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Abstract: The automotive industry is increasingly challenged to develop cleaner, more efficient
solutions to comply with stringent emission standards. Hydrogen (H2)-powered internal combustion
engines (ICEs) offer a promising alternative, with the potential to reduce carbon-based emissions
and improve efficiency. However, hydrogen combustion presents two main challenges related to the
calibration process: emissions control and measurement of the air excess coefficient (λ). Traditional
lambda sensors struggle with hydrogen’s combustion dynamics, leading to potential inefficiencies
and increased pollutant emissions. Consequently, the determination of engine performance could
also be compromised. This study explores the feasibility of using machine learning (ML) to replace
physical lambda sensors with virtual ones in hydrogen-fueled ICEs. The research was conducted on a
single-cylinder spark-ignition (SI) engine, collecting data across a range of air excess coefficients from
1.6 to 3.0. An advanced hybrid model combining long short-term memory (LSTM) networks and
convolutional neural networks (CNNs) was developed and fine-tuned to accurately predict the air–
fuel ratio; its predictive performance was compared to that obtained with the backpropagation (BP)
architecture. The optimal configuration was identified through iterative experimentation, focusing
on the neuron count, number of hidden layers, and input variables. The results demonstrate that the
LSTM + 1DCNN model successfully converged without overfitting; it also showed better prediction
ability in terms of accuracy and robustness when compared with the backpropagation approach.

Keywords: hydrogen fuel; SI engine; ultra-lean combustion; machine learning; virtual sensor

1. Introduction

The current regulations and guidelines on pollutant emissions are compelling the
automotive industry to develop cleaner and more efficient solutions capable of reducing
fuel consumption and emissions derived from internal combustion engines (ICEs) [1,2].
Among the options explored, hydrogen (H2)-powered alternative propulsion has emerged
as promising candidate for the fossil-fuel-free future of mobility [3]. Hydrogen is a versatile,
clean, and flexible energy source that can integrate renewables into the European grid by
storing excess power, providing carbon-free fuel for transportation, replacing natural gas
for heating, and supporting industrial feedstocks [4]. By 2050, hydrogen deployment could
fill half the gap between current technology and the Paris Agreement goals, with Europe
aiming for ambitious targets. Up to 2250 TWh of hydrogen could be generated by 2050,
requiring 15–40 GW of water electrolysis capacity by 2030 to produce renewable hydrogen
at less than EUR 3 per kg [5,6]. In a 2050 scenario, fuel cell electric vehicles (FCEVs) could
dominate hydrogen demand, with over 4 million FCEVs on the road by 2030. The road
transport sector, crucial for decarbonizing European economies, could see FCEVs reduce
carbon emissions by over 40% in hydrogen applications by 2050 [6,7]. Unlike conventional
fuels, H2 has the potential to eliminate carbon-based emissions while allowing for high
efficiencies, also at challenging operating conditions like lean mixtures [8]. This is due to
its high flame front propagation speed (with a laminar burning velocity approximately
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six times greater than that of gasoline E5) and broad flammability limits [9]. Hydrogen
offers also multiple application modes within internal combustion engines [10], as explored
in various studies focusing on its use either as a primary fuel or in combination with
fossil fuels to boost efficiency and reduce emissions [11]. The ability of hydrogen engines
to sustain higher compression ratios, up to 14.5:1, due to highly diluted mixtures and a
high autoignition temperature results in superior thermodynamic efficiency, potentially
reaching 52% [12]. For instance, Shi et al. [13] reported an increase in brake thermal
efficiency from approximately 10.0% to 16.7% with a 6% hydrogen addition to gasoline
under an excess air ratio of 1.3 in a modified Wankel engine. Dimitriou et al. [14] also
observed a peak brake thermal efficiency improvement of approximately 3% with an 80%
hydrogen energy addition. When pure hydrogen is used, emissions of hydrocarbons
(HCs) and carbon monoxide (CO) are nearly eliminated, with only minor contributions
from the combustion of lubricating oil [15,16]. However, the intrinsic characteristics of
hydrogen combustion makes the calibration of hydrogen-fueled engines difficult due to
their combustion dynamics and emission control mechanisms [17]. Ones of the challenges
in hydrogen combustion regards the propensity for misfires and delayed combustion at
the exhaust port, which leads to inefficiencies in engine operation as well as increased
pollutant emissions [18,19]. Verhelst et al. [20] reported that an unoptimized spark plug
in a hydrogen engine caused misfires, leaving unburned hydrogen in the cylinder, which
led to backfire in the next cycle. Gao et al. [21] discovered that a misfire in one cylinder
could result in severe knocking in the same and other cylinders. The unburned mixture
from the misfire cycle burns in the exhaust system, producing oscillating waves that cause
knocking in the cylinders. These anomalies make the traditional lambda sensors unable
to accurately identify the oxygen concentration in the exhaust gases to determine the air
excess coefficient (λ) [22,23].

Within this context, machine learning (ML) solutions can be exploited to address
such an issue. The capability of ML algorithms to analyze complex data patterns starting
from input variables makes them well-suited for tasks such as λ prediction in H2-ICE. In
such a way, the exploitation of virtual sensors [24–26] can mitigate the impact of lambda
sensors malfunctioning and response delays [27,28]. Wong et al. [29] proposed an adaptive
air–fuel ratio control method employing extreme machine learning (EML), which was
fine-tuned through simulations and experiments on a retrofitted spark-ignition (SI) dual-
injection engine. The ELM-based controller outperforms traditional PID controllers, offering
significant advancements in engine control technology. McGann et al. [30] developed a
predictive model using an ML approach to detect the fuel–air equivalence ratio (ϕ) and
pressure derived from the laser-induced plasma spectra. Quantitative outcomes showed
R2 values of up to 0.99996 for ϕ and 0.99975 for pressure, demonstrating high predictive
performance and the efficacy of the presented model. Wong et al. [31] demonstrated,
through simulations and experimental activities, the effectiveness of an initial-training-free
online sequential extreme learning machine (ITF-OSELM) in identifying air–fuel ratio
dynamics in real-time engine data and in calculating control signals for air–fuel regulation.

Present Contribution

This study examines the feasibility of replacing the physical lambda sensor with
a virtual one to avoid problems due to sensor malfunctions, enhance the reliability of
estimating the air excess coefficient, and compensate for any delays due to the probe time
response. Tests were conducted on a SI single-cylinder research engine fueled with H2,
spanning a wide range of relative λ from 1.6 to 3.0. The experimental setup involves
collecting data coming from an indicated analysis system. These data are used as the
input for the machine learning algorithms, which are trained to predict the air excess index
based on the observed engine behavior. To perform this task, a long short-term memory
(LSTM) [32,33] approach combined with a convolutional neural network (CNN) [34,35] has
been used. Fukuoka et al. [36] utilized a combination of 1D-CNN and LSTM to forecast
wind speed in Tokushima city. Typically, wind speed is monitored over a specific timeframe,
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and their method leverages historical data to predict current conditions. In a separate study,
Rosato et al. [37] introduced a pioneering deep learning method combining long short-term
memory networks and convolutional neural networks, which was developed to forecast
energy patterns in a practical solar power plant. Following a thorough assessment, their
framework emerged as a reliable and efficient solution for predictive applications. Its
notable advantage lies in its utilization of effective and intelligent strategies to leverage
various physical data sources. In our investigation, documented as [38], we devised
a hybrid model employing LSTM and 1DCNN to explore the viability of replacing a
physical sensor such as a torque meter with a virtual alternative. Successfully achieving
this goal could result in substantial cost reductions and protect test bench components
from damage caused by resonance phenomena, as noted in the references [39,40]. This
model accurately reproduces the natural frequency of recorded signals, assuring that
the predicted values consistently deviate within the acceptable threshold of 10% from
actual values. Furthermore, our research group evaluated the predictive performance
of LSTM + 1DCNN in forecasting in-cylinder pressure traces of a three-cylinder spark-
ignition engine across various operational conditions. The results underscore the superior
capability of LSTM + 1DCNN in capturing the trends in target signals. When compared
to alternative benchmark architectures, our model consistently demonstrates superior
performance, achieving average error rates below 2%. Notably, even as engine variability
increases from cycle to cycle, LSTM + 1DCNN maintains average error rates below 1.5%,
highlighting its robustness and reliability in predictive accuracy [41].

In the present work, research on fine-tuning parameters such as the number of neurons,
hidden layers, and input variables in neural network models has been performed to maxi-
mize prediction accuracy. Through iterative experimentation and validation, the optimal
configuration of the machine learning algorithms has been identified, as has its respective
performance compared to those from other optimized machine learning architectures.

The results show that the LSTM + 1DCNN model successfully reaches convergence
during training without experiencing overfitting, showcasing its ability to learn effectively
from the data and produce precise predictions. Moreover, it exhibits superior accuracy,
robustness, and prediction performance compared to the backpropagation structure. These
findings indicate that LSTM + 1DCNN holds considerable promise for predicting exhaust
oxygen concentrations in spark-ignition engines.

2. Materials and Methods
2.1. Experimental Setup

The experimental campaign was performed on a 500 cc single-cylinder engine, de-
picted in Figure 1, equipped with four valves and featuring a pent-roof combustion chamber
and a reverse tumble intake port system. The latter is specifically designed for operation in
both direct injection (DI) [38] and port fuel injection (PFI) [42] modes. Additional specifica-
tions regarding the test engine are available in Table 1 [43]. The tests were carried out at
1000 rpm in PFI mode with centrally positioned igniters.

Table 1. Engine data [43].

Feature Value Unit

Displaced volume 500 cc
Stroke 88 mm
Bore 85 mm

Connecting rod length 139 mm
Compression ratio 8.8:1 -

Exhaust valve open −13 CAD aBDC
Exhaust valve close 25 CAD aBDC
Intake valve open −20 CAD aBDC
Intake valve close −24 CAD aBDC
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Figure 1. Test engine.

A throttle valve positioned upstream of the intake manifold regulated the airflow
rate, with its configuration remaining constant for all the test points, specifically taking
into account a throttle valve opening (TVO) of 10%. This ensured consistent airflow
towards the combustion chamber and unchanged in-cylinder charge motion [42]. The air
excess coefficient was adjusted exclusively by modifying the quantity of hydrogen fuel
injected, maintained at a fixed injection pressure of 4 bar absolute. Below, the remaining
components of the experimental apparatus are listed and outlined, with their schematic
arrangement and associated connections depicted in Figure 2. An Athena GET HPUH4
engine control unit (ECU) has been used to regulate the timing of injector activation and
ignition timing. This ECU achieved control by sending a trigger signal to the ignition
control unit. For combustion analysis, the Kistler KiBox system was employed, featuring an
angular resolution of 0.1 CAD. This system gathered several critical data types: intake port
pressure was measured using a Kistler 4075A5 (Kistler Group: Winterthur, Switzerland)
piezoresistive transducer; in-cylinder pressure was recorded with a Kistler 6061B (Kistler
Group: Winterthur, Switzerland) piezoelectric transducer; and the absolute crank angle
position was determined using an AVL 365C optical encoder (IndiaMART: Noida, India).
Additionally, the oxygen percentage was measured with a Horiba Mexa 720 fast probe
(HORIBA, Ltd.: Kyoto, Japan), with an accuracy of ±0.5%, while the ignition signal was
provided by the ECU.

For the study, a conventional spark plug prototype was chosen as the igniter.
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2.2. Estimation of the Relative Air Excess Coefficient

Throughout the course of the engine’s operations, the activation time value of the
injector (ton) was finetuned to attain the desired target of λ, guided by the concentration
of O2% in the combustion process furnished by the Horiba MEXA-720, as specified in the
previous paragraph, using the equation derived from the complete combustion of hydrogen
and oxygen and rearranged by Azeem et al. [22] as reported in Equation (1):

λ =
1 + XO2

1 − XO2
YO2

(1)

where XO2 represents the oxygen wet concentration in the exhaust gas and YO2 indicates
the corresponding concentration in the intake air, which stands at around 21%. Such a type
of regulation is deemed necessary owing to the impossibility of flushing the injector and
the absence of a “fuel meter”, which allows the quantification of the injected fuel mass flow
rate (

.
mc) and therefore direct adjustment of the λ value.

2.3. Definition of the Case Study for the Output Prediction
2.3.1. Definition of the Involved Parameters

In this work, the performance of an LSTM-CNN structure in predicting the λ at the
exhaust pipe of a spark-ignition engine (Figure 3) has been evaluated and compared with
the ones coming from other ML architectures.

The initial dataset is composed by data coming from experiments conducted at differ-
ent λ values, from 1.5 to 3.5 (Figure 4). Each tested operating point is characterized by the
coefficient of variance (CoV) of the indicated mean effective pressure (IMEP) being lower
than 3% [44]. The threshold enables the operating point to be considered as fully stable.
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The initial dataset, described in Table 2, is composed of 42 operating cases. For each
operating case, a total of 100 consecutive combustions were recorded by the Kibox analysis
system. For each combustion event, the following 8 parameters served as an input for the
ML structure:

• Ignition timing, IT (CAD aTDC).
• Crank angle degree (CAD) after top dead center (aTDC), for which 5% of the mass

fraction (MF) is burned, AI05 (CAD aTDC).
• CAD aTDC, for which 50% of MF is burned, AI50 (CAD aTDC).
• CAD aTDC, for which 90% of MF is burned, AI90 (CAD aTDC).
• CAD aTDC in correspondence of the maximum in-cylinder pressure, APmax (CAD

aTDC).
• Maximum in-cylinder pressure, Pmax (bar).
• Indicated mean effective pressure, IMEP (bar).
• Injector activation time, ton (µs).
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Table 2. Dataset general description and values.

Case
Number

(-)

Combustion
Cycle

(-)

IT
(CAD
aTDC)

AI05
(CAD
aTDC)

AI50
(CAD
aTDC)

AI90
(CAD
aTDC)

APmax
(CAD
aTDC)

Pmax
(bar)

IMEP
(bar)

ton
(µs)

O2
(%)

1

1 −10 2.85 8.74 13.55 14.00 29.07 3.85 19,163.2 5.892
2 −10 4.69 10.66 15.20 15.90 28.07 3.82 19,163.2 5.886
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

100 −10 1.16 6.32 10.52 11.20 31.69 4.05 19,163.2 5.671

2

1 −10 1.61 7.24 11.87 12.50 30.31 3.90 19,163.2 6.99
2 −10 3.26 8.42 15.00 14.00 29.48 3.97 19,163.2 7.02
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

100 −10 1.62 7.60 12.81 12.70 29.46 3.83 19,163.2 5.202

.

.

.

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

42

1 −19 −4.94 5.92 14.08 12.40 2.91 23.96 14,873.6 15.130
2 −19 −5.41 3.80 12.69 10.60 2.78 24.50 14,873.6 15.020
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

100 −19 −2.48 7.90 16.86 13.90 2.99 23.19 14,873.6 14.902

Due to the inability to retroactively control the injector activation time, it has been fixed
based on the target lambda value. Therefore, it is essential to predict the exhaust oxygen
concentration accurately with an ML approach to enable the control of the injector timing.

Considering the observations reported in Figures 4 and 5 and the subdivision of
the initial dataset shown in Table 2, which consists of 42 × [100 × 8] input variables
and 42 × [100 × 1] output variables, the dataset was divided into test, validation, and
training sets.
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Figure 5. (a) Overview of the entire dataset including the number of cases analyzed and variables,
along with combustion cycles; (b) detailed listing of input and output parameters for each case based
on initial sensitivity analysis; (c) division of the dataset into training, testing, and validation sets.
Specifically, 80% of the data was allocated to training, 10% to validation, and the remaining 10% to
testing for predicting the output variable O2% and deriving the λ value.
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2.3.2. Evaluating the Influence of the Input Parameters on the Output Prediction

By removing variables with minimal correlation, the model’s dimensions can be effec-
tively reduced, thereby improving its accuracy. To accomplish this goal, an initial analysis
utilizing the Shapley value was performed on the entire dataset. SHAP is used to clarify
the prediction of an instance by assessing the contribution of each feature. By excluding
variables with weak correlation, the model’s dimensions can be effectively reduced, thereby
improving its accuracy. The researchers also evaluated the average absolute Shapley values
(ABSVs) to determine the influence of individual measured quantities on the objective
function [45,46]. The results shown in Figure 6 indicate that ton is the most influential
parameter for predicting λ, followed by the maximum in-cylinder pressure (percentage of
impact: 47%), APmax, AI50, and IMEP. On the other hand, AI05, AI90, and IT, highlighted
in red in Figure 6, are the least influential parameters, with impact percentages below 5%.
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feature in predicting the global oxygen concentration. The red line delineates the threshold below
which a parameter is deemed insignificant for the purposes of prediction.

Consequently, these three parameters were excluded from the final dataset, reduc-
ing the count of inputs from 8 to 5. Earlier studies conducted by the same team of re-
search [38,41] revealed improvements in predictive capabilities when parameters with
marginal influence were excluded. Accordingly, this study centers on evaluating the pre-
dictive accuracy of the architecture using the five previously identified input parameters:
AI50, APmax, IMEP, Pmax, and ton. After analyzing the input parameters, a normalization
procedure is implemented to mitigate prediction errors and expedite the architecture’s
convergence. This method mitigates discrepancies between input and output parame-
ters by scaling values to the range [0, 1]. Following the prediction procedure, a data
de-normalization process must be undertaken to enable direct comparison between the
predicted values and the original target values.

2.3.3. Definition of the Final Dataset for the Output Prediction

On the basis of the sensitivity analysis results outlined in the preceding paragraph
and summarized in Figure 5, Figure 7 offers a detailed summary of the final dataset and,
additionally, for each case examined, the arrangement of input and output parameters.
As shown in Figure 7a, the dataset consists of 42 experimental cases specified in Table 2,
with every single case characterized by 6 variables. Each variable includes 100 samples,
corresponding to the number of combustion cycles. The input parameters, AI50, APmax,
IMEP, Pmax, and ton, form a 42 × [5 × 100] matrix, while the output parameter forms a
42 × [1 × 100] matrix (Figure 7b). The dataset was divided such that 80% of the data was
utilizing for training, 10% for validation, and the remaining 10%, 3 × [5 × 100], was used
for testing to predict the output, 3 × [1 × 100] (Figure 7c).
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Figure 7. (a) Overview of the final dataset including the number of cases analyzed and variables,
along with combustion cycles; (b) detailed listing of input and output parameters for each case based
on initial sensitivity analysis; (c) division of the dataset into training, testing, and validation sets.
Specifically, 80% of the data was allocated to training, 10% to validation, and the remaining 10% to
testing for predicting the output variable O2% and deriving the λ value.

3. Creating the Artificial Architecture to Perform Output Prediction
3.1. LSTM + 1DCNN Structure

Figure 8a illustrates the forecasting model of LSTM + 1DCNN utilized for predicting
the output and subsequently determining the operative λ value. The process begins
with a sequence input layer that feeds the dataset inside the neural network, defining
its dimensions and creating the required structures. Following this, a one-dimensional
CNN layer employs a “1D convolutional filter” on each frame of input, which is composed
of neurons and uses a “ReLu activation function” [47,48]. The procedure then involves
an “average pooling layer” that computes the mean values of patches in a feature map,
reducing the maps size (i.e., “down-sampling”), utilizing the mean value in 2 × 2 cell
squares. This is followed by another 1D convolutional layer, similar to the earlier one. An
LSTM layer with hidden units then handles the feature maps. Gates play a vital role in the
inner structure of the LSTM network, as depicted in Figure 8b. Using data from the prior
layer (ht−1) and the current input (xt), the “forget gate” determines which information
should be kept or removed. A sigmoid function processes this data, yielding an output
between 0 and 1 to determine if the information should be retained. This gate modifies the
prior cell state value (Ct−1). The “input gate” then identifies which information to save in
the “cell state” through several steps. Initially, the “input port layer” employs a Sigmoid
function (σ) to decide which values to update. Subsequently, a new set of candidate values
(Ct) is created using a Hyperbolic Tangent function (tanh). These two sets of values are
combined and updated using the Forget function (ft), replacing the old cell state (Ct−1)
with the new one (Ct). The updated cell state is then multiplied by the Forget function
(ft). The output gate retains a filtered version of the processed data, with the Sigmoid
function determining which parts of the cell state to output. The cell state undergoes a
tanh operation to limit values between −1 and 1, which are subsequently multiplied by
the “Sigmoid gate output”, resulting in the final output (yt) of only the selected parts.
LSTMs feature a unique structure with a “Forget gate activation”, allowing the network
to encourage desired behavior through frequent updates at each learning stage. After the
LSTM layer completes its process, the “time-distributed layer” segments the feature map
into a sequence of temporal vectors. Finally, the “regression output layer” calculates the
“mean square error loss” to solve the regression problem, with ht representing the new
layer and yt the current output, i.e., the predicted value.
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3.2. Definition of the Procedures to Determine the Structural Parameters of the Proposed Models

The optimized neural architectures are defined based on preliminary analysis of
training session performance. The effectiveness of the model’s parameters is measured
using the mean square error (MSE) as the loss metric (Equation (2)):

MSE =
1
N ∑N

i=1

(
Yi

predicted − Yi
target

)2
(2)

where:

• N = number of combustion cycles;
• i = ith combustion cycle;
• Yi

predicted = predicted value;

• Yi
target = target value (gleaned from experiments).

The network is trained for 10,000 epochs, allowing the final loss function value, for
each prediction model, to be computed upon reaching the maximum learning iteration.

For the LSTM + 1DCNN architecture, various structural parameters are investigated:
the number of neurons in the 1DCNN layers (Nc) ranges from 50 to 200, the neurons in the
LSTM hidden layers (Nh) also span from 50 to 200, the batch size (Bs) varies between 8 and
64, and the model depth (Md) extends from 1 to 5 layers.

The “Adam optimizer”, which includes adaptive learning rate adjustments during
training, is utilized to refine the weight matrix and biases in the LSTM model.

A “MaxPooling1D layer” composed of pool_size = 2 and strides = 2 has been located
between the CNN and LSTM layers.

A “time-distributed layer” has been used after the LSTM layer. It applies a “fully con-
nected (dense) layer” with one unit to each time step of the input sequence independently.
This is useful for sequence data where each time step needs to be processed separately,
such as in sequence prediction tasks where each time step has its own prediction.

A “dense (units = 1) layer”, a standard fully connected layer with one unit, has
ultimately been used as the output layer since a single scalar output is required.

The most effective configurations, identified by the lowest mean square error (MSE)
values, were selected for predicting λ, resulting in Nc = 134, Nh = 38, Bs = 1, and Md = 2.

For the sake of completeness, Figure 9 displays the validation loss and training loss
for the best-performing LSTM + 1DCNN structure.
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Figure 9. The pattern of loss values for the LSTM + 1DCNN architecture, which demonstrated the
highest performance during the training session.

The performance of this proposed architecture is evaluated against an alternative
approach, specifically the backpropagation model. The BP algorithm [49–51] features an
architecture with one input layer; three hidden layers containing 50, 87, and 11 neurons,
respectively; and a single output layer. Similar to the LSTM + 1DCNN architecture, this
configuration was fine-tuned through a thorough preliminary analysis.

4. Results and Discussion

Figure 10 depicts the predictions of λ, starting from the prediction of oxygen concen-
tration according to Equation (1), for the three testing cases performed by the two neural
structures analyzed.
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Figure 10. Predictions of λ for the three ‘testing cases’ selected by both neural structures: (a) prediction
case n.13, (b) prediction case n.21 and (c) prediction case n.38 (refer to Figure 4). The black dotted
lines represent the measurement accuracy range of the target, i.e., 0.5%.

To ensure clarity, prediction, concerning the entirety of events, was carried out for
operational cases 13, 21, and 38, each characterized by 100 combustion cycles. For all
of the aforementioned cases, both test structures are capable of reproducing the trend in
the oxygen concentration over the considered combustion cycles. Examining the details
more closely, it is evident that the LSTM + 1DCNN architecture achieves predictions
that are closer to the target across all three analyzed cases compared to the BP structure.
Furthermore, as corroborated by the error graphs in Figure 11, the LSTM + 1DCNN
architecture progressively improves the prediction performance as the mixture becomes
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leaner, with the RMSE (Root Mean Square Error) [41] decreasing from 3.16% (case 13,
Figure 10a) to 2.72% (both cases 21 and 38, Figures 10b and 10c, respectively). Conversely,
while the BP model shows slightly different trends from LSTM + 1DCNN for cases 13 and 21,
it performs significantly worse for case 38, with an RMSE of 8.27%, greatly underestimating
the target value.
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The percentage error of the ith operating case, indicated as Err, defined as the distance
between the approximate value and the exact value as a percentage of the actual value, has
been determined using Equation (3):

Err(i) =

∣∣∣Yi
predicted − Yi

target

∣∣∣
Yi

target
× 100 (3)

The average percentage error, referred to as Erravg and evaluated utilizing Equation (4),
is computed to evaluate the overall accuracy of predictions:

Erravg =
1
N ∑N

i=1

∣∣∣Yi
predicted − Yi

target

∣∣∣
Yi

target
× 100 (4)

To ensure accurate predictions, a strict upper limit of 10% is set for these calculated
errors to maintain high-quality standards.

As illustrated in Figure 11a,b, BP demonstrates an Erravg of 8.88% for case 13 and 6.50%
for case 21, both of which are below the critical threshold of 10%. Specifically, 33 cycles and
11 cycles, respectively, or approximately 33% and 11% of the predicted combustion cycles,
exhibit an Err(i) exceeding 10%. However, in case 38 (Figure 11c), BP exhibits an Erravg of
12.67%, significantly exceeding the critical threshold of acceptability. The LSTM + 1DCNN
model enhances BP performance, consistently demonstrating an Erravg below that of the
BP architecture and the critical threshold. Specifically, the Erravg is 6.97% for case 13, 5.09%
for case 21, and 4.01% for case 38. Furthermore, it is important to emphasize that as the
mixture is leaner, the LSTM + 1DCNN structure progressively improves the prediction
performance, achieving zero cycles beyond the critical threshold of 10% for case 38.
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The regression accuracy (R2) pertaining to the predictions generated by the two
architectures tested, illustrated in Figure 12, has been calculated using Equation (5).

R2 = 1 −
∑N

i=1

(
Yi

predicted − Yi
target

)2

∑N
i=1

(
Yi

target − Ytarget

)2 (5)

where Ytarget = mean of the target values.
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As can be observed, the data points in all charts are plotted with the predicted values
on the y-axis and the target values on the x-axis. The closer the points are to the diagonal
dashed line, the more accurate the predictions are. Each plot uses a scale appropriate to
the data range of the respective case. Both models demonstrate high accuracy in the lower-
to-medium range of analysis, specifically at low λ levels. As the oxygen concentration
increases, BP shows greater dispersion (R2 = 0.9802, case 38), whereas LSTM + 1DCNN
exhibits a consistent distribution along the interpolation line without significant deviations
(R2 = 0.9974, case 38). Notably, this architecture exhibits minimal dispersion, with an R2

value approaching unity, specifically R2 = 0.9996 for case 21, which is higher than the value
achieved for the same case using BP (R2 = 0.9992). These findings underscore the superior
linear fitting and predictive accuracy of the LSTM + 1DCNN architecture compared to
the BP architecture across all three cases examined. The findings underscore the strong
learning capabilities of the LSTM + 1DCNN architecture, demonstrating its proficiency in
faithfully reproducing the target trend throughout the learning process.
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Challenges and Opportunities

While machine learning shows promise for enhancing emission control in hydrogen
combustion engines, several challenges remain. One key challenge is the need for large
amounts of high-quality data for training and validating machine learning models. Col-
lecting representative data from diverse operating conditions and engine configurations is
essential to ensure the robustness and generalization of the models.

Additionally, the integration of machine learning algorithms into real-time engine
control systems presents technical and logistical challenges. Ensuring the reliability, safety,
and compatibility of machine-learning-based systems with existing engine architectures
requires careful consideration and validation.

Despite these challenges, the potential benefits of machine learning for emission con-
trol in hydrogen combustion engines are substantial. By providing accurate and reliable
λ predictions, virtual lambda sensors can enable more precise control of combustion pro-
cesses, leading to improved engine performance and reduced emissions. Furthermore,
machine-learning-based approaches have the flexibility to adapt to changing operating con-
ditions and optimize engine performance in real time, offering opportunities for continuous
improvement and innovation in emission control strategies.

5. Conclusions

The current study assessed the LSTM + 1DCNN model’s efficacy for the λ prediction
at the exhaust pipe of a single-cylinder spark-ignition engine across different operational
scenarios. The aim was to explore the potential of advanced machine learning techniques
as substitutes for physical sensors and to assess the feasibility of integrating virtual lambda
sensors into onboard control systems. This approach may reduce the need for costly and
time-intensive structural alterations.

Main Findings

The findings gleaned from the present comparative analysis demonstrate the superior
performance of the LSTM + 1DCNN model in replicating target signal trends. In particular,
compared to the backpropagation approach, this model consistently exhibits the highest
accuracy, with average error percentages below 10%. As the air–fuel mixture is progres-
sively leaned, the LSTM + 1DCNN model achieves average error percentages equal to
approximately 4%, while that of the BP structure increases by up to roughly 13%. This
research found that the LSTM + 1DCNN architecture can achieve convergence during
training without experiencing overfitting, showcasing its ability to learn efficiently from
input data and predict with high precision. Additionally, it demonstrates superior accuracy
and robustness compared to the backpropagation structure. These findings suggest that
LSTM + 1DCNN holds great potential for accurately forecasting the air excess coefficient
(λ) in SI engines.

In conclusion, integrating machine learning in hydrogen combustion engines shows
great promise for advancing emission control. Virtual lambda sensors can address sensor
malfunctions and response delays. Experimental validation on single-cylinder engines
demonstrates the potential of these techniques for improving performance and reducing
emissions, paving the way for a cleaner, more sustainable automotive future.
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Nomenclature

1D-CNN One-dimensional CNN
ABSV Average absolute Shapley value
aBDC after bottom dead center
AI05 Crank angle degree after the top dead center (TDC), for which 5% of the mass

is burned
AI50 Crank angle degree after the top dead center (TDC), for which 50% of the mass

is burned
AI90 Crank angle degree after the top dead center (TDC), for which 90% of the mass

is burned
APmax Crank angle degree after the top dead center (TDC), where the maximum

in-cylinder pressure is recorded
aTDC after top dead center
Bs Batch size
CAD Crank angle degree
CNN Convolutional neural network
CoVIMEP Coefficient of variance of IMEP
DI Direct injection
EML Extreme machine learning
ECU Engine control unit
Err Percentage error
Erravg Average percentage error
ϕ Fuel–air equivalence ratio
H2 Hydrogen
ICE Internal combustion engine
IMEP Indicated mean effective pressure
IT Ignition timing
ITF-OSELM Initial-training-free online sequential extreme learning machine
λ (1/φ) Air excess coefficient
LSTM Long short-term memory
LSTM + 1DCNN 1D-CNN and LSTM model combination
mc Injected fuel mass flow rate
Md Model depth
ML Machine learning
Nc Number of neurons in the 1DCNN layers
Nh Number of neurons in the LSTM hidden layers
MSE Mean square error
O2 Oxygen
PFI Port fuel injection
Pmax Maximum in-cylinder pressure
R2 Coefficient of determination
RMSE Root mean square error
SHAP Shapley analysis
SI Spark ignition
ton Activation time
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