
Citation: Fan, Z.; Tian, M.; Li, M.; Mi,

Y.; Jiang, Y.; Song, T.; Cao, J.; Liu, Z.

Assessment of CO2 Sequestration

Capacity in a Low-Permeability Oil

Reservoir Using Machine Learning

Methods. Energies 2024, 17, 3979.

https://doi.org/10.3390/en17163979

Academic Editor: Hossein Hamidi

Received: 21 May 2024

Revised: 28 July 2024

Accepted: 9 August 2024

Published: 11 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Assessment of CO2 Sequestration Capacity in a
Low-Permeability Oil Reservoir Using Machine
Learning Methods
Zuochun Fan 1,2, Mei Tian 2, Man Li 2, Yidi Mi 2, Yue Jiang 2, Tao Song 3, Jinxin Cao 3 and Zheyu Liu 3,*

1 Institute of Advanced Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
2 Research Institute of Exploration and Development, Liaohe Oilfield Company, PetroChina,

Panjin 124010, China
3 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing),

Beijing 102249, China; songtao_cup@163.com (T.S.); cjxafield@163.com (J.C.)
* Correspondence: zheyu.liu@cup.edu.cn

Abstract: The CO2 sequestration capacity evaluation of reservoirs is a critical procedure for carbon
capture, utilization, and storage (CCUS) techniques. However, calculating the sequestration amount
for CO2 flooding in low-permeability reservoirs is challenging. Herein, a method combining numeri-
cal simulation technology with artificial intelligence is proposed. Based on the typical geological and
fluid characteristics of low-permeability oil reservoirs in the Liaohe oilfield, the CMG 2020 version
software GEM module is used to establish a model for CO2 flooding and sequestration. Meanwhile, a
calculation method for the effective sequestration coefficient of CO2 is established. We systematically
study the sequestration rules in low-permeability reservoirs under varying conditions of permeability,
reservoir temperature, and initial reservoir pressure. The results indicate that, as the permeability
and sequestration pressure of the reservoir increase, oil recovery gradually increases. The proportion
of structurally bound sequestration volume increases from 55% to 60%. Reservoir temperature has
minimal impact on both the recovery rate and the improvement in sequestration efficiency. Sequestra-
tion pressure primarily improves sequestration efficiency by increasing the dissolution of CO2 in the
remaining oil and water. The calculation chart for the effective sequestration coefficient, developed
using artificial intelligence algorithms under multi-factor conditions, enables accurate and rapid
evaluation of the sequestration potential and the identification of favorable sequestration areas in
low-permeability reservoirs. This approach provides valuable technical support for CO2 flooding
and sequestration in pilot applications.

Keywords: effective burial coefficient; CCUS; numerical simulation; artificial intelligence

1. Introduction

In recent years, with the rapid development of the global economy and the improve-
ment of living standards, global oil consumption has been rising. Since 2019, China has
relied on foreign crude oil for over 70% of its needs for six consecutive years [1–3]. The
main section of aging oilfields developed through water injection has reached the “double
high” stage, characterized by a high water cut and high recovery rates. Stabilizing and
increasing crude oil production has become challenging, making it urgent to identify new
growth points for resources [4–6]. Direct emissions of CO2, the by-product of burning
fossil fuels, will pollute the atmosphere, causing the greenhouse effect [7,8]. As the world’s
second largest economic entity and a responsible nation, China has taken the initiative to
shoulder the responsibility of tackling global climate change. It has set the ambitious targets
of reaching peak carbon emissions by 2030 and achieving carbon neutrality by 2060 [9–11].
In the background of “energy independence” and “carbon peak and carbon neutrality”,
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CCUS (carbon capture, utilization, and storage) have received increasing attention in the
field of petroleum production [12,13].

Low-permeability reservoirs face challenges such as strong reservoir heterogeneity,
a complex pore structure, rapid energy depletion in depleted production formations, dif-
ficulties in replenishing energy through water injection, and low recovery rates [14,15].
In 2014, the United States was responsible for about 93% of global CO2 flooding-enhanced
oil recovery (EOR) production. About 80% of the CO2 flooding reservoirs had perme-
abilities of less than 50 × 10−3 µm, demonstrating considerable economic and social
benefits [16–19]. Injecting CO2 into a reservoir can lead to the dissolution, expansion,
and viscosity reduction of crude oil. Miscible flooding can significantly enhance both
sweep efficiency and flooding efficiency [20,21]. However, the varying characteristics of
reservoirs—including physical properties, oil quality, temperature, pressure, fluid dis-
tribution, and trap storage capacity—affect the impact of CO2 flooding on enhanced oil
recovery and burial effects [22–24]. Currently, CO2 storage capacity assessment studies
mostly focus on specific physical properties of oil reservoirs [25–27]. There is a lack of
research on the changes and potential assessment of CO2 burial amounts under varying
reservoir conditions.

The calculation of CO2 storage capacity is primarily determined by the method used
to calculate effective storage capacity. Effective storage capacity considers factors such as
buoyancy, overburden pressure, fluid dynamics, heterogeneity, water saturation, and others.
Its value aligns more closely with actual storage capacity than theoretical estimates [28–30].
Existing method mainly use analogy or numerical simulation techniques to calculate
effective CO2 storage capacity. However, pilot test projects for CO2 storage sites are
limited, leading to restricted available parameters and reliability issues in analog-based
CO2 storage calculations [31]. The process of calculating the effective storage coefficient by
numerical simulation method is complex and lacks the capability for rapid and convenient
calculations, which imposes application limitations [32,33]. To address these issues, a
numerical simulation model of CO2 flooding was developed based on the geological
and fluid characteristics of typical low-permeability oil reservoirs in the Liaohe oilfield.
This model aims to systematically study the effects of enhanced oil recovery and CO2
burial behavior, establish a calculation framework for the effective storage coefficient using
artificial intelligence methods, and provide technical support and theoretical guidance for
assessing CO2 burial potential and identifying favorable burial areas in the study area.

2. The Establishment of a Numerical Model of CO2 Flooding and Burial

To investigate the CO2 flooding and burial behavior in low-permeability reservoirs,
a numerical simulation component model of CO2 flooding and burial was developed
using CMG reservoir numerical simulation software. This model was calibrated based
on the phase behavior of original formation fluids and the geological characteristics and
production data of the study area. A mature reservoir engineering calculation model was
employed to compute the theoretical CO2 storage capacity. The solubility of CO2 measured
in the laboratory was used to adjust the theoretical storage estimates. Subsequently, the CO2
effective storage coefficient was determined, forming the foundation for investigating CO2
storage mechanisms and developing a predictive model for effective storage coefficients.

2.1. The Fitting of the Phase of Fluids

Based on chromatographic measurements of degassed oils and associated gasses in the
study area, simulations were conducted using the Winprop module of the phase behavior
simulation CMG 2020 version software under an original reservoir pressure of 30.24 MPa, a
reservoir temperature of 88 ◦C, and a gas–oil ratio of 91.5 m3/m3 to configure the live oil in
the study area and reconstruct the underground fluid composition. The phase equilibrium
calculations primarily utilized the PR state equation, obtaining the pseudo-component
composition of the model (Table 1). The experimental data of multistage degassing and
reservoir fluid property parameters were obtained from oilfield reservoir fluid testing
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information. The saturation pressure, viscosity, gas–oil ratio, and multi-stage degassing
experiments of underground crude oil were fitted, and the results are shown below (Table 2
and Figure 1), and the equation of state parameters that can reflect the reservoir fluid was
obtained (Table 3).

Table 1. Pseudo-component composition of live oil in model.

Component Molar
Composition/% Component Molar

Composition/%

N2 0.02 C6–C12 10.46
CO2 0.36 C13–C21 15.07
CH4 48.67 C22–C29 12.47

C2-C5 9.58 C30–C38 3.37

Table 2. Fitting results of fluid phase features.

Saturation Pressure/MPa Viscosity/(mPa·s) Gas–Oil Ratio/(m3/m3)

Experimental
Value

Simulation
Value Error/% Experimental

Value
Simulation

Value Error/% Experimental
Value

Simulation
Value Error/%

15.6 16.2 3.84% 3.2 3.1 3.2% 91.5 89.2 2.5%
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Figure 1. Fitting results of the multi-stage degassing experiment of formation fluid. (a) Fitting results 
of volume factor. (b) Fitting results of crude oil density. 
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Figure 1. Fitting results of the multi-stage degassing experiment of formation fluid. (a) Fitting results
of volume factor. (b) Fitting results of crude oil density.

Table 3. Characteristic parameters of the equation of state after fluid phase fitting in low-permeability
thin oil reservoirs.

Component Critical
Pressure/MPa

Critical
Temperature/K

Critical
Volume/(L·mol−1)

Acentric
Factor

Molecular
Weight/(g·mol−1) Ωa Ωb

N2 3.39 126.2 0.09 0.04 28.01 0.46 0.08
CO2 7.38 304.2 0.094 0.23 44.01 0.46 0.08
CH4 4.6 190.6 0.099 0.01 16.04 0.46 0.08

C2–C5 3.76 422.54 0.257 0.19 59.37 0.46 0.08
C6–C12 2.32 562.96 0.422 0.35 129.25 0.46 0.09
C13–C21 2.26 800 0.875 0.72 300.62 0.55 0.09
C22–C29 0.79 778.85 1.215 0.97 430.22 0.41 0.07
C30–C38 0.66 680.06 1.482 1.12 499.32 0.37 0.06

2.2. The Establishment of the Low-Permeability Reservoir Model

Based on the geological model of the study area, a representative well group (Figure 2)
was selected, and production history matching was performed to enhance the reliability
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and accuracy of the model simulation results. Subsequently, numerical simulations were
conducted to study CO2 flooding and burial. The total number of grids of the model
is 31,050 grids. The initial average formation pressure is 30.24 MPa, with an average
permeability of 21 mD; average porosity is 16.3%, initial oil saturation is 0.55, and the rock
compressibility coefficient is 4.5 × 10−6 1/kPa. A three-dimensional schematic diagram of
the model is shown below (Figure 2a). Historical production data of the study area were
fitted to obtain the current distribution of the remaining oil (Figure 2b) and the relative
permeability curves of the oil–water and gas–liquid phases (Figure 3).
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2.3. The Solution of Effective Buried Storage Coefficient

Numerical simulation is the most effective method for calculating oil recovery and
effective storage coefficient [34]. CO2 is influenced by factors such as differences in fluid
viscosity and density, formation heterogeneity, water saturation, and strong water bodies.
Therefore, it is more reliable to determine key parameters using “numerical simulation
technology + experimental measurements” for calculating the correlation coefficient, com-
pared to the empirical method. The solubility of CO2 in the crude oil and water from
the study area was determined through solubility measurement experiments (Figure 4).
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This approach calculates the actual CO2 storage considering various factors, followed by
computation of the effective storage coefficient (Equation (1)) [35].

Ce =
Me

Mt
(1)

where Ce is the effective storage coefficient of the comprehensive influence of various
factors, Me is the effective burial amount of CO2 in the reservoir, 106 t; Mt is the theoretical
buried amount of CO2 in the reservoir, 106 t.

Mt =
ρr

109

[
(0.4ERb + 0.6ERh)Ahϕ(1 − Swi)− Viw + Vpw + Cws × (AhϕSwi + Viw − Vpw)
+Cos(1 − 0.4ERb − 0.6ERh)Ahϕ(1 − Swi)

]
(2)

where Mt is the theoretical buried amount of CO2 in the reservoir, 106 t; ρr is the density of
CO2 in the reservoir, kg/m3; A is the reservoir area, m2; h is the reservoir thickness, m; Ø is
the porosity of the reservoir; Swi is the reservoir bound water saturation; Viw is the amount
of water injected into the reservoir, m3; Vpw is the water produced from the reservoir, m3;
Cws is the CO2 solubility coefficient in water, m3/m3; Cos is the CO2 solubility coefficient in
oil, m3/m3; ERb is the oil recovery factor before CO2 breakthrough; ERh is the oil recovery
factor when a certain volume of CO2 is injected.

1 
 

 
Figure 4. The results of CO2 solubility determination in oil and water in the study area. (a) Solubility
determination results in water. (b) Solubility determination results in oil.

The actual burial amount of CO2 is obtained by numerical simulations to calculate
the difference between the actual CO2 injection and the CO2 output, and the actual model
considers the diffusion coefficient of CO2 in oil and water, and the diffusion coefficient is
measured by the pressure drop method experimentally [36]. The measurement method
involves connecting a CO2-filled container of constant volume to a core holder saturated
with crude oil. At the beginning of the experiment, the valve is opened to allow communi-
cation between the container and the core holder, which proceeds at constant temperature.
As CO2 continues to diffuse into the core, the system pressure gradually decreases until
it reaches equilibrium. Pressure changes during the experiment are recorded, and Fick’s
second law is applied to calculate the gas diffusion coefficient.

Me = Minj − Mprd (3)

where: Me is the effective burial amount of CO2 in the reservoir, 106 t; Minj is the amount of
CO2 injected,106 t; Mprd is the amount of CO2 produced, 106 t.
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3. Numerical Simulation Study of CO2 Flooding and Storage

Based on the historical fitting model, wells were arranged according to the current
distribution of remaining oil. CO2 injection was prioritized for wells with low oil saturation
in the vicinity, while high-pressure gas injection was employed to maximize gravity-driven
oil displacement. In Figure 2b, the injection well is highlighted by a red box, with the
remaining wells designated as production wells. The single-variable method was employed
to simulate CO2 flooding and storage across varying permeability, temperature, and original
reservoir pressure, based on the component model. Temperature and pressure tests are
conducted via a gas injection well. The current gas injection capacity is calculated based on
the principle that the bottomhole pressure should not exceed 90% of the rupture pressure,
with a designed gas injection rate of 15,000 m3/d (at standard conditions). The production
wells adopt constant-pressure production, with the pressure set to the reservoir pressure in
each well’s grid cell after historical fitting. During the injection process, the well is shut
down when the production gas–oil ratio reaches 2000 m3/m3. All wells are then switched
to CO2 until the formation pressure equals the original formation pressure (i.e., the final
storage pressure). The CO2 flooding and storage simulation is completed, yielding CO2
storage results under different conditions, and calculating the contribution rate of various
storage mechanisms for CO2 storage. Several methods are employed to compute storage
volumes for various sequestration mechanisms: the total storage volume is derived from
the difference between the CO2 injected at the injection well and the CO2 produced at the
production well; the dissolved storage volume in oil and water is determined using CMG
2020 version software, which calculates the CO2 mole fraction in the oil–water phase using
an equation of state. This calculation is then combined with the post-sequestration volumes
of oil and water in the reservoir to ascertain the dissolved storage volume. The residual
storage volume is computed by subtracting the dissolved storage volume in oil and water
from the total storage volume. Temperature and pressure tests are conducted via a gas
injection well. The current gas injection capacity is determined based on ensuring that the
bottom pressure of the injection rate does not exceed 90% of the rupture pressure. The
designed injection rate is 15,000 m3/d under standard conditions. During the injection
process, wells are closed when the gas-to-oil ratio reaches 2000 m3/m3. Subsequently,
all wells are switched to CO2 injection until the formation pressure is restored to the
original level (i.e., the final storage pressure). This process completes the simulation of
CO2-enhanced oil recovery and storage, producing calculated results for CO2 storage under
varying conditions. Consequently, the contribution rates of different storage mechanisms
for CO2 storage are calculated.

3.1. Effect of Permeability on CO2 Flooding and Storage

Keeping all other model parameters constant, the permeability was set to 21.53 mD,
26.53 mD, and 31.53 mD, respectively, to investigate the effects of varying permeability
on CO2 flooding and storage. In low permeability oil reservoirs, with the increase in
permeability, the degree of crude oil recovery improves. Figure 5 illustrates the molar
fraction of CO2 in the oil phase under varying permeability conditions. As permeability
increases, the sweep range of CO2 in the crude oil widens, facilitating contact with the crude
oil and enhancing processes such as extraction, expansion, and dissolution. This effect is
more beneficial for crude oil recovery in low-permeability reservoirs. Figure 6 illustrates
that an increase in permeability enhances the contribution rate of structural and adsorptive
storage, which represents approximately 55% to 60% of the total storage. As permeability
increases, oil and water can be extracted more easily, thereby reducing the proportion
of storage in the oil-water mixture. The effective storage coefficient also increases from
0.67 to 0.71, indicating that higher permeability is advantageous for CO2 storage. This is
because higher permeability facilitates greater oil extraction and provides more space in
low-permeability zones for CO2 storage. Increasing permeability significantly enhances
the oil recovery and storage efficiency of CO2 in low-permeability reservoirs.
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3.2. Effect of Reservoir Temperature on CO2 Flooding and Storage

With all other model parameters held constant, reservoir temperatures were set to
83.1 ◦C, 88.1 ◦C, and 93.1 ◦C to investigate the effects of varying temperatures on CO2
flooding and storage. The simulation results indicate that under temperature conditions
of 83.1 ◦C, 88.1 ◦C, and 93.1 ◦C, the recovery rates during the depletion stage were 10.9%,
10.88%, and 10.89%, respectively. The production period during the depletion stage was
19 years. Figure 7 shows that temperature has minimal impact on the recovery rate of low-
permeability oil reservoirs and the proportion of each storage mechanism. The effective
storage coefficient increases with temperature because the actual amount of CO2 stored
remains relatively stable while the CO2 density decreases with rising temperature, leading
to a decrease in theoretical storage capacity and thus increasing the effective storage
coefficient. The proportion of dissolved storage in oil and water decreases slightly because
CO2 becomes less soluble in oil and water at higher temperatures, reducing its dissolution.
Figure 8 illustrates that as temperature increases, the average molar fraction of CO2 in the
oil phase decreases, but this decrease occurs at a slower rate.
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3.3. Effect of Original Reservoir Pressure on CO2 Flooding and Storage

Keeping other model parameters unchanged, the original reservoir pressures were
adjusted to 28.95 MPa, 30.24 MPa, and 31.49 MPa to investigate their impacts on CO2
flooding and storage. Simulation results indicate that as reservoir pressure increases,
crude oil recovery initially increases significantly before slightly decreasing, as depicted
in Figure 9. At an original formation pressure of 31.49 MPa, recovery decreases due to
excessive initial formation pressure, resulting in early recovery of most crude oil from pore
spaces compared to lower pressure reservoirs. Additionally, gas channeling during later
stages of gas injection exacerbates this trend, reducing overall recovery efficiency. Increasing
formation pressure decreases the proportion of structurally stored CO2 while increasing
the dissolved CO2 fraction in oil and water. This relationship arises because burial upper
limits are governed by original formation pressures, with higher pressures enhancing
CO2 solubility in oil and water post-burial. Consequently, dissolved CO2 fractions rise
accordingly. Figure 10 illustrates the distribution of residual oil following CO2 flooding
at various formation pressures. It is evident that as the pressure increases, the residual oil
first decreases significantly before slightly increasing. Therefore, in CO2 storage processes,
a higher storage pressure is not always beneficial. An optimal storage pressure can help
prevent gas channeling, thereby improving both oil recovery and storage efficiency.
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4. Prediction Model for the Effective Storage Coefficient Using Artificial Intelligence
4.1. Prediction Model for Effective Burial Coefficient

Building on the results of numerical simulations and utilizing the regression learner in
MATLAB 2022 version software, we employed a supervised machine learning approach
to develop regression models. The input variables included layer permeability, reservoir
temperature, and initial formation pressure, with the effective storage coefficient as the
target variable. We allocated 80% of the data to the training set and 20% to the test
set for regression analysis. The regression algorithms comprised six main categories:
support vector regression, Gaussian process regression (GPR), tree ensembles, neural
networks, linear regression, and regression trees. The model with the lowest regression
error was chosen as the surrogate model. To eliminate the influence of dimensionality,
index values were standardized using the z-score method, which is based on the mean
and standard deviation of the raw data. The R-square coefficient, mean square error
(MSE), root mean squared error (RMSE), and mean absolute error (MAE) were used as the
basis for evaluating the performance of the machine learning models. The coefficient of
determination, also know as R2, is a numerical measure that represents the relationship
between a dependent variable and multiple independent variables. It reflects the reliability
of the regression model in explaining variations in the dependent variable, similar to the
multiple correlation coefficient.

The GPR using the quadratic rational kernel function and the exponential kernel
exhibits the highest fitting accuracy for the block model of the low-permeability thin oil
reservoir. The model training results are shown in Table 4. Models with a fitting accuracy
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greater than 0.8 include quadratic rational GPR, exponential GPR, and square exponential
GPR, among others. The GPR demonstrates superior adaptability to the studied block.

Table 4. Training results of a single model in a thin oil reservoir with low permeability.

Model Fine Model RMSE MSE R2 MAE

Gaussian process
regression model

Quadratic rational GPR 0.032237 0.001039 0.919931 0.023666

Square exponential GPR 0.036601 0.00134 0.844762 0.027608

Matern 5/2 0.051279 0.00263 0.521953 0.039756

Exponent GPR 0.032237 0.001039 0.919934 0.023666

4.2. Establishment and Application of Effective Storage Coefficient Plates

Using the constructed proxy model, predictions were made for the effective storage
coefficient under different storage conditions (permeability, original reservoir pressure,
reservoir temperature). A computational graph (Figure 11) illustrating the effective storage
coefficient was established. Referring to the graph allows one to obtain the effective storage
coefficient under various storage conditions and calculate the corresponding effective
burial volume accordingly. Regions on the graph closer to red indicate larger effective
burial coefficients, suggesting reservoir conditions more favorable for burial, facilitating
the determination of favorable burial reservoir conditions. In the favorable burial area, the
permeability ranges from 26 to 32 mD, and the temperature ranges from 86 ◦C to 98 ◦C. The
permeability in this area increases significantly with pressure, leading to an expansion of
the favorable burial zone into higher temperature and lower permeability regions. Under a
pressure of 31 MPa, the effective storage coefficient increases to approximately 0.746.
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Using the parameters provided, the effective buried stock was calculated. The basic
reservoir parameters are listed in Table 5. The values of recovery before CO2 breakout
refers to the oil recovery from the start of CO2 flooding to just before gas breakout occurs.
The values of recovery after CO2 breakout refers to the oil recovery from the start of CO2
flooding to a specific moment after gas breakout occurs. The CO2 density is 737.06 kg/m3

at the reservoir’s temperature and pressure. The solubility of CO2 is 207.86 m3/m3 in crude
oil and 27.63 m3/m3 in water under standard conditions, as measured in the study area.
According to the effective storage coefficient calculation, with a permeability of 22 mD and
an initial formation pressure of 31 MPa, the effective storage coefficient is 0.5981 at 82 ◦C.
The theoretical amount of CO2 burial, calculated using Equation (2), is 700,400 tons, while
the effective CO2 burial amount, calculated using Equation (3), is 418,900 tons.
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Table 5. The basic parameters of the reservoir of the well group of the low-permeability reservoir in
the block are studied.

Initial Formation
Pressure/MPa

Average Perme-
ability/mD

Reservoir
Temperature/◦C

Bound Water
Saturation Pore Volume/m3

Recovery Rate/%

Before CO2
Breakout

After CO2
Breakout

31 22 88 0.3 6,108,620 2.54 20.01

5. Conclusions

(1) In low-permeability oil reservoirs, an increase in permeability results in a decrease in
the contribution rate of CO2 dissolution and sequestration in oil and water, while the
proportion of structurally bound sequestration increases from 55% to 60%.

(2) Temperature has little impact on the contribution rate of different CO2 sequestration
mechanisms. The proportion of CO2 sequestration through dissolution in oil and
water decreases slightly due to the reduced solubility coefficient of CO2 in oil and
water at higher temperatures.

(3) Higher initial reservoir pressure improves the effectiveness of CO2 enhanced oil
recovery. However, when the pressure surpasses a certain threshold, gas channeling
may occur during the later stages of injection, which can lead to decreased recovery
and storage efficiency. During field implementation, it is crucial to ensure that the
reservoir pressure exceeds the minimum miscibility pressure of CO2 and crude oil,
while also maintaining it below the maximum allowable pressure of the injection
equipment and pipelines.

(4) A method was established using supervised machine learning to train regression
models—with permeability, reservoir temperature, and initial reservoir pressure as
the input variables, and the effective storage coefficient as the target function—to de-
termine CO2 effective sequestration coefficients through artificial intelligence training
models. Charts depicting effective sequestration coefficients under various conditions
(permeability, reservoir pressure, temperature) enable accurate and rapid calculation
of effective sequestration volumes and identification of favorable sequestration areas.
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