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Abstract: A growing number of countries are concerned about the reliability of environmental
indicators; as a result, there is a pressing need to find ways to improve ecological welfare on a global
scale. This study investigates the dynamic linkages among CO2 emissions, AI, economic policy
uncertainty (EPU), and renewable energy consumption. To analyze these relationships empirically,
this study used panel data for East Asian and Pacific countries from 2000 to 2023. This study used fully
modified ordinary least squares (FMOLSs), dynamic ordinary least squares (DOLSs), Hausman fixed
effects (FEs) and random effects (REs), the generalized method of moments (GMM), and variance
decomposition tests. This study’s results show that AI has a positive relationship with CO2 emissions
in terms of the benchmark regression, while it shows minimal impact on CO2 emissions according
to the variance decomposition test. Similarly, economic policy uncertainty shows a strong positive
relationship with CO2 emissions through benchmark regression FEs and REs, GMM, and the variance
decomposition test. An increase in EPU will positively affect CO2 emissions. Renewable energy
consumption has a strong negative impact on CO2 emissions in East Asian and Pacific countries.
These findings reveal that a unit increase in renewable energy consumption will decrease CO2

emissions. Based on the results of this study, it is suggested that policy certainty and an upsurge in
renewable energy consumption are essential for environmental upgrading. In contrast, adopting
AI has no robust effect on ecological degradation (CO2 emissions). East Asian and Pacific countries
need to focus on the adoption of renewables, as well as the control of economic policy uncertainty.
While AI in East Asian and Pacific countries is still in the initial stage of adoption, policy formation is
essential to overcome the possible carbon footprint of AI in the short term.

Keywords: CO2 emissions; AI; economic policy uncertainty; renewable energy consumption; vari-
ance decomposition

1. Introduction

Climate change-related devastation is still progressing, even though the economy has
slowed down because of the COVID-19 pandemic and its aftermath. Emissions temporarily
decreased as a result of a reduction in human activity during the pandemic. Around 95%
of pollution emissions come from greenhouse gases that are generated by humans, which
condense in the atmosphere [1] As sustainable development aims to meet “the needs of
the present without comprising the ability of future generations to meet their needs”, it is
a critical global concern. According to the 17 sustainable development goals (SDGs) set
out by the United Nations (UN) as part of the 2030 agenda, a better world must be created.
The primary focus of all 17 objectives is prosperity and well-being, with 169 targets and
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subgoals set out to achieve these objectives. The UN SDGs demand significant action in all
spheres of life, including all possible applications of technological innovation [2]. The other
objectives cannot be attained without industry, innovation, and infrastructure, which are
emphasized in SDG 9. Similarly, the Paris Agreement clarifies how crucial cutting-edge
climate technology is to a sustainable future. A solution to climate change that might aid
in promoting economic growth and easing environmental burdens is to accelerate and
encourage innovation; however, it is difficult to achieve sustainable development in the
early stages of growth and development. When meeting basic human needs is prioritized
over the environment, there appears to be a clear tradeoff between economic development
and environmental security.

Ref. [3] explained the fourth industrial revolution, in which technological dependence
is crucial. Still, it also requires a dual shift to digital and green practices. This dual shift will
impact every facet of people’s lives. For instance, to promote growth and development,
industries with low energy efficiency must increasingly rely on green energy and energy-
efficient technologies, as detailed by [4]. Given the essential roles that green growth,
connectivity, infrastructure, digitalization, and the Internet of Things play in the twin
transition, this shift is key to decarbonizing the economy. In recent years, researchers
have advanced the research in this field, adding a new Industry 5.0 phase centered on
sustainability, the green economy, and the human–technology partnership [5]. One study
explored the concept of Industry 5.0, which connects environmentally friendly practices
and sustainability. According to the authors, collaboration between many economic sectors
should be improved for the greater good [6].

Ref. [7] stated that green trade and investment are essential to supporting successful
energy transitions and the implementation of nationally determined contributions (NDCs)
in developing countries. The increasing need for energy has created a problematic tradeoff
between environmental security and economic development. The pursuit of carbon neu-
trality exacerbates environmental corrosion and climate change. Greenhouse gas emissions
(GHGs) and energy preservation are only two of the difficulties posed by this exceptional
situation. Therefore, most recent energy- and environment-related studies aim to examine
the connection between CO2 emissions, environmental quality and advanced technology.

Since the Industrial Revolution, human activity has increased the quantity of green-
house gases in the atmosphere and has caused significant global warming. Computer
technology has been steadily improving since the 1990s, and numerous new economic
models, including the digital economy, have been made possible by advances in artificial
intelligence, blockchain technology, and 5G technology. In a digital economy, massive
amounts of data are created, selected, filtered, stored, and used in a way that quickly and
optimally allocates and regenerates resources, leading to high-quality economic develop-
ment [6].

The current study adds fresh information that bridges separate streams of thought in
the existing literature. In particular, CO2 emissions, AI, EPU, and RENE are all investigated.
As noted by [8], enhancing domestic energy-saving and emissions-reducing technologies
depends on highly trained human resources. Developed countries with high levels of
human capital are more likely to create cutting-edge technology, as detailed by [8].

A weak economy caused by EPU encourages companies to use more conventional,
polluting, and less-expensive energy sources for production, such as coal and oil, which
increases CO2 emissions. Ref. [9] used U.S. sector data to conduct a new parametric test
involving Granger causality, which was used to investigate the effect of EPU on CO2 emis-
sions; they determined the Granger causality between the two variables. In their study, ref.
Ref. [10] used a bootstrap panel Granger causality test to examine the causative connection
between EPU and both energy consumption and CO2 emissions in the G7 countries. They
stated that EPU had negative impacts on reducing emissions and conserving energy. Fur-
thermore, ref. [11] reported strong correlations among geopolitical risk, economic policy
uncertainty, energy consumption, economic growth, and CO2 emissions in the long term,
based on data from nations that are wealthy in resources yet prone to crises. These results
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show that higher EPU harms carbon abatement. This observation aligns with the outcome
reported by [12]. Meanwhile, ref. [13] concluded that EPU reduces China’s CO2 emissions
economically. Ref. [14] proposed that the degree of economic policy uncertainty in China’s
provinces substantially affects the carbon emission intensity of manufacturing enterprises.
The second research stream indicates that EPU has a mitigating effect on CO2 emissions.

According to the economic growth model proposed in Solow’s foundational 1956
book, technological advancement comes from outside the economy. Ref. [15] created a
growth model to supplement natural technical progress. Romer’s model states that creating
new goods through research and development by profit-maximizing corporate firms drives
technological evolution. Various ideas and metrics have been used to assess the effects
of globalization and technological advancements. Ref. [16] stated that technology is the
repeatable use of scientific knowledge to achieve concrete goals. Finding knowledge outside
of a company and incorporating it into the open innovation framework is one tactic that
can lead to increased success. It may be possible to reduce barriers to the circular economy
through open innovation. At the same time, we need to improve our understanding of
how these fields may collaborate or how open innovation can contribute to developing a
more sustainable economy. As noted previously, studies benefit from adopting multiple
methodologies and ways of studying these issues. Nevertheless, more research is needed
that investigates the connections among CO2 emissions, cutting-edge (AI) technological
adaptation, economic policy uncertainty, and renewable energy consumption in East Asian
and Pacific countries. The literature indicates that there are relatively few studies on
the effects of AI on the intensity of pollution emissions, suggesting that studies need to
discuss the specific mechanisms and heterogeneity in AI’s impact on pollution emission
intensity. With its capacity for deep learning, AI can be rapidly and broadly applied across
various economic and social fields [17]. This capability can alter traditional production
models, unlock economic growth potential, promote industrial structure upgrades, produce
systemic effects on the economic system, and create new opportunities to overcome the
bottleneck in emissions reduction.

This study investigates the extent of AI’s impact on CO2 emission intensity and
its mechanism of action by conducting a theoretical analysis and empirical tests. The
significance and novelty of this article are as follows. First, this study uses East Asia and the
Pacific as a case study to examine the impact of AI on carbon emissions intensity, based on
the rapid growth of the intelligent market and the demand for green transformation. This
serves as a model for developing green economies in other nations. Second, based on the
fundamental properties of AI, this study provides an economic framework for analyzing
the effects of artificial intelligence on CO2 emissions. Third, this study improves the
mechanism underlying the effect of economic policy uncertainty (EPU) on CO2 emissions
in the selected sample of countries. As noted in earlier studies, higher levels of EPU affect
various macroeconomic indicators, including innovations, financial development, capital
investment at the company level, the tourism sector, economic growth, and working capital
and profits [3]. By analyzing the correlations between the two, this study concludes that
renewable energy is the best method to combat environmental deterioration and increasing
CO2 emissions.

The rest of this paper is structured as follows. Section 2 provides an overview of the
existing literature and a detailed study of the relevant theoretical concepts. Sections 3 and 4
describes the data sources and the specific methodologies employed in this study. Section 5,
represent the empirical results and discussion. Section 6 concludes the results of this study.

2. Literature Review and Hypothesis Development
2.1. AI Technology and CO2 Emissions

The connection between new technologies and increases in carbon emissions has
been the subject of many academic studies. Ref. [18] examined how patent technology
affects pollution levels. To shed further light on this association, the authors applied the
cluster method to panel data from many provinces in China; their study determined the
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importance of technical progress in reducing CO2 emissions. It was also determined that
Eastern China is more likely to embrace environmental innovations and technology than
other parts of the country. Across OECD member countries, adopting RENE regulations has
a positive effect on the development of environmentally sustainable technology, which is in
line with the findings of [19]. The authors also point out that enabling competition that may
favor poor green solutions is counterproductive and that passing RENE laws effectively
improves environmental standards. Likewise, ref. [20] examined the relationship between
R&D spending and carbon emissions in a panel of Mediterranean economies during the
period 1990–2016, using the generalized method of moments (GMM) empirical technique.
The data analysis showed a negative correlation between R&D spending and greenhouse
gas output. The analysis indicated that research and development spending appeared to
have a unidirectional causal relationship with CO2. The study’s results provided strong
evidence for the claim that promoting energy-efficient technology might significantly aid
in reducing environmental damage.

According to [21], technological improvement is the primary means to decrease CO2
emissions. Improvements in efficiency and scale expansion had a “double-edged sword
effect”. Ref. [22] found that technical advancement had an unpredictable effect on pollu-
tant emissions.

Technological advancements reduce environmental pollution by increasing the in-
dustrial sector’s efficiency in using multiple productive resources and lowering energy
consumption per output unit [23]. The counterargument is that technological progress
might cause production scales to rise, leading to more significant pollution and negating
the benefits of higher efficiency in reducing emissions [24]. Emerging technologies, such
as digitalization and AI, are thriving in China’s developing economy, which is presently
approaching the era of Industry 4.0. An emerging area of study is the possibility that these
technologies might lessen the amount of pollution released into the atmosphere.

According to [24], the development of the digital economy has an “industrial pollution
reduction effect”, with the application of digital technology reducing industrial pollution
emissions without causing yield loss. Ref. [25] concluded that the Internet reduced environ-
mental pollution in the studied region and surrounding areas. Their model test of mediating
effects demonstrated that encouraging industrial upgrading was the primary route through
which the Internet affects environmental pollution. Using heavy metal enterprises as an
example, ref. [26] proposed that the digital transformation of enterprises can achieve pollu-
tion reduction. However, under the agglomeration effect, there was a U-curve relationship
between the digital transformation of enterprises and pollution reduction, with the final
effect constrained by external scale. [23] examined the digital transformation of enterprises
at the micro level and demonstrated that the use of digital equipment triggered economic
scale expansion, leading to increased energy consumption. Simultaneously, the resulting
technological and structural changes improved production efficiency and decreased energy
consumption per output unit, significantly reducing pollution emissions. Ref. [27] showed
that AI technologies had the potential to revolutionize several climate-friendly initiatives,
such as the detection of greenhouse gas (GHG) leakage from pipelines, the monitoring of
deforestation, and the invention of new materials with lower carbon footprints. However,
statistics showing the environmental impact of AI are few or non-existent. AI businesses,
such as OpenAI, should enhance their transparency regarding the expenses associated with
system development, deep learning algorithm processing, and the training of their large
language models (LLMs). It is critically important that complete transparency be afforded
a higher priority as various nations tackle the task of AI regulation, especially in relation to
the carbon emissions linked to the business.

By next year, the vast number of internet-connected devices might account for as
much as 3.5% of worldwide carbon emissions. Computers and servers at data centers
would quickly overheat if not for the constant, heavy usage of air conditioners, which
contribute significantly to the overall energy consumption of these facilities. The AI
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industry significantly relies on data centers. If its usage and distribution continue to grow,
it will inevitably result in increased carbon emissions from data centers in the coming years.

Hypothesis 1: AI leads to an increase in CO2 in East Asia and the Pacific.

2.2. Economic Policy Uncertainty and CO2

Ref. [28] found both an overestimation and an underestimation of the implications
of economic policy uncertainty for environmental policymaking. Ref. [29] assessed two
strategies to provide a roadmap for Japan to achieve its challenging ecological and energy-
related objectives. Their study’s conclusions indicated that, while air travel had a short-term
effect, carbon dioxide emissions had a long-term relationship with GDP growth, renewable
energy, and the economic complexity index.

It is assumed that uncertainty in economic policy significantly impacts the financial
policies, investment plans, and consumer purchasing power of firms. According to [30],
monetary policy uncertainty also has a nonlinear effect on inflation expectations and
economic growth. These results suggest that it would be worthwhile to estimate the
impact of EPU on environmental quality. As expected, relatively high EPU affects energy
consumption, CO2 emissions, and economic growth, all of which affect the sustainability
and competitiveness of the environment [31].

As [32] explained, variations in production are the primary cause of wealth inequality
among countries. It is impossible to overstate the significance of technological transfers
in determining a country’s productivity. In most countries, foreign sources of technology
transfer account for up to 90% of the improvement in domestic productivity [33]. Rapid
efforts are required to decarbonize the energy sector because of global warming and envi-
ronmental damage. According to [34], energy efficiency and technological improvement
are the primary drivers of a seamless transition from fossil fuels to renewable sources. Al-
though most technology is generated in wealthier countries, it is still possible for technical
progress to affect climate change patterns in developing countries through the transfer
of knowledge. Refs. [2,35] used the spillover and feedback effects model to examine the
impacts of CO2 emissions in seven BRI zones from 2000 to 2015. According to their research,
CO2 emissions ratios increased over time in North Africa, Northeast Asia, and Western
Asia, but dropped in Central Asia. The impact of technological changes such as regional
technology transfer, foreign technology imports, and local innovation on CO2 emissions in
China was evaluated using panel data from 2008 to 2017 [36]. Ref. [37] used the generalized
Divisia index approach (GDIM) to examine the influence of RENE on CO2 emissions for a
panel of 25 BRI countries between 2005 and 2019. Their innovative study showed that the
growth in RENE sources was a significant factor in CO2 emissions in most BRI countries.
Long-term financial development had an M-shaped influence on CO2 emissions in the
United States, Japan, and Canada; an inverted N-shaped effect in the United Kingdom,
France, and Italy; and a W-shaped impact in Germany [38]. Similar variability was revealed
in [36] empirical investigation of the influence of advances in green technology across 264
Chinese prefecture-level cities from 2006 to 2017.

Hypothesis 2: Economic policy and CO2 emissions have a positive relationship.

2.3. Renewable Energy Consumption and CO2 Emissions

Ref. [39] thoroughly analyzed the relationship between RENE sources and CO2 emis-
sions in 128 countries between 1990 and 2014. Their study results indicated that switching
to RENE might drastically reduce carbon emissions. On the other hand, CO2 emissions
in Europe were drastically different from those in the other five areas studied. According
to the results of econometric research conducted by [40], carbon emissions decreased sig-
nificantly across 16 EU countries when the pool mean group (PMG) approach was used
for the data analysis. The use of alternative energy sources was credited for this decrease.
Ref. [40] followed a methodology similar to that of [41]. Their study compared results from
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24 African countries using data collected between 1985 and 2015. The data available in the
African context supported the environmental Kuznets curve (EKC) hypothesis. According
to the advocates, the availability of investments that emphasized ecological issues was
crucial to the success of sustainable urban growth. The researchers were confident that
using environmentally friendly forms of energy would allow them to meet their sustainable
development goals.

Similar work was carried out by [42] in order to assess the role of renewable and
non-renewable sources in mitigating greenhouse gas emissions. Ref. [43] used a panel
dataset that included the years 1996–2012 for their analysis. Furthermore, the research
conducted by [44] examined how imports and exports influenced carbon emissions in
seven countries using a panel quantile regression approach. Their results demonstrated a
strong connection among imports, exports, and carbon emissions. Recent research by [45]
indicated that there is a strong correlation between rising CO2 emissions in Asian countries
and the unpredictability of their economic strategies. In addition, the pollution halo theory,
based on a large body of prior academic research, offers an alternative explanation.

Policymakers and environmental economists worldwide are actively seeking strategies
and solutions to address these pressing ecological difficulties due to the recent growth of
global environmental concerns [46]. These studies consider factors such as international
trade, knowledge transfer, and RENE use when examining the increase in CO2 [47–49]
(Researchers have examined how using renewable vs. non-RENE sources affects carbon
emissions. As previously indicated, such research has been conducted in various countries
using various econometric methods, techniques, and outcomes. Recent research by showed
that reducing political risk and using ICT hold promise for effectively addressing CO2
emissions in Morocco. Ref. [47] examined 42 countries in Sub-Saharan Africa to determine
whether there was a connection between their utilization of RENE and their CO2 emissions.
The researchers included healthcare spending as a separate variable in their analysis, and
the research covered a wide range of years, from 1995 through 2011. According to the
available statistics, RENE use was linked to lower carbon CO2 emissions.

Hypothesis 3: Renewable energy consumption decreases CO2 emissions in East Asia and Pacific
countries.

3. Methodology and Data Sample

This section explains the econometric techniques employed in our study, including
unit root tests, cross-sectional dependency tests, panel co-integration estimates, the Granger
causality test, two-stage least squares, and the two-step generalized method of moments
(GMM). Figure 1 shows the overall conceptual framework if the study. This study compiled
its findings using data for 14 East Asian and Pacific countries from the World Development
Indicators (WDI) and the Our World by Oxford University database.

Model of this study

CO2 = β0 + β1 AIij + β2 EPUij + β3 RENEij + CVij + µ (1)

where:

CO2: carbon dioxide emissions.
AI: artificial intelligence.
EPU: economic policy uncertainty.
RENE: renewable energy.
β: coefficient.
CV: control variables.
µ: error term.
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Description of Variables

CO2: Emissions of carbon dioxide, abbreviated as CO2, are byproducts of many indus-
trial processes, including but not limited to the combustion of fossil fuels, the production
of cement, and the use of gas as a fuel source. To measure CO2 emissions, we used CO2
emissions in metric tons per year. The data were collected from the World Bank World
Development Indicators [50].

Artificial intelligence (AI): There are several academic and commercial uses of AI.
AI is a multipurpose, all-purpose technology, similar to electricity or computers. Even
though AI and the cloud operate virtually, they have many real-world impacts. In addi-
tion to increasing energy consumption and resource demands, they amplify emissions of
greenhouse gases. One manifestation of this issue is increased energy use. This study’s
main econometric analytical problem involves finding data in the format of a cross-country
panel dataset that can quantify the degree of AI. A variety of proxies, including high-tech
specialists, patent filings, and AI investments in AI research, have been used in previous
studies to quantify AI. This study used AI research publications as a proxy for evaluating
AI, as there are variable amounts of data for each country. Similarly, this proxy shows
the intentions and processes of each country moving toward the adoption of AI in our
panel [51].

Economic policy uncertainty (EPU): Uncertainty concerning government policies and
regulatory frameworks for the near future is known as economic policy uncertainty. A
rise in EPU may lower CO2 emissions by causing decreases in investment, consumption,
and output. However, it may also impact innovation, R&D methods, and the usage of
renewable energy sources, which might eventually result in increased CO2 emissions. EPU
can, therefore, either lessen or increase the impacts of environmental deterioration [52].

Renewable energy consumption: Renewable energy comes from sources that are
naturally renewing yet limited in terms of flow. Renewable resources are almost endless in
terms of length, but they are restricted in terms of the quantity of energy that is accessible
per unit of time. We used per capita data for this variable (renewable energy consumption),
as demonstrated by [53].

Exports: Concerns regarding the relationship between commerce and environmen-
tal degradation have arisen in response to the growing number of international trade
agreements and the tightening of global value chains. This raises the question of the en-
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vironmental consequences of trading. The liberalization of trade and investment might
encourage businesses to embrace stricter environmental regulations. An increasing de-
gree of international economic integration exposes a nation’s export industry to ecological
regulations enforced by major importers [54].

Labor force participation: Although it is impossible to overstate human capital’s
role in promoting sustainable development, there needs to be more discussion in the
literature about whether or not labor force participation supports environmental sus-
tainability. However, ecological quality has declined over time because of the ongoing
increases in greenhouse gas (GHG) emissions worldwide. Climate change and other so-
cioeconomic issues related to the dynamics of the labor market are caused by rising GHG
emissions. Designing strategies to ensure social fairness through the creation of good jobs
and to improve environmental quality is a growing priority for development organizations
and governments.

Estimation
To analyze the data collected, this study used the following estimation tests.
Cross-sectional dependence
As a crucial component of panel data models, cross-sectional dependence (CD) may be

influenced by the cultural, economic, and geographical links among the sampled nations.
The cross-sectional dependency of East Asia and Pacific economies is a natural consequence
of their close economic relationship. Ref. [55] noted that it is imperative to assess the
likelihood of CD; failing to do so would lead to inaccurate and inconsistent estimates of
stationarity and co-integrating traits.

Therefore, following [56], the CD test was employed in our investigation, considering
its capacity to handle data with more constrained time frames and smaller cross-sectional
units. The generalized method of moments (GMM) estimator accounts for the possibil-
ity of cross-sectional dependency in the data, eliminating endogeneity concerns in the
regressors [57]. Unlike other estimation methods, such as least-squares regressions, GMM
accounts for country-specific heterogeneities, eliminating dynamic panel bias. It is essential
to conduct the GMM analysis after the cross-sectional dependence, unit root, and cointe-
gration investigations. First, we use the Pesaran CD test, as described by [58], to determine
whether there is a cross-sectional dependency problem. To reject the null hypothesis of
cross-sectional independence, this technique estimates a test statistic that forecasts CD
difficulties for each variable (or series). We used the CD estimate method proposed by
Breusch and Pagan (1980), which takes into account a null hypothesis of cross-sectional
independence, similar to that proposed by [59], for the robustness check.

Long-run estimation test
Popular panel data estimation methods, such as FE, RE, DOLS, FMOLS, and GMM,

all rely on slope homogeneity across cross-sections, which could significantly impact
the results.

β∗
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4. Data Analysis

This study investigated the impact of AI, economic policy uncertainty, and renewable
energy use on environmental quality in a panel of 14 East Asian and Pacific economies from
2000 to 2023. The summary statistics and correlation matrix are presented in Tables 1 and 2.

Table 1. Summary statistics.

CO2 AI EPU RENC EXP BFP

Mean 1.144614 −6.752220 4.808009 2.219551 3.912695 3.825545
Median 1.360290 −6.354429 4.794594 3.114838 3.933426 3.841317
Maximum 3.077580 −1.551640 5.787578 4.401584 5.433695 4.223207
Minimum −1.820287 −12.92531 4.164067 −4.605170 2.852507 3.135320
Std. Dev. 1.156430 2.502786 0.430687 2.013087 0.589109 0.256398
Observations 254 254 254 254 254 254

Table 2. Pairwise correlations.

Variables CO2 AI EPU RENC EXP BFP

CO2 1.000
AI 0.492 1.000
EPU 0.155 0.151 1.000
RENC −0.475 −0.232 −0.105 1.000
EXP 0.249 −0.129 −0.064 −0.447 1.000
BFP −0.568 −0.193 −0.223 0.629 −0.233 1.000

Source: authors’ calculations.

This study incorporated various variables. As the summary statistics indicate, all
variables exhibit significant variability in their minimum and maximum values. Similarly,
the matrix reveals a negative association between renewable energy and economic policy
uncertainty and a positive correlation between the dimensions of AI and CO2 emissions.

Before examining the presence of unit root and cointegration among the variables, we
assessed the cross-sectional dependence among the nations included in the sample with
the rise of liberalization and globalization. During this period, there has been growing
economic and social interconnectedness across nations. Consequently, the actions imple-
mented in one country can have an impact on another nation as well. Following [56], the
cross-sectional dependence test was utilized to ascertain the presence of CD within the
chosen East Asia and Pacific countries. The findings displayed in Table 3 validate the
presence of a correlation among CO2 emissions, AI, renewable energy consumption, time,
and economic policy uncertainty in the sample nations. This suggests that any alteration
in these factors in East Asian–Pacific countries can also impact the other Asian andPacific
countries. Table 3 presents the findings of the slope homogeneity test introduced by [56]
for all three regression models in this study.
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Table 3. Cross-sectional dependence tests.

Variables Breusch–Pagan LM Pesaran Scaled LM Pesaran CD

CO2
1076.1676 73.0254 14.8976
(0.0000) (0.0000) (0.0000)

EPU
467.6181 31.19442 2.93362
(0.0000) (0.0000) (0.0034)

AI
468.8277 31.29126 −0.611140
(0.0000) (0.0000) (0.5411)

RENE
494.2888 33.32978 3.515709
(0.0000) (0.0000) (0.0000)

EXP
394.2699 25.3218 14.8976
(0.0000) (0.0000) (0.0000)

LBFP
838.0242 55.3731 22.9312
(0.0000) (0.0000) (0.0000)

Source: authors’ calculations.

Both the constant term only and constant term and trend term versions of the three-
unit root test techniques used in this study are shown in Table 4. Except for the LLC trial,
every one of the discovered variables in the five trials rejected the null hypothesis at the
1% significance level. As a result, we examined the data using a first-order differential.
We found that at the crucial 1% level, no hypotheses were rejected for each variable’s unit
root. However, this indicates the possibility of spurious regression; thus, the KAO test for
cointegration is required.

Table 4. Panel unit root tests.

Variable Level First Difference

With Constant Constant and Trend With Constant Constant and Trend

Levin, Lin, and Chu
CO2 1.14929 0.40833 * −2.74790 ** −2.24790 ***
AI −2.4150 −3.6099 ** −7.5668 *** −5.4556 ***

EPU 1.9604 −4.2088 *** −9.1004 *** −9.6434 ***
RENE 0.128158 1.271932 −0.5498 0.047541 *

Im, Pesaran, and Shin test
CO2 2.30494 1.68899 −4.4875 *** −3.3289 ***
AI −0.7038 −4.2729 *** −10.880 *** −8.0240 ***

EPU 4.3012 −3.4030 *** −8.7916 *** −7.0831 ***
RENE 2.9665 1.97422 −4.3652 *** −3.84803 ***

ADF-Fisher Chi-square
test
CO2 23.5113 22.2661 72.0801 *** 59.4662 ***
AI 49.89272 72.3376 *** 164.1347 *** 115.6323 ***

EPU 3.32278 52.1911 ** 126.2833 ** 97.14846 ***
RENE 15.49658 11.82574 65.02550 ** 58.6137 ***

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Source: authors’ calculations.

Table 5 presents the findings of the cointegration test for CO2 emissions, AI, economic
policy uncertainty, and renewable energy. All three model groups rejected the initial
hypothesis, suggesting that the panel data exhibit a cointegration relationship. The findings
validate the existence of a long-term equilibrium cause-and-effect association among the
variables, thus facilitating further investigation of this relationship.

The estimation results for the FMOLS and DOLS panel models are presented in
Table 6. According to the parameters, DOLS provides a more accurate match. It may be
inferred that a 1% increase in AI is associated with a corresponding 0.1665% increase in
CO2 emissions. Likewise, a 1% rise in economic policy uncertainty will result in a 0.237%
increase in CO2 emissions, leading to environmental damage. Additionally, CO2 emissions
will fall by −0.3658 if renewable energy usage increases. Policy ambiguity and adopting
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digitalization/AI will generally impact environmental degradation, but renewable energy
consumption will exacerbate the ecological situation. Similarly, to check the robustness of
the data, we incorporated the Hausman fixed effect and generalized method of moment to
confirm the relationship. Tables 7 and 8 show the results of the Hausman test and GMM.
The relationship between CO2 emissions and AI and economic policy uncertainty was
positive, whereas the result for renewable energy consumption was the opposite. This
means that a unit increase in AI adoption and monetary policy uncertainty will contribute
1.316 and 0.867% to environmental degradation, respectively. The same results were found
in the GMM.

Table 5. Kao test for cointegration.

Null Hypothesis t-Statistics Probability

1 ADF No-cointegration 1.599509 0.0549

2 ADF No-cointegration −1.860175 0.0314

3 ADF No-cointegration −1.525220 0.0636
Source: authors’ calculations.

Table 6. Benchmark results for CO2, AI, EPU, and RENE (FMOLS and DOLS).

Variables CO2 CO2 CO2

FMOLS
AI 1.316716 *

(0.699672)
EPU 0.867909 **

(0.392765)
RENE −2.328345 **

(1.058345)
DOLS
AI 0.166554 ***

(0.066719)
EPU 0.237011 **

(0.099588)
RENE −0.365873 **

(0.117710)
Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Source: authors’ calculations.

Table 7. Hausman fixed effect.

Variables CO2 CO2 CO2

AI 0.195 ***
(0.0234)

EPU 0.00191 *
(0.00103)

REN −0.431 ***
(0.0337)

LEXP 0.386 *** 0.323 *** −0.249 ***
(0.104) (0.114) (0.0947)

LBFP −1.794 *** −2.149 *** −0.515 **
(0.244) (0.267) (0.244)

Constant 7.908 *** 7.882 *** 5.018 ***
(1.102) (1.253) (0.962)

Observations 265 269 258
Number of years 22 22 22
R-squared 0.48 0.63 0.59

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 8. GMM.

Variables CO2 CO2 CO2

AI 0.214 ***
(0.0241)

EPU 0.595 **
(0.230)

REN −0.455 ***
(0.0358)

LEXP 0.382 *** 0.352 *** −0.276 ***
(0.103) (0.120) (0.0979)

LBFP −1.788 *** −2.028 *** −0.427 *
(0.239) (0.285) (0.253)

Constant 8.021 *** 4.696 ** 4.841 ***
(1.068) (1.955) (0.992)

Observations 265 269 258
Number of years 22 22 22

Arellano–Bond test for AR(1) in first differences: z = −3.47 Pr > z = 0.001
Arellano–Bond test for AR(2) in first differences: z = 0.80 Pr > z = 0.421

Sargan test of overid. restrictions: chi2(14) = 238.35 Prob > chi2 = 0.000
Standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1.

Impulse response and variance decomposition
Before analyzing the pulse effect and variance decomposition as endogenous variables

in VAR systems, defining the best lag order for mechanization, rainfall, and agricultural
carbon emissions is recommended. This study presents the following five approaches for
comprehensive judgment: the LR test statistic (LR), Final Prediction Error (FPE), Akaike
Information Criterion (AIC), Schwarz Information Criterion (SIC), and Hannan–Quinn
Information Criterion (HQ). We found that lag order 2 is the best lag term, as indicated in
Table 9. Figure 2 was created following this order, which clearly shows that all the roots
fall inside the unit circle, meaning this VAR model meets the requirements for variance
decomposition and impulse response analysis.

Table 9. Optimal lag period selection.

Lag LogL LR FPE AIC SC HQ

0 −1078.181 NA 4.996539 12.96025 13.03494 12.99057
1 136.9475 2357.495 0.0000029 −1.400569 −1.027156 −1.249009
2 159.4494 42.57845 0.00000268 −1.478436 −0.806294 * −1.205628
3 175.6993 29.96996 0.00000267 −1.481429 −0.510557 −1.087374
4 181.8982 11.13563 0.00000301 −1.364050 −0.094448 −0.848746
5 206.4746 42.97200 0.00000273 −1.466762 0.101570 −0.830211
6 239.9958 57.00601 0.00000222 −1.676596 0.190466 −0.918797
7 318.4096 129.5942 0.00000106 −2.424067 −0.258275 −1.545020
8 353.1120 55.69001 0.00000085 −2.648048 −0.183526 −1.647753

Source: authors’ calculations. * Shows the lag period.

The VAR model of a standard deviation of the random disturbance impact on the
trajectories of other variables and the influence of current and future values may be visually
represented using the impulse response function. Thus, using an impulse response function
diagram, we further examined how AI and EXP affect the other CO2 emissions [29]. We set
a reaction time of twenty years. In Figure 3, the range of the potential impulse response is
indicated by dotted lines on either side of the solid lines; the abscissa shows the lag length
of the effect, and the longitudinal coordinates show the degree of reaction. Table 9 shows
the optimal lag period selection.
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Table 10 represents the results of the variance decomposition analysis of CO2 emissions,
AI, and exports. The results show that the variation in CO2 emissions is self-generated in
the short term. Similarly, in the short term, AI adoption has minimal impact on variations
in CO2 emissions. Our study’s results align with the previous research conducted by [60],
and we can see that the value for period 20 is 5.208, compared with 94.751. This minimal
variation is because AI is an emerging cutting-edge technology, and most countries are
in line to adopt it. It is also the case that AI has not yet been embraced fully. Figure 3
shows the impulse response between AI and CO2 emission. In addition, the environmental
concerns of AI are relatively understudied at present, compared to other phenomena.
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Table 10. Variance decomposition.

Variance Decomposition of CO2
Period S.E. CO2 AI EXP

1 0.083 100.000 0.000 0.000
2 0.132 99.456 0.521 0.023
3 0.169 99.146 0.822 0.032
4 0.199 98.899 1.068 0.034
5 0.225 98.678 1.290 0.031
6 0.246 98.465 1.507 0.028
7 0.265 98.251 1.724 0.025
8 0.282 98.032 1.946 0.022
9 0.298 97.806 2.174 0.020
10 0.312 97.572 2.410 0.018
11 0.324 97.328 2.654 0.018
12 0.336 97.076 2.906 0.018
13 0.347 96.815 3.167 0.019
14 0.357 96.544 3.435 0.020
15 0.367 96.265 3.712 0.023
16 0.375 95.978 3.997 0.025
17 0.384 95.683 4.289 0.029
18 0.392 95.379 4.588 0.032
19 0.399 95.069 4.895 0.037
20 0.406 94.751 5.208 0.041

Variance Decomposition of AI:
Period S.E. CO2 AI EXP

1 0.2694 1.8192 98.1808 0.0000
2 0.3544 1.9866 98.0029 0.0105
3 0.4239 2.0386 97.9330 0.0284
4 0.4821 2.0457 97.8986 0.0557
5 0.5331 2.0302 97.8775 0.0923
6 0.5788 2.0030 97.8587 0.1383
7 0.6204 1.9694 97.8368 0.1938
8 0.6586 1.9323 97.8089 0.2588
9 0.6942 1.8934 97.7733 0.3333
10 0.7275 1.8537 97.7290 0.4173
11 0.7588 1.8137 97.6755 0.5108
12 0.7884 1.7739 97.6124 0.6138
13 0.8165 1.7345 97.5393 0.7262
14 0.8433 1.6957 97.4561 0.8482
15 0.8690 1.6577 97.3627 0.9795
16 0.8935 1.6205 97.2592 1.1203
17 0.9171 1.5842 97.1453 1.2705
18 0.9398 1.5488 97.0213 1.4300
19 0.9617 1.5143 96.8870 1.5987
20 0.9830 1.4807 96.7426 1.7767

Variance Decomposition of EXP:
Period S.E. CO2 AI EXP

1 0.083 0.230 3.641 96.128
2 0.121 0.422 2.108 97.470
3 0.149 0.540 1.618 97.843
4 0.173 0.596 1.351 98.053
5 0.194 0.620 1.179 98.201
6 0.213 0.625 1.055 98.319
7 0.230 0.621 0.959 98.420
8 0.246 0.611 0.881 98.508
9 0.261 0.598 0.815 98.588
10 0.275 0.582 0.757 98.660
11 0.289 0.566 0.707 98.727
12 0.302 0.549 0.662 98.789
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Table 10. Cont.

Variance Decomposition of EXP:
Period S.E. CO2 AI EXP

13 0.314 0.531 0.622 98.847
14 0.326 0.514 0.586 98.900
15 0.338 0.497 0.552 98.951
16 0.349 0.480 0.522 98.998
17 0.360 0.463 0.494 99.042
18 0.370 0.448 0.468 99.084
19 0.381 0.432 0.445 99.123
20 0.391 0.417 0.423 99.160

Source: authors’ calculations.

Figures 4 and 5 represent the impulse response of the relationship between CO2
emissions and economic policy uncertainty (EPU). The graph shows that the reaction of
CO2 to CO2 declines over a certain period, while, in the second graph, the relationship
between CO2 emissions and EPU is initially positive. In contrast, in the later stages, it
becomes damaging. Table 11 shows the variance decomposition between CO2 emissions
and EPU. In the short term, the variation in CO2 is self-generated while, in the long term,
the variation in CO2 arises from EPU. The results show that the value of EPU in year 20
was recorded at 65.2376, which is higher than 34.3352. Our study’s results support those
of [61].

Table 11. VDC of CO2 and EPU.

Variance Decomposition of CO2
Period S.E. CO2 EPU EXP

1 0.0830 100.0000 0.0000 0.0000
2 0.1330 99.4992 0.4993 0.0015
3 0.1705 99.0061 0.9855 0.0083
4 0.2001 98.5239 1.4605 0.0156
5 0.2247 97.9988 1.9785 0.0228
6 0.2457 97.3764 2.5932 0.0304
7 0.2642 96.6016 3.3595 0.0389
8 0.2808 95.6112 4.3398 0.0489
9 0.2960 94.3278 5.6112 0.0609
10 0.3103 92.6547 7.2698 0.0755
11 0.3243 90.4728 9.4338 0.0934
12 0.3384 87.6418 12.2430 0.1152
13 0.3534 84.0075 15.8509 0.1416
14 0.3701 79.4213 20.4055 0.1732
15 0.3895 73.7756 26.0143 0.2101
16 0.4131 67.0531 32.6951 0.2517
17 0.4424 59.3802 40.3230 0.2968
18 0.4795 51.0567 48.6004 0.3429
19 0.5267 42.5350 57.0777 0.3873
20 0.5868 34.3352 65.2376 0.4272

Variance Decomposition of EPU:
Period S.E. CO2 EPU EXP

1 26.5331 0.3259 99.6741 0.0000
2 42.7444 1.6824 98.0691 0.2485
3 58.8412 2.5311 97.1289 0.3400
4 76.1302 3.0476 96.5675 0.3850
5 95.5157 3.3739 96.2154 0.4107
6 117.7649 3.5928 95.9799 0.4273
7 143.6526 3.7476 95.8135 0.4389
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Table 11. Cont.

Variance Decomposition of EPU:
Period S.E. CO2 EPU EXP

8 174.0314 3.8616 95.6911 0.4473
9 209.8775 3.9480 95.5983 0.4538
10 252.3306 4.0148 95.5264 0.4588
11 302.7338 4.0673 95.4700 0.4627
12 362.6776 4.1090 95.4251 0.4659
13 434.0518 4.1423 95.3893 0.4684
14 519.1052 4.1691 95.3604 0.4705
15 620.5170 4.1906 95.3371 0.4723
16 741.4812 4.2081 95.3182 0.4737
17 885.8076 4.2223 95.3029 0.4748
18 1058.0415 4.2337 95.2904 0.4758
19 1263.6072 4.2431 95.2803 0.4766
20 1508.9786 4.2507 95.2720 0.4773

Variance Decomposition of EXP:
Period S.E. CO2 EPU EXP

1 0.0826 0.1527 0.0734 99.7739
2 0.1199 0.2353 3.5233 96.2414
3 0.1497 0.1782 5.4266 94.3952
4 0.1753 0.1321 6.9265 92.9414
5 0.1983 0.1043 8.3646 91.5311
6 0.2199 0.0943 9.9084 89.9973
7 0.2407 0.1032 11.6607 88.2362
8 0.2612 0.1335 13.7039 86.1625
9 0.2820 0.1890 16.1145 83.6965
10 0.3037 0.2738 18.9651 80.7611
11 0.3268 0.3921 22.3208 77.2870
12 0.3522 0.5479 26.2306 73.2216
13 0.3806 0.7435 30.7145 68.5420
14 0.4132 0.9791 35.7503 63.2706
15 0.4512 1.2514 41.2615 57.4871
16 0.4964 1.5535 47.1131 51.3334
17 0.5505 1.8749 53.1205 45.0045
18 0.6158 2.2029 59.0703 38.7268
19 0.6949 2.5237 64.7511 32.7252
20 0.7908 2.8254 69.9840 27.1906

Table 12. VDC for CO2 and RENE.

Variance Decomposition of CO2:
Period S.E. CO2 RENE EXP

1 0.07788329 100 0 0
2 0.1312 99.9869 0.0036 0.0095
3 0.1736 99.9831 0.0048 0.0122
4 0.2078 99.9846 0.0040 0.0114
5 0.2360 99.9872 0.0031 0.0096
6 0.2597 99.9889 0.0031 0.0080
7 0.2800 99.9885 0.0045 0.0070
8 0.2976 99.9854 0.0077 0.0069
9 0.3131 99.9794 0.0128 0.0079
10 0.3267 99.9703 0.0198 0.0099
11 0.3389 99.9583 0.0287 0.0130
12 0.3498 99.9431 0.0397 0.0172
13 0.3596 99.9250 0.0525 0.0225
14 0.3685 99.9039 0.0673 0.0288
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Table 12. Cont.

Variance Decomposition of CO2:
Period S.E. CO2 RENE EXP

15 0.3766 99.8799 0.0839 0.0362
16 0.3839 99.8530 0.1024 0.0446
17 0.3906 99.8235 0.1226 0.0539
18 0.3967 99.7912 0.1446 0.0642
19 0.4023 99.7565 0.1682 0.0754
20 0.4074 99.7192 0.1934 0.0874

Variance Decomposition of RENC:
Period S.E. CO2 RENE EXP

1 0.077906609 10.17802357 89.82197643 0
2 0.1205 10.4838 89.3727 0.1435
3 0.1527 10.5850 89.1621 0.2529
4 0.1790 10.5266 89.1335 0.3399
5 0.2016 10.3687 89.2130 0.4183
6 0.2214 10.1536 89.3519 0.4946
7 0.2392 9.9071 89.5212 0.5717
8 0.2555 9.6447 89.7041 0.6512
9 0.2705 9.3756 89.8904 0.7340
10 0.2845 9.1056 90.0739 0.8206
11 0.2976 8.8380 90.2507 0.9112
12 0.3099 8.5751 90.4186 1.0063
13 0.3215 8.3183 90.5759 1.1058
14 0.3325 8.0684 90.7217 1.2099
15 0.3430 7.8260 90.8552 1.3187
16 0.3530 7.5914 90.9763 1.4323
17 0.3626 7.3647 91.0846 1.5507
18 0.3718 7.1461 91.1800 1.6739
19 0.3807 6.9354 91.2627 1.8019
20 0.3892 6.7326 91.3326 1.9347

Variance Decomposition of EXP:
Period S.E. CO2 RENE EXP

1 0.0858 0.0665 0.0012 99.9323
2 0.1237 0.3678 0.0085 99.6237
3 0.1523 0.5565 0.0108 99.4328
4 0.1762 0.6368 0.0096 99.3536
5 0.1970 0.6503 0.0078 99.3419
6 0.2156 0.6278 0.0067 99.3654
7 0.2325 0.5880 0.0069 99.4051
8 0.2481 0.5415 0.0088 99.4497
9 0.2627 0.4946 0.0123 99.4931
10 0.2764 0.4507 0.0176 99.5317
11 0.2893 0.4118 0.0246 99.5636
12 0.3016 0.3791 0.0333 99.5876
13 0.3133 0.3531 0.0436 99.6033
14 0.3245 0.3339 0.0554 99.6106
15 0.3353 0.3217 0.0688 99.6095
16 0.3456 0.3161 0.0836 99.6003
17 0.3557 0.3170 0.0998 99.5832
18 0.3654 0.3241 0.1172 99.5587
19 0.3748 0.3370 0.1359 99.5271
20 0.3839 0.3554 0.1557 99.4888

Source: authors’ calculations.
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Batteries 2024, 10, 17 2 of 18

Lithium-ion batteries are typically utilised as energy storage components in the HV
battery box in EVs thanks to their extended life cycle and high power-density [10]. To
ensure the safe, reliable, and efficient use of batteries in EVs, a battery management system
(BMS) is integrated into the battery system [11]. A BMS has several features to continuously
monitor and control the different operation states of the batteries, including cell monitoring
(i.e., voltage, current, and temperature), state of health (SOH) and state of charge (SoC)
estimation, cell balancing in case of any voltage mismatches, thermal management (heat
dissipation), rate of charge control, and battery safety and protection against short circuit
and overcharge/overdischarge [12].

Figure 1 shows the main EV powertrain architecture with the HV battery being in the
middle of the propulsion system. During the normal driving mode, the power flows from
the HV battery to the dc/ac inverter, which controls the electrical motor [13,14].

Figure 1. EV powertrain architecture with the high-voltage (HV) battery in the middle of the
propulsion system: (a) non-integrated OBC; (b) integrated OBC.

The low-voltage (LV) battery is responsible for the operation of the BMS and other
control circuits which are not within the scope of this paper.

During the charging mode, the HV battery can be charged using two different meth-
ods [15]. The faster method involves using an off-board DC charger which is often supplied
from a three-phase supply [16]. Using an on-board charger (OBC) within the car is the
alternative way to charge the HV battery [17,18]. This allows the EV battery to be charged
from single-phase or three-phase power supplies. The existence of a high-power OBC
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Lithium-ion batteries are typically utilised as energy storage components in the HV
battery box in EVs thanks to their extended life cycle and high power-density [10]. To
ensure the safe, reliable, and efficient use of batteries in EVs, a battery management system
(BMS) is integrated into the battery system [11]. A BMS has several features to continuously
monitor and control the different operation states of the batteries, including cell monitoring
(i.e., voltage, current, and temperature), state of health (SOH) and state of charge (SoC)
estimation, cell balancing in case of any voltage mismatches, thermal management (heat
dissipation), rate of charge control, and battery safety and protection against short circuit
and overcharge/overdischarge [12].

Figure 1 shows the main EV powertrain architecture with the HV battery being in the
middle of the propulsion system. During the normal driving mode, the power flows from
the HV battery to the dc/ac inverter, which controls the electrical motor [13,14].

Figure 1. EV powertrain architecture with the high-voltage (HV) battery in the middle of the
propulsion system: (a) non-integrated OBC; (b) integrated OBC.

The low-voltage (LV) battery is responsible for the operation of the BMS and other
control circuits which are not within the scope of this paper.

During the charging mode, the HV battery can be charged using two different meth-
ods [15]. The faster method involves using an off-board DC charger which is often supplied
from a three-phase supply [16]. Using an on-board charger (OBC) within the car is the
alternative way to charge the HV battery [17,18]. This allows the EV battery to be charged
from single-phase or three-phase power supplies. The existence of a high-power OBC
inside the EV will increase the customers’ confidence about the ability to charge their EV
easily at various locations rather than relying solely on specialised EV charging stations
that might not be always available nearby when the EV needs to be charged [19]. The
OBC typically consists of two-stage power converters that serve two primary purposes, as
seen in Figure 1. The initial step of ac/dc rectification involves converting grid-supplied
AC power into DC power while maintaining grid-side power quality. The second stage
functions as a dc/dc converter since it is in charge of injecting the required current into the
HV battery to charge it [17,18]. To guarantee that the battery is electrically isolated from
the ac grid, one of the stages must have some form of galvanic isolation [19,20]. Figure 1b
illustrates the integrated OBC, which combines power electronic converters into a single
architecture to operate the EV during braking, driving, and charging modes. This will

Figure 5. Impulse response for EXP and RENE.

Table 12 reports the variance decomposition results between CO2 emissions and renew-
able energy. The variation in CO2 emissions in the case of renewable energy consumption
is slightly different from the relationship with AI. The variation in the short-term is totally
self-generated while, in the long-term, the variance decomposition for CO2 arises from
renewable energy consumption. As noted in an earlier study by [62], adopting renewable
energy production and consumption sources will decrease CO2 emissions in East Asia and
Pacific countries. Figure 6 shows the CO2 emission trend in the selected countries.
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5. Results and Discussion

Global warming is a serious environmental issue that affects every nation on the
planet and is related to the long-term viability of human life. Furthermore, there is a strong
link between agricultural carbon emissions and climate change. Thus, we sought to build
an empirical framework to study the influences of AI, economic policy uncertainty, and
renewable energy consumption on CO2 emissions. Our approach produced empirical
findings. First, the association among the variables was confirmed using a cross-sectional
correlation test. We used the ADF, Im, Pesaran and Shin, and LLC tests to evaluate the
stability of the unit root of panel data. According to the results, each variable is an integrated
sequence of the same order and may be employed in the PVAR model. This also reveals
that the variable after the first-order difference is stable. Additionally, we used the Kao
test to confirm the long-term cointegration connection among the variables. The findings
indicate that these three variables have a long-term integration connection. The link among
the variables was then empirically studied using the Hausman test, the generalized method
of moments, and VAR-based impulse response techniques. The findings demonstrate that
the impulse response function more accurately captures the dynamic interaction among
the examined factors. The FMOLS and DOLS test results confirm the robustness of the
long-term findings. The causal link among the variables was also analyzed. We found
that digitalization—for which we took AI as a proxy—showed a positive relationship with
environmental degradation. Therefore, the more that AI is integrated into a country, the
more vulnerable the environment is. It is worth noting that the impact of digitalization is
twofold; on one hand, it can contribute to the economy by boosting production and the
transparency of different projects, while, on the other hand, it can cause damage to the
environment, leading to increases in CSR costs. Similarly, economic policy uncertainty
also showed a positive relationship for the following reasons. First, the danger posed
by EPU is uncertain because of its unexpected nature [6,63]. Second, since 1997, several
financial crises have affected the world’s economies and financial markets [64]. Regrettably,
the size, rate of spread, and complexity of EPU have all risen with each global economic
crisis. Thus, the literature has demonstrated that EPU is significantly correlated with
economic recessions [64], increased unemployment, and volatile exchange rates. On the
other hand, it is unclear how EPU affects carbon emissions globally. Hence, an empirical
study is necessary. Third, research indicates that a firm’s financial performance, investment
choices, and business competitiveness are all impacted by EPU. Thus, we conclude that
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EPU impacts a firm’s carbon emissions. Real options and prospect theories provide the
foundation of our argument. Fourth, earlier research indicated that the extraordinary global
economic expansion over the last 25 years has come at the price of a clean and sustainable
environment for future generations. The leading cause of environmental deterioration
and the threat of climate change is global CO2 emissions [35]. Similarly, the relationship
between renewable energy consumption and CO2 emissions is harmful, as many earlier
studies have pointed out. In their foundational study, ref. [65] established what is now
known as the Environmental Kuznets Curve (EKC) framework, which is the primary
theory used to explain global CO2 emissions trends over the long term. found a non-linear
(inverted U-shaped) relationship between per capita GDP and environmental outcomes
including CO2 emissions. Multiple review studies have demonstrated the validity of the
EKC hypothesis [66,67]. “Strong evidence in support of EKC” was found by [68], who
completed a revised meta-analysis of 101 papers. The results of our study align with
previous studies in the case of East Asia and Pacific countries.

6. Conclusions and Recommendations

Global warming and climate change are global issues that have gained tremendous
momentum in spheres ranging from politics to the public domain and academia. At
the same time, uncertainty in the economy, the emergence of AI, and the demand for
renewable energy exacerbate these environmental concerns. This study focused on the
relationships among these factors. Notably, earlier studies have examined similar factors
for different countries. A significant contributor to climate change is the human-caused
emission of gases into the atmosphere, including carbon dioxide. Energy consumption from
renewable sources, EPU, AI, and CO2 emissions are the subjects of this study’s dynamic
interconnections. In this study, panel data for East Asian and Pacific nations from 2000 to
2023 were collected to facilitate an empirical analysis of the links among these factors. The
variance decomposition test indicates that AI does not affect CO2 emissions, whereas the
benchmark regression indicates a positive link between AI and CO2 emissions. To similar
extents, the variance decomposition test and benchmark regression FE, RE, and GMM tests
all demonstrate a robust positive correlation between economic policy uncertainty and
CO2 emissions. Carbon dioxide emissions are positively affected by an increase in EPU.
Renewable energy significantly reduces CO2 emissions in East Asian and Pacific nations.
The findings show that a unit increase in the use of renewable energy results in a unit
decrease in CO2 emissions.

Policy recommendations
Based on the results of this study and by investigating the components of environmen-

tal degradation via an increase in CO2 emissions, this study suggests the following policy
recommendations, which will help to reduce CO2 emissions. The first concerns the use of
fossil fuels and inducement towards renewables overall. The most effective, efficient, and
cost-effective tool for encouraging investments in clean technology is carbon pricing laws,
which include emission trading systems and carbon taxes. Investments in environmentally
friendly goods, regulations that promote a greener economy, and sustainable development
projects are also important factors. Second, machine learning researchers should be incen-
tivized to create more effective machine learning (ML) models to disclose their energy use
and carbon footprints. An innovative model that incorporates these aspects from the outset
has the potential to decrease emissions.

Third, to help their customers understand and lower their energy usage and carbon
footprint, data center providers should be incentivized to share information regarding data
center efficiency and the cleanliness of the energy supply by location. Cloud data centers
use 30% less energy than the typical local data centers, and they have cooling and power
delivery overheads of less than 10%. Finally, experts in machine learning (ML) deserve
recognition for training models in the most environmentally friendly data centers, which
are now frequently located in the cloud. They can produce 5 to 10 times fewer emissions
for the same work, even in the same place.
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