ot is calculated as follows [37]:

ot = σg(W o × xt+Uo × ht−1+bo
)

(20)

ht = ot.σc(ct) (21)

The dot (.) and addition (+) operators employed in Equations (4) and (6) represent
the Hadamard product or element-wise product. Additionally, W f , Wi, Wo , Wc, U f , Ui,
Uo, and Uc denote the weight matrices while b f , bi, bo, and bc signify biases that are
time-independent variables. Finally, σg and σc represent sigmoid and tanh functions,
respectively [38].

5.2. Data-Driven Digital Twin Model of Microgrids

The digital twinning framework comprises three essential components: the physical
system, the virtual system, and the data exchange between these two entities. Constructing
a digital twin involves integrating high-fidelity models with diverse data sources, including
sensor readings, historical records, technical specifications, and maintenance logs. These
data enable the development of accurate models of the physical system, ensuring a realistic
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and up-to-date representation of its operational state for analysis and decision-making.
However, maintaining model accuracy poses a significant challenge due to the dynamic
nature of operating conditions and environmental factors. For example, in microgrids,
shifts in power consumption patterns stemming from socioeconomic changes, weather
variations, and technological advancements can lead to disparities between modeled and
actual system outputs [39]. Addressing this challenge necessitates continuous model
updates to reflect evolving conditions accurately. The LSTM model offers a solution by
capturing complex phenomena and leveraging extensive historical data that are difficult to
incorporate into physics-based models. LSTMs have become indispensable because they
can handle sequential data, establish connections across distant events within time series,
and retain longer-term patterns. As research in this field progresses, leveraging AI for the
analysis of longitudinal data, the significance of LSTMs is expected to escalate further.

Based on substantial research into deep neural networks (DNNs), it is clear that the
deep learning framework has significant potential as a viable alternative to traditional
modeling and control methodologies, particularly in circumstances with a limited un-
derstanding of system dynamics. To the author’s knowledge, there has been no prior
research on implementing a time-series LSTM network-based digital twin for complex
cyber-physical networked microgrids. In this work, the digital twin of a cyber-physical MG
using an LSTM network is presented, with more focus on the cyber twin model. As shown
in Figure 8, each MG will be twinned by two connected LSTM models: (1) a cyber-layer
twin, which simulates the cyber-layer asset behavior, including the multi-agent communi-
cation protocol, communication topology, and output control decisions; (2) physical-layer
twin, which includes the local (primary) controller behavior, DG unit operation, and the
DC/DC converter. The physical-layer twin’s correct response reflects the cyber-layer twin’s
proper modeling. Therefore, this response will be used for performance evaluation of the
model. However, for attack detection and mitigation, the cyber-layer twin features output
of each MG will be used without consideration of the physical-layer twin.

In the cyber layer, the primary input is the data and control input (R) from the
PCC agent. The PCC agent calculates this control input based on the measured DC bus
voltage, MG output power, and load requirements. Any change in one of these parameters,
such as load increase or DG capacity decrease, leads to a new or updated control signal.
Accordingly, the cyber agents calculate the contribution factors based on the consensus
protocol of each MG and send these parameters to the local controllers to adjust the
associated converter output. In this regard, the cyber-layer twin input parameters are
the control input R from the PCC agent, and the expected output parameters are Cf (twin)
for the three agents. However, in the training stage, relying only on one input showed
low accuracy in the model. To solve this problem, the rate of change of the contribution
factors produced by the physical agents dCf(phy)/dt are used as an additional input to
reflect the agent dynamics. Nevertheless, during the testing and operation of the twin
model with the physical system, these inputs were replaced by the feedback loop from the
twin model dCf(twin)/dt as shown in Figure 9. This is because cyber events such as the
DoS attack in this work will impact the behavior of the physical agents; consequently, they
will mislead the twin model and impact the detection mechanism. In the physical layer,
the local controllers receive the cyber agents’ decisions to actuate the outputs based on
the converters’ calculated switching duties (d). To create the LSTM model of the physical
layer, the input parameters considered in this work are the cyber twin’s calculated Cf(twin),
reference parameters, controller parameters, and DG ratings. The output parameters of
each physical-layer twin are MG output power, MG voltage, and DG output.



Energies 2024, 17, 3927 14 of 25

Energies 2024, 17, x FOR PEER REVIEW 14 of 25 
 

 

the twin model and impact the detection mechanism. In the physical layer, the local con-

trollers receive the cyber agents’ decisions to actuate the outputs based on the converters’ 

calculated switching duties (d). To create the LSTM model of the physical layer, the input 

parameters considered in this work are the cyber twin's calculated Cf(twin), reference pa-

rameters, controller parameters, and DG ratings. The output parameters of each physical-

layer twin are MG output power, MG voltage, and DG output.  

i

i+1

PCC 

Agent

i-1

Cyber-layer 

Local 

controller DG converter 

DC/DC

S
e
n

si
n

g
 u

n
it

M
G

i B
u

s

R

DG unit

d

Physical-layer 

Cyber layer-twin Physical layer-twin 

R

Cf (Twin) 

C
f 

(p
h

y
) 

dCf(twin)/dt

Prediction Prediction 

Reference parameters

Controller parameters

DG ratings Prediction tuning loop 

Other MGs 

C
o
n

se
n

su
s 

a
lg

o
r
it

h
m

E
q

. 
(1

3
),

E
q

. 
(1

4
),

 a
n

d
 

E
q

. 
(1

5
)

 

Figure 8. Cyber–physical layer of the MG and their digital twin models. 

 

Figure 8. Cyber–physical layer of the MG and their digital twin models.

Energies 2024, 17, x FOR PEER REVIEW 14 of 25 
 

 

the twin model and impact the detection mechanism. In the physical layer, the local con-
trollers receive the cyber agents’ decisions to actuate the outputs based on the converters’ 
calculated switching duties (d). To create the LSTM model of the physical layer, the input 
parameters considered in this work are the cyber twinʹs calculated Cf(twin), reference pa-
rameters, controller parameters, and DG ratings. The output parameters of each physical-
layer twin are MG output power, MG voltage, and DG output.  

i

i+1

PCC 
Agent

i-1

Cyber-layer 

Local 
controller DG converter 

DC/DC

Se
ns

in
g 

un
it

M
G

i B
us

R

DG unit

d

Physical-layer 

Cyber layer-twin Physical layer-twin 

R

Cf (Twin) 

Cf
 (p

hy
) 

dCf(twin)/dt

Prediction Prediction 

Reference parameters
Controller parameters

DG ratings Prediction tuning loop 

Other MGs 

C
on

se
ns

us
 a

lg
or

ith
m

Eq
. (

13
),E

q.
 (1

4)
, a

nd
 

Eq
. (

15
)

 
Figure 8. Cyber–physical layer of the MG and their digital twin models. 

 
Figure 9. Updating the shared information among the agents using PDT coordinator.

5.3. Training and Learning

Creating a digital twin begins with acquiring large-scale datasets that cover the whole
operational range of the system through several runs. To capture the complicated nonlinear
dynamics of microgrid parameters, input parameters are mapped to output parameters
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using a deep neural network. A deep neural network (DNN) consists of numerous layers
of LSTM cells trained by modifying hyperparameters to minimize the error between
experimental and predicted output measurements across large datasets. The first step
in this phase is data collection and normalization. This dataset was acquired through
multiple runs using various input parameters that covered all operational scenarios using
MATLAB/SIMULINK (2023a) runs, intending to predict the output parameters of both
cyber and physical layers of each MG. Each run lasts approximately 20 min, and the data
are logged at 100 milliseconds. Various load conditions have been considered by varying
the loads at each MG or changing the load requirements at the PCC point, and the MG
input/output data are logged. The assumption is that the PCC agent is running in an
ideal condition without any impact of cyber-attacks or physical events, and no malfunction
occurs during the data collection process in training and testing. The features of the MG
parameters selected for building the twin model are expressed in different units. Therefore,
the digitized measurements from the MG model are normalized and prepared as input
vectors to the LSTM network. The framework of the standard LSTM neural network model
is built using Python 3.12.3. This work uses the ADAM optimizer to train the LSTM neural
network model, and ReLU activation function and it utilizes MSE as the loss function. The
LSTM neural network is trained over 10 million pieces of datum with the length of the time
sequence as t = 20 s. The pre-processed data are partitioned into two sets: 60% of the data
are featured randomly for training, and 40% are kept for testing. The cyber-physical twin
model can be obtained via training after gathering training and validation data.

5.4. Physical–Digital Twin Coordinator for Attack Mitigation

In this study, the networked microgrid (NMG) system comprises multiple local con-
trollers, each responsible for managing the operation of inverter-based resources within
their respective microgrids (MGs). The coordination of each MG’s operation is facilitated
through agents {Xmg1, Xmg2, Xmg3}, which communicate with one another to ensure the
stability of the NMG. A typical twin model of these NMGs is also implemented to en-
able precise control action selection during disturbances or attack scenarios. To achieve
this, a physical–digital twin coordinator (PDTC) is proposed. The primary objective of
the PDTC is to enhance information sharing among these agents to efficiently manage
the power distribution among available resources and maintain system stability during
contingencies or attack scenarios. The PDTC comprises multiple physical–digital twin
(PDT) units, designated as PDTMG1, PDTMG2, and PDTMG3, each associated with a specific
MG. As detailed in this study, the NMG consists of three microgrids, each incorporating
its local controllers, loads, sources, and converters, which are connected to the main DC
bus via appropriate DC/DC converters. The contribution factors generated from the physi-
cal agents, C f (phy)={rP_MG1,rP_MG2,rP_MG3 }, are transmitted between the local agents and the
PDTC through an information-sharing mechanism. This mechanism is designed to facilitate
the switching between the physical agents and their twin agents if the system is subjected
to a DoS attack. In addition, it provides a gateway for the information exchanges between
the physical agents and the digital twin layer. Similarly, the estimated contribution factors
from the twin agents are C f (twin)={rT_MG1,rT_MG2,rT_MG3 }.

Each physical–digital twin (PDT) unit is tasked with generating the appropriate control
action based on its input signals, as illustrated in Figure 9. However, the final control action
S f by each PDT unit is not solely dependent on the presence of an alarm signal but also
on the duration of this signal. For example, discrepancies between the physical and twin
models during normal operation may arise due to communication traffic. Consequently, a
time delay is implemented before selecting the appropriate control action in such scenarios,
as described below:

S f =

{
C f (phy), error < TH
C f (twin), error ≥ TH, f or τ s.

(22)
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If the error signal remains below the threshold value during normal operation, the
shared signals will be the normal physical measurements. When an alarm is triggered, the
PDT will wait for a predefined duration τ seconds before updating the S f signal. This delay
allows for the PDT to confirm the occurrence of an abnormal condition before the system
reaches an instability state. If the alarm persists, indicating that the error remains constant
or increases, this signifies abnormal operating conditions. Consequently, the physical
C f (phy) signal will be replaced with the latest C f (twin) twin signal as a major solution to
deal with the DoS attack in the mitigation mechanism. The mitigation scheme consists
of two stages: firstly, the twin agent will replace the attacked agent in terms of sending
the control signals to the local controller to show the impact on the physical layer, and
secondly, the twin agent will replace the function of the attacked agent in terms of sharing
the information with its neighbor agents in the cyber layer.

6. Simulation of the Proposed System Under Normal Operation and DoS Attack

This section includes the simulation and validation response obtained from the LSTM
network-based digital twin for the cyber-physical layer of the NMGs under normal opera-
tion. The root mean squared error (RMSE) is used as a prediction performance evaluation
metric. In addition, the response of the cyber-layer twin is tested to detect the DoS attack
on one of the physical agents in the cyber layer. Then, the evaluation of the mitigation
mechanism with the aid of the designed PDT is presented. Table 1 provides the parameters
of the three NMGs in terms of power ratings of DG units, system voltages, and load power
at each MG and PCC. The local loads connected to MG1, MG2, and MG3 are P_LD1, P_LD2,
and P_LD3, respectively.

Table 1. NMG parameters.

Parameter Description Value

MG1 Parameters

Prated (DG1) DG1 rating 10 kW
Prated (DG2) DG2 rating 5 kW

P_LD1 Load power 7 kW

MG2 Parameters

Prated (DG3) DG3 rating 8 kW
Prated (DG4) DG4 rating 7 kW

P_LD2 Load power 6 kW

MG3 Parameters

Prated (DG5) DG5 rating 8 kW
P_LD3 Load power 6 kW

V MG voltage 3 kV

Pload (PCC) PCC load power 5 kW

6.1. Twin Models Performance Results

The final stage in creating an LSTM network-based digital twin is to test the trained
network on a new dataset. Once the performance is adequate, the weights and biases can
be frozen, and the trained network for the cyber and physical layers can be used to forecast
the MG’s dynamic behavior for a given physical or cyber pattern/events. In this section,
the behaviors of the cyber-physical layer output and their twin models using LSTM are
compared and evaluated under different loading conditions. The model performance is
evaluated during the testing process using the point-to-point absolute error and the mean
square error (RMSE) as the evaluation index and is calculated as follows:

Error =
∣∣∣Yi − Yip

∣∣∣ (23)



Energies 2024, 17, 3927 17 of 25

RMSE =

√√√√ 1
Ns

Ns

∑
i=1

(
Yi − Yip

)2
(24)

where Yi, Yip , and Ns are the simulated value using the physical twin model, the output of
the proposed LSTM DT model at time step I, and the sample size in the dataset, respectively?
To evaluate the created data-driven DT model’s accuracy, the four main output parameters
for the DT that represent cyber-layer and physical-layer behaviors are compared with
the output of the physical model. Figure 10 shows the response of the data-driven cyber
twin agents and physical agents under different loading conditions. In the top panel, the
measured control signal R from the physical PCC agent is plotted (red line), considered the
main input for the cyber twin model. The variation in R is based on the loading conditions
at each MG and the PCC point. In this scenario, the blue line does not represent the twin
behavior of the PCC agent since we considered this agent the main source of information
for the cyber twin. This blue line shows the expected response of the PCC agent if the
twin agents fully controlled the NMGs instead of the physical agents. The contribution
factors of the physical and twin agents are recorded and compared in the same figure using
the absolute error metric for each MG. The results show a match between the DT model’s
behavior and the physical model with very small errors.
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Figure 10. Cyber twin agents and physical agents’ response under different loading conditions.

To evaluate the physical layer twin model, the selected output parameters from each
MG are recorded and compared with the twin outputs. These parameters include the
normalized MG voltage, normalized MG output power, and the normalized generated
power from each DG in the MG. Figures 11–13 compare the physical and twin models
of MG1, MG2, and MG3, respectively. These figures depict a close relationship between
the data-driven digital twin estimated outputs and the physical model measurements.
Figure 14 shows the RMSE for all cyber and physical parameters in each MG. It calculates
the average difference between the projected and actual values to measure the model
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prediction accuracy. The RMSE values of contribution factors, shared powers, and the
bus voltages of the three MGs are shown in the left figure, and the RMSE of the power
generated from each DG unit is shown in the right figure. The twin models show low
values in the range of 0.2–3.5%. This presents the ability of the created DT model using the
LSTM network to mimic the cyber-physical response of the NMGs.
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6.2. Results and Evaluation of the Proposed DT Response under DoS Attack

This section evaluates the networked microgrid system’s resilience to cyber-attacks.
The simulation results illustrate the effectiveness of the digital twin framework in enhancing
the security and resiliency of microgrid cyber-physical systems. Figure 15 shows load
profiles at various points: the point of common coupling (PCC), each microgrid (MG1,
MG2, and MG3), and the total load. The total load increased at t = 1 s and t = 15 s. Figure 16
shows the response of the physical agents and their associated cyber twin agents under
normal load conditions, connecting the load at the PCC, DoS attack, and attack detection
and mitigation. The sequence of events is as follows: at t = 1 s, the load at each MG is
connected; then, at t = 15 s, the load at the PCC is energized; after that, a DoS attack
targeting the cyber agent of the MG2 is initiated. As shown in Figure 16, the twin and
physical agent responses are closely matched. However, when the system is subjected to
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the DoS attack, there is a considerable deviation between the agent’s behavior and a notable
change in the PCC agent’s behavior. This is because, after the detection, the attacked
physical is substituted by its twin agent, as described in Figure 11. The following is a
detailed description of how the DT model detects the attacked agent and mitigates it with
the help of the PDT coordinator, showing the impacts of the NMG resiliency on both the
physical and cyber layers.
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As shown in Figure 17, all MGs operate normally in the beginning at no load. Follow-
ing an increase in total load at each MG around t = 1 s, the contribution factor (Cf) from
both the physical agents and their digital twins for each MG rises accordingly to meet
the demand. The cyber-layer twin output C f (twin)={rT_MG1,rT_MG2,rT_MG3 } (blue lines) and
physical agent C f (phy)={rP_MG1,rP_MG2,rP_MG3 } (red lines) closely aligned, reflecting accurate
power-sharing and minimal error. At t = 15 s, a further increase in PCC load resulted
in additional adjustments in Cfs(phy) and Cfs(twin) for MG1, MG2, and MG3 to handle the
increased demand based on the consensus protocol with no alarms initiated by the digital
twins. The system continued to operate smoothly until t = 20 s, when a denial of service
(DoS) attack targeted the cyber agent of MG2 (Xm2), as shown in Figure 17c. This attack
disrupted the communication between the attacked agent and its local controller as well
as its neighboring agents, causing its corresponding Cf to drop to zero and resulting in a
sharp increase in the error signal exceeding the setting threshold TH2 = 0.2. The system
responded instantly with twin alarm 2, as shown in Figure 17a, activating and switching
control from the compromised physical agent to the twin agent 1 s from the alarm activation.
Shortly after the attack on agent Xm2, MG3 experienced similar behavior, with twin alarm 3
activating and its control also shifting to the twin agent after 1 s from the alarm activation.
During this period, MG1 exhibited a slow increase in error due to its reliable information
exchange with the PCC agent and the neighboring agents. Between t = 21 s and t = 25 s, the
local controller exchanged information with DT of agent 2 instead of the attacked agent
through the PDT coordinator. However, the cyber layer faced disruptions, since agent 2
was out of service. At t = 25 s, the twin had fully replaced the attacked agent in the cyber
layer, restored the power-sharing objectives, and maintained system stability. In summary,
this case showed that the DoS attack on agent 2 disrupted the system’s overall behavior.
The digital twin framework quickly identified the issue, triggered alarms, and switched
control from the compromised physical agents to the twin agents. Also, it fully replaced
agent 2 in the cyber layer, sharing reliable information with MG1 and MG3.

Figure 18 shows the microgrid system’s response to an increased load scenario and a
subsequent DoS attack in terms of voltages and power-sharing from each MG. As shown
in Figure 18a, the voltage levels shown highlight minor drops during load increases as
well as during the DoS attack. The voltage control is decentralized in the local controllers,
which is why it shows low impact during the DoS attack. Finally, Figure 18b depicts the
power outputs of the three microgrids. The power outputs increase to meet the higher load
demand. However, significant disturbances occurred in the power outputs of the three
microgrids due to the DoS attack at t = 20 s. The system started to recover as the twin
took over in the physical layer by sending information to the local controller of MG2 at
t = 21 s and in the cyber layer by sharing the healthy information with the cyber agents at
t = 25 s, respectively.
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The detailed response of the power outputs from the distributed generators and
the power loads within each of the three microgrids (MG1, MG2, and MG3) over time,
highlighting their response to the increased load demand and the denial of service (DoS)
attack is shown in Figure 19. In Figure 19a, MG1 initially showed stable operation, with
power outputs from DG1 and DG2 increasing at t = 1 s and t = 15 s to meet rising load
demands. After t = 20 s, MG1 experienced fluctuations in the DG outputs due to the DoS
attack but maintained relative stability compared to the others. Figure 19b, representing
MG2, revealed a similar initial stability and load response, but at t = 20 s, DG3 and
DG4 showed severe fluctuations and instability due to the attack, highlighting MG2’s
significant disruption. Figure 19c shows MG3’s response, DG5 adjusted to the load increase.
After t = 20 s, MG3 also experienced notable fluctuations in power output, reflecting
the attack’s impact. Overall, this figure illustrates the microgrids’ coordinated effort to
manage increased load demands and recover from cyber-attacks, demonstrating the critical
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role of the digital twin framework in mitigating disruptions and restoring stability across
the network.
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In this study case, a long-term DoS attack is assumed, which makes the physical
agent unavailable for a long time. Traditional DoS attack mitigation schemes are typically
short-term solutions by adjusting controls or removing the attacked agent and recalculating
the new operating point based on the available healthy agents. Providing a substitute twin
agent is crucial to deal with this attack. Based on the results, replacing the attacked agent,
the twin agent retrofitted all agents to their original, healthy state, hence increasing the
control scheme’s resiliency by replacing the agent’s functions under a DoS attack. However,
using the DT in attack detection and mitigation is limited by the need for a high-fidelity
model, assumptions of existing of trusted points, and security check measures before
replacing the attacked agent with its twin agent.

7. Conclusions

The digital twin, a dynamic virtual replica of a physical system, is a rapidly growing
technology that can provide solutions for cyber-physical system monitoring and cyber-
attack detection. This paper presents a methodology for designing data-driven-based
digital twin models for both cyber and physical layers of a networked DC microgrid system
using an LSTM network. The design methodology, mathematical analysis, and simulation
study of a data-driven digital twin approach for DoS attack detection and mitigation are
presented. The proposed study is unique in that the LSTM-based digital twin of the NMG’s
operation efficiently predicts the behavior of the physical and cyber parameters by mapping
a smaller number of input/output parameters over the whole working range of the MG.
The performance of the twin model is tested and evaluated. It effectively anticipates the
dynamic behavior of cyber-physical dynamics under diverse load conditions and cyber
incidents. In addition, the proposed attack detection and mitigation scheme based on the
DT model enhanced the cyber-physical resiliency of the control system under a DoS attack.
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