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Abstract: Energy models require accurate calibration to deliver reliable predictions. This study offers
statistical guidance for a systematic treatment of uncertainty before and during model calibration.
Statistical emulation and history matching are introduced. An energy model of a domestic property
and a full year of observed data are used as a case study. Emulators, Bayesian surrogates of the energy
model, are employed to provide statistical approximations of the energy model outputs and explore
the input parameter space efficiently. The emulator’s predictions, alongside quantified uncertainties,
are then used to rule out parameter configurations that cannot lead to a match with the observed data.
The process is automated within an iterative procedure known as history matching (HM), in which
simulated gas consumption and temperature data are simultaneously matched with observed values.
The results show that only a small percentage of parameter configurations (0.3% when only gas
consumption is matched, and 0.01% when both gas and temperature are matched) yielded outputs
matching the observed data. This demonstrates HM’s effectiveness in pinpointing the precise region
where model outputs align with observations. The proposed method is intended to offer analysts a
robust solution to rapidly explore a model’s response across the entire input space, rule out regions
where a match with observed data cannot be achieved, and account for uncertainty, enhancing the
confidence in energy models and their viability as a decision support tool.

Keywords: building energy models; uncertainty; model discrepancy; history matching; simultaneous
match of diverse data

1. Introduction

Energy consumption in buildings represents a major source of primary energy use
globally. This explains the recent attention given to optimal retrofit and investment de-
cisions by policy makers, in efforts to comply with global decarbonization pledges. In
this context, accurate modeling of building energy consumption has become a key tool to
support decision making. In turn, this has recently driven an accelerated trend in model
uncertainty research and performance gap analysis.

According to [1], a large proportion of the building modeling community lacks essen-
tial knowledge on what the most fundamental parameter inputs for buildings are and how
these impact model predictions. This knowledge gap has major consequences, as retrofit
strategies are mostly based on some form of building energy models and low-fidelity
models produce techno-economic results that can be misleading. The concept of smart
buildings has raised the expectation that buildings will respond to the wider energy system
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(e.g., power grid, EVs, district energy systems) [2]. This will require building models to be
aggregated to generate district- and potentially city-level insights. Building-level inaccu-
racies can therefore propagate to district and city levels, making uncertainty treatment of
models an invaluable tool to improve the robustness of model-based decisions against a
wider spectrum of uncertain outcomes.

For a model used in decision support, the model’s prediction accuracy is of special
interest to stakeholders. While it is not possible to know in advance the accuracy of a future
prediction, it is instead possible—and in fact crucial—to ensure that the model is able to
replicate past observations. This is usually achieved through model calibration. Calibration
is classically performed by running the model multiple times (at different configurations of
model parameter values), evaluating the discrepancy between model outputs and observed
data each time, with the aim of identifying a combination of parameter values that yields
sufficiently low discrepancy. In the context of building energy consumption, ASHRAE
guidelines [3] are often followed to identify thresholds below which the discrepancy is
considered acceptable [4,5].

Implementing the above approach requires performing a high number of simulations,
in order to explore the model’s parameter space thoroughly. This number grows expo-
nentially with increasing parameter counts, posing extensive computational challenges
even in medium-low dimensions. These computational requirements have prompted the
rise of an area of Bayesian statistics devoted to the creation of fast statistical models that
can be used as surrogates of the original model (also known as a simulator). This area is
known as emulation [6–8] and is part of the wider field of the uncertainty quantification of
computer models.

An emulator approximates the simulator output at values of model parameters where
the simulator has never been evaluated. Moreover, it quantifies the uncertainty of the
approximation, laying the basis for an uncertainty analysis of the computer model [9]. The
main advantages of emulators are their speed and low computational requirements: an em-
ulator can be trained and validated on a personal device, allowing for a near instantaneous
prediction of the model results at a very large number of inputs.

Emulation is developed under Bayesian principles, which provide a natural framework
to handle uncertainties. In the context of model calibration, key sources of uncertainties
that come into play include (i) the intrinsic ability of the model to simulate the target
process (model discrepancy); (ii) the accuracy of the observations used to calibrate the
model (observational error). The inability of a schedule-driven occupancy template to
represent the stochastic behavior of occupants is an example of model discrepancy, while
temperature sensor errors are an example of observational error. To deal coherently with
these and other sources of uncertainty before and during model calibration, we discuss and
advocate here for the use of an iterative procedure, known as history matching. History
matching (HM) is used in conjunction with emulation to quickly evaluate the simulator’s
response across the full region of model parameter configurations, and discard those
input configurations that—in light of quantified uncertainties—cannot match the observed
data. The procedure is performed iteratively, sequentially refocusing on smaller regions of
parameter configurations that have not yet been ruled out.

Due to their inherent ability to handle multiple uncertainties, both emulation and HM
have been employed to tackle complex problems in a variety of fields. Notable examples
can be found in the sixth assessment report by the Intergovernmental Panel on Climate
Change [10], whose future scenario projections were substantially based on the use of
emulators [11,12]. Emulation in conjunction with history matching has also been employed
to constraint uncertainties in the reconstruction of past climates [13], particularly in relation
to ice losses and associated sea-level changes [14,15], and to coherently integrate different
sources of uncertainty within complex problems in a variety of other scientific contexts. A
non-exhaustive list of these includes disease spreading [16], cardiac functionality [17,18],
gene–hormone interaction [19], galaxy formation [20], and hydrocarbon reservoirs [21].
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Despite the widespread use of these tools across different fields, their uptake within
the energy community remains limited, if at all present. This work is thus offered as
a tutorial, which may help bridge the current gap. We illustrate the principles behind
Bayesian emulation and HM, outline their advantages and disadvantages, and provide a
practical illustration of their application to a case study. Here, eight model parameters of a
single dwelling’s energy model are selected, each with an initial uncertainty range, and
plausible values for them are identified through HM, by making simultaneous use of the
dwelling’s energy and environmental records. An R package is referenced to allow analysts
to implement the proposed methodology.

This article is organized as follows. Section 2 discusses key sources of uncertainty in
computer-model-based inference and specifically in the context of building energy models,
outlining some limitations of the current approaches. Section 3 outlines the proposed
methodology and relevant tools. Section 4 gives details of the building energy model and
field data used in our case study. Section 5 illustrates the results, also discussing approaches
to scenarios that may be encountered in other case studies. Section 6 concludes the article
with discussions and future works.

2. Uncertainty Sources in Building Energy Models
2.1. Accounting for Uncertainty during Model Calibration

The problem of calibration (identifying values of a model’s parameters so that model
outputs match observed data) can be formulated mathematically as follows. The model or
simulator is represented as a function f . An input to f is a vector x containing a specific
configuration of values of model parameters: the component xk of x identifies the value of
the kth model parameter. Given real-world observations z of the simulated process, we aim
to identify the input(s) x for which f (x) is “close enough” to the observed data z.

Proximity between simulations f (x) and observations z should be assessed in light of
all sources of uncertainty that affect the system. While an exhaustive list of such sources is
problem-dependent and challenging to specify in its entirety [6], two sources of uncertainty
usually play a prominent role in energy system modeling and beyond:

1. Model Discrepancy (MD). Due to modeling assumptions and numerical approximations,
the model output f (x) will be different from the real-world value that would be
observed in the target process under the same physical conditions that x represents.
This difference is referred to as model discrepancy.

2. Observational Error (OE). This error is intrinsic to any measurement. Its magnitude
depends on the precision of the measuring device.

Accounting for these two uncertainty sources is crucial to assess whether a model has
been successfully calibrated against observed data, and to make sure that robust inference
can be drawn from subsequent model predictions.

2.2. Model Discrepancy in Building Energy Systems

This section highlights sources of model discrepancy in building energy systems, with
a particular focus on thermal properties of envelope, microclimate, and oversimplification
of human behavior.

2.2.1. Building Thermal Properties

A major source of model discrepancy concerns fabric thermophysical properties, for
instance fabric conditions (e.g., its non-homogeneity, moisture content, etc.), as well as
surface properties (radiative or convective characteristics). Most notably, the hypothesis of
uni-dimensional heat flow—which is fundamental to thermal resistance (U-value) calcula-
tions in ISO 6946:2007 [22], ISO 9869-1:2014 [23], CIBSE [24] and ASHRAE [3]—remains
a major simplification. In solid bodies, heat travels in a diffused and three-dimensional
manner, which energy modeling platforms are not able to replicate.

In addition, differences in thermal properties can exist in seemingly uniform building
envelopes [25–28]. This is not represented in U-value calculations that assume surface
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thermal uniformity [26]. As such, disagreements between measured and calculated figures
have been reported to be up to 393% [25]. Traditional solid masonry walls [29,30] and
floors [31] have been found to perform better than model calculations suggest, while
modern composite walls are reported to perform worse. In [32], CIBSE U-value calculation
were found to overpredict performance by 30.3%, 15.5%, and 9.9% for brick walls, ceilings,
and doors, respectively. A study of 57 properties found that, while variations between
similar wall types (and even within the same dwelling’s walls) existed, 44% of walls
performed better than CIBSE calculations, 42% were within acceptable bounds, and only
14% of sampled walls performed worse than calculations [33]. However, the measured and
calculated floor U-values were found to be in good agreement.

In summary, difficulties in identifying the composition and thickness of building
fabrics, their density and surface properties, and fabric non-homogeneity result in fabric
value uncertainty. The cumbersome nature of performing an in situ fabric study means that
analysts often base existing building models on inaccurate assumptions.

2.2.2. Weather and Occupant Activity

The topology around each building determines the wind speed and direction, solar
irradiance, local temperature, local humidity, and ground albedo, which result in a micro-
climate unique to each building. This unique micro-climate is rarely acknowledged in a
building’s energy model, since the employed weather files are normally extracted from
historical data and are in some cases collected from the open fields of airports miles away
from the building, e.g., using methods such as Finkelstein–Schafer. This is a major source of
energy simulation uncertainty for the following reasons: (i) building energy performance is
affected by future rather than past weather; (ii) a single weather file can hardly represent
all meteorological conditions; (iii) using nearby records leads to inadequate representation
of urban heat island and sheltering effects [34].

Occupant behavior is another area of uncertainty, due to oversimplification. Nearly
all building energy models represent the variations in occupant-related activities in a
homogeneous and deterministic manner. In a review paper, stochastic space-based (or
person-based) models were found to offer better capabilities when compared to determinis-
tic space-based models [35]. The review highlighted the ability of stochastic agent-based
occupant models to improve urban building energy models. In this regard, pervasive sens-
ing and data collection continue to enable better understanding of occupant presence and
movements, and have informed behavioral models of the occupant’s interaction with their
surroundings [36]. These solutions continue to be deployed by the scientific community
but have not yet found widespread adoption by building energy modeling practitioners.

2.3. Limitations of Current Calibration Approaches

The approximations and assumptions discussed in Section 2.2 do not undermine
the validity of a model. However, awareness of their presence is key to quantify the
discrepancies induced when comparing model outputs and real-world observations.

In the context of building energy models, ASHRAE guidelines [3] are often followed
to assess whether a model has been successfully calibrated against observed data [4,5].
These guidelines make use of the two following discrepancy measures between a sequence
of N simulated outputs Si, and a corresponding sequence of N measurements Mi:

MBE =
1
N ∑i(Mi − Si)

1
N ∑i Mi

(1)

CV(RMSE) =

√
1
N ∑i(Mi − Si)2

1
N ∑i Mi

(2)

The model is considered calibrated if the relevant condition of the following two is met:

(a) Hourly measurements: −10% ≤ MBE ≤ 10% and CV(RMSE) ≤ 30%.
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(b) Monthly measurements: −5% ≤ MBE ≤ 5% and CV(RMSE) ≤ 15%.

While the above criteria are easy to check, their use to assess model calibration presents
some limitations. Firstly, acceptance thresholds are independent of (i) the level of accuracy
to which measurements are available, (ii) the level of discrepancy between model and
reality. In addition, both expressions compare bias and root mean square error to the
average measurement. As such, they are meaningful for intrinsically positive quantities,
such as energy consumption, but they are not so for other quantities for which model
outputs and observations may also be available, such as temperature. In such a case, using
different units leads to seemingly different results. If Kelvin degrees are used to ensure
positivity, the above two criteria will be fulfilled in most circumstances, due to the presence
of a large denominator in expressions (1) and (2).

In Section 3, we propose a statistical framework which overcomes these limitations.
The framework makes it easy to account for recognized uncertainties when model and
data are compared and it is applicable to any quantity of interest (and, in fact, to several
quantities simultaneously). Furthermore, the use of emulators allows us to efficiently
explore the model response for many millions of input choices, in a fraction of the time
required for physics-based models to generate the corresponding outputs.

3. Methodology
3.1. Overview

This section discusses statistical procedures to quantify different sources of uncer-
tainty and account for them before and during model calibration. The overall process we
illustrate is referred to as history matching (HM). The name is commonly used in the oil
industry to describe the attempt to “replicate history”, i.e., to produce model outputs that
match historical data, in the context of hydrocarbon reservoirs; for an early discussion
of the statistical principles underlying history matching in this context, see [21]. Since
then, its statistical principles and methods have been successfully applied to a variety of
disciplines [13–20]. However, to the best of the authors’ knowledge, there has been little to
no application to energy systems.

The HM procedure sequentially rules out regions of the model’s parameter space
(input space) where, in light of quantified uncertainties, model outputs cannot match
observed data. Emulators and implausibility measures are the two key tools used to
accomplish this task.

• Emulators allow predicting the model output for configurations of model parameters
in which the model has never been run. The prediction is accompanied by a measure
of its uncertainty. Given their speed, emulators can be used to thoroughly explore the
model parameter space, even in high dimensions.

• Implausibility measures quantify the distance between model outputs and observa-
tions, in light of different sources of uncertainty.

The overall procedure is illustrated in the infographic in Figure 1. Results of the
physics-based model (simulator) are initially used to create emulators of the model. Predic-
tions from the emulators, alongside quantified uncertainties, enable the quick evaluation of
implausibility measures: these assess the compatibility between observed and simulated
data, for any choices of model parameter configurations. Finally, implausibility measures
are used within history matching to rule out parameter configurations that are not compati-
ble with the observed data. The combined procedure of model sampling, emulation, and
implausibility assessment is iteratively repeated within the collection of parameter choices
that have not been ruled out in the previous stages.

The following four subsections expand upon each of the above steps. The concluding
Section 3.6 reviews the robustness of the overall procedure in handling uncertainties.
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Figure 1. Key steps of the methodology illustrated in this work. Given a computer model, the aim is
to identify values of the model parameters that yield outputs compatible with observed data, while
accounting for uncertainties. The process starts from the original computer model, whose results
enable the construction of emulators (fast statistical surrogates of the model). Emulator predictions
are used to compute implausibility measures, which quantify the distance between simulations and
observations. Implausibility measures are employed within history matching to reach the overall goal.

3.2. Bayes Linear Emulators as Fast Model Surrogates

An emulator is a statistical, fast-to-run surrogate of the original model. It can be used
to perform a thorough exploration of the model response across its entire input space, while
keeping time and computational costs at a minimum.

In order to build an emulator, statistical assumptions need to be made about the
behavior of the original model, or simulator, across its input space. These assumptions are
updated given a small, carefully chosen, set of runs of the simulator (design runs) and are
used to make a prediction of the simulator’s response at any new input. Each prediction is
accompanied by a quantification of its accuracy, which lays the basis for the model uncer-
tainty analysis. The emulator is checked through diagnostic comparison of the simulator
prediction against the actual simulator response for a new set of model evaluations.

Different assumptions about the simulator’s behavior lead to different kinds of emu-
lators. In this work we build emulators based on Bayes linear principles: that is, we only
assume a prior mean and a prior covariance of the simulator, and subsequently adjust
them to the simulated outputs on the design runs. Other types of emulators have also
been developed [8] that make full distributional (Gaussian) assumptions on the simulator
and update them using Bayes’ rule. Both approaches are valuable. The structure of Bayes
linear emulators (BLEs) is arguably simpler than that of “full Bayes” emulators and is
particularly suited to performing HM, as in this work. Full Bayes emulators may however
be more suited to other cases, e.g., if a whole posterior distribution is needed to sample
entire emulated trajectories.

For brevity purposes, we limit our treatment of emulators here to an overview of their
structure and of the main choices that need to be made to train them. The reader is referred
to Appendix A for additional details and for the mathematical meaning of those parameters
whose value will be set within the case study of this work.
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The output f (x) of the simulator at an input x is modeled as the sum of two terms:

f (x) = ∑
j

β jgj(x) + u(x) . (3)

The first term is a regression component, where a linear combination of known functions
gj(x) is used to model the global behavior of f across the input space. The coefficients
β j can be estimated through linear regression, starting from the known outputs of the
simulator in the design runs. The second term, u(x), instead captures the local residual
fluctuations of f . The choice of a specific statistical model for the process u determines the
form of the final emulator of f .

In a Bayes linear framework, u(·) is modeled as a stochastic process with zero mean
and a specific covariance function. The mean and covariance are then adjusted to the
known regression residuals via a Bayes linear approach—please refer to Appendix A for
more details. At the end of the process, a mean prediction f̂ (x) and an associated standard
deviation ŝ(x) are obtained for the unknown value f (x) at a new input x. Software tools to
automate emulator fitting are available, e.g., the hmer package in the R 4.1.0 (or any more
recent version) software [37].

In this work, the squared exponential kernel (Equation (A4)) is used as prior covariance
of the process u(·). The correlation lengths dk in the covariance function represent a
hyperparameter to set. Other choices to make concern the model parameters to account
for in the covariance function (active parameters) and the prior variance in the regression
residuals. We make all these choices by comparing the performance of different emulators
on a validation set, i.e., on a set of runs not used during the emulators’ training.

Note that the heaviest computational step in training an emulator usually consists
in running the simulator on the initial experimental design. After that, all computations
involve relatively simple matrix algebra and the computation of the nonlinear covariance
function, which allows the emulator to capture non-linearities.

3.3. Model Discrepancy and Observational Error

The concepts of model discrepancy (MD) and observational error (OE) are relevant
to any uncertainty analysis linking simulations to real-world observations. This section
formalizes the two concepts using a general framework. An example illustrating the
meaning of the different quantities in the context of building energy models may be the
following. f (x): building energy consumption simulated under a set of model parameters
x; y: actual building consumption; z: (imperfect) meter reading of the consumption.

Following [38], we assume that an appropriate input configuration x∗ exists that best
represents the values of the system’s parameters. We link the corresponding simulator
output f (x∗) to the real-world value y of the quantity being simulated, via the relationship

y = f (x∗) + εMD . (4)

In Equation (4), the MD term εMD accounts for the difference between the real and the
simulated process. The value y of the real system is usually unobservable, but it can be
estimated via a measurement z. Hence, we write

z = y + εOE , (5)

where the term εOE accounts for the observational error in the measurement.
The additive formulation in Equations (4) and (5) is a simple but efficient way to model

MD and OE, which also makes statistical inference tractable. The two errors are assumed
to be independent of each other and information on them is sought in statistical form, (i.e.,
their variances), rather than quantified as single numbers.

Manufacturer guidelines are usually available to estimate the OE magnitude (e.g., up
to 5% of the measured value). Estimates of the MD magnitude may be more challenging
to obtain. Assuming independence between the MD term and the simulated value f (x∗)
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is a simple choice, which may already allow the researcher to operate within a robust
uncertainty framework in most applications. This assumption leads to modeling the
variance of εMD as a constant. In this work, we use a slightly more complex model for
Var(εMD), by assuming it is proportional to the emulated value f̂ (x∗) (more details in
Section 5.3). More involved estimations of the MD term are also possible, see [38] for
further details, particularly for the further distinction between internal and external MD.

In all cases, however, the modeler’s knowledge of the assumptions/approximations
used within the simulator, alongside literature research, usually provide guidance on the
effects that these have on the simulated process and can therefore lead to an approximate
estimate of the MD magnitude.

3.4. Implausibility Measures

Implausibility measures (IMs) are used to quantify the agreement between simulation
results and observed data, in light of quantified sources of uncertainties. IMs represent the
key tool used within HM to rule out regions of the model parameter space that cannot lead
to a match with observed data. Here, we discuss the meaning and analytical expression
of IMs. Appendix B provides additional mathematical insights into the derivation of the
expression and the rationale behind the choice of IM thresholds.

In a general history matching framework, several measurements are available to his-
tory match the model. We thus consider the case where the model simulates the dynamics
of m quantities f1, . . . , fm, for which corresponding observations z1, . . . , zm are available.
At an input x, different sources of uncertainty should be considered when comparing the
simulated value f j(x) to the measured value zj. MD and OE affect the precision of both
terms and should therefore be accounted for. Moreover, the simulated value f j(x) is rarely
readily available. The availability of an emulator allows obtaining an instantaneous approx-
imation f̂ j(x) that can be used in place of the unknown f j(x). This, however, introduces an
additional source of uncertainty, quantified by the emulator variance ŝj(x)2.

The following expression may then be used to relate the difference between the
emulated value f̂ j(x) and the observed value zj to the three above sources of uncertainty:

Ij(x) =
| f̂ j(x)− zj|√

Var(εj
MD) + Var(εj

OE) + ŝj(x)2
. (6)

Ij(x) is called the implausibility measure (IM) of input x, with respect to quantity j. Values
of Ij(x) greater than a predetermined threshold T suggest that, all uncertainties considered,
the input x is implausible to lead to a match with observation zj. On the grounds of
Pukelsheim’s 3σ rule [39], the threshold is often chosen to be T = 3 (see Appendix B).

After defining Ij(x), an overall measure of implausibility at each input is needed, with
respect to all outputs simultaneously. In this work, we define this as follows:

I(x) = max
j

Ij(x) . (7)

A high value of I(x) implies that at least one Ij(x) is high and therefore that a match
between f j(x) and zj is implausible for that j. Vice versa, a low value of I(x) implies
that the quantified uncertainties (MD, OE, emulation) make it possible for the input x to
yield outputs f j(x) matching all observations zj simultaneously: in this case, we call x
non-implausible.

3.5. History Matching: The Algorithm

History matching (HM) proceeds in waves. At each wave, new emulators are built
and the associated implausibility measure I(x) is used to rule out currently implausible
inputs. The procedure repeats until a final region is identified where the model outputs and
observations match. The steps of the procedure are expanded upon below and summarized
thereafter in a schematic algorithm.
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In the first wave, some or all of the model outputs for which observations are avail-
able are emulated. The IM (7) is computed across the space, and all inputs x for which
I(x) exceeds a given threshold T are discarded as implausible. The remaining region,
comprising the currently “non-implausible” inputs, is referred to as the not-ruled-out-yet
(NROY) region.

The process is repeated in consecutive waves. Crucially, at any new wave, additional
simulations are run within the current NROY region. These allow new emulators to be
trained and validated on the region, so that an additional fraction of the region can be
discarded as implausible. Emulator validation takes place by comparing the emulator
predictions against a small subset of the new runs that have been held out during emulator
training. The overall procedure terminates whenever one of the following conditions is
met: (i) the new NROY region shows no significant change from the previous one, or
(ii) all inputs have been ruled out as implausible (empty NROY region), or (iii) limited
time/computational budget make additional waves too costly. The Algorithm 1 below
summarizes the steps.

Algorithm 1. History Matching Algorithm

Choose a positive threshold T. Define a sequence of NROY regions
R0 ⊇ R1 ⊇ . . .Rk ⊇ Rk+1 . . . as follows:

1. Initial Step (k = 0)

(a) Let R0 be the whole input space. Perform a sequence of model runs in R0, hence
build and validate emulators of some of the quantities of interest.

(b) Let I0 be the IM in Equation (7). Define the first NROY region as
R1 = {x ∈ R0 : I0(x) < T}.

2. Iterative Step (k ≥ 1)

(a) Run additional simulations within Rk. Decide which outputs to emulate, hence
build and validate emulators for them based on old and new runs within Rk.

(b) Compute the implausibility Ik(x) over Rk, and define
Rk+1 = {x ∈ Rk : Ik(x) < T}.

3. Stop when Rk+1 ≃ Rk, or Rk+1 empty, or budget exhausted.

The flowchart in Figure 2 illustrates the overall methodology. In R, the hmer pack-
age [37] can be used to automate the whole procedure. The package guides the researcher
into multiple waves, by automatically suggesting a new design at each wave.

Quantify MD and OE 
for all outputs of 

interest

Create Experimental 
Design on 

ℛ0 = {𝑤ℎ𝑜𝑙𝑒 𝑠𝑝𝑎𝑐𝑒}

Train emulators 
on ℛ𝑘  for 

some outputs  j

At step 𝑘 ≥ 0 Compute IM 𝐼𝑘(𝒙).

Define ℛ𝑘+1 = {𝒙 ∈ ℛ𝑘: 
𝐼𝑘 𝒙 < 𝑇}

ℛ𝑘+1 = ℛ𝑘 
or 

ℛ𝑘+1 = ∅ 
or

exhaust budget?

YES
STOP

NO
Perform additional runs in ℛ𝑘+1.

Set 𝑘 ← 𝑘 + 1.

Obtain instantaneous 
predictions of model 

outputs

What for? What for?

Reduce the current 
region of non-

implausible inputs

Stopping 

criteria

Figure 2. Flow chart illustrating the history matching (HM) algorithm. The initial steps (blue) consist
in quantifying the main sources of uncertainty and designing a first set of runs over the whole space.
The central part of the diagram (yellow) describes the steps of a typical HM wave, which aim to
reduce the volume of the region comprising currently non-implausible inputs. Waves are repeated,
until one of the stopping criteria is met.
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3.6. Comments on the Procedure and its Strengths

We comment here on some of the choices needed to perform HM and on the overall
strengths of the procedure, particularly in handling uncertainties. A list of these and of
possible shortcomings of HM compared to classical model-based approaches can be found
in Table 1.

Table 1. Summary of the main advantages and disadvantages of HM over entirely model-based
approaches to calibration.

ADVANTAGES DISADVANTAGES

• Much lower computational cost
(can be performed on personal device)

• Orders of magnitude faster
than original model

• Enables assessment of different
sources of uncertainty

• Effective in locating region where
model outputs match observations,
even in high dimensions

• Applicable to any physical quantity

• Low total number of model simulations,
performed only where most needed
(HM refocusing procedure)

• Quantities to be history-matched
may be added as waves proceed.

• Use of emulators introduces
additional source of uncertainty

• Poor choice of which quantities
to history-match first may result
in higher number of overall waves

The choice of the threshold T reflects how large an implausibility we are prepared
to accept before ruling out an input as implausible. In light of Pukelsheim’s 3σ rule [39],
T = 3 is a common choice (see Appendix B). However, a larger threshold may be chosen
if several quantities are being history-matched simultaneously. Indeed, mainly due to
emulation error, for each output j, there is a small probability that Ij(x) > T, even for a
“good” input x. This probability increases if we consider the event that at least one j leads to
Ij(x) > T, which is indeed the event I(x) > T. A larger threshold T keeps this probability
of error low.

As highlighted by point (2a) of the algorithm, at each wave, only some of the model
outputs are used to compute I(x). This is a key feature of HM. Especially in early waves,
some of the outputs may be difficult to emulate over large parts of the space, typically
because the model’s behavior varies significantly across different input regions. As the
search of non-implausible inputs is narrowed down to much smaller regions, outputs that
were difficult to emulate may behave more uniformly within the region of interest. They
can therefore be emulated precisely and included in the definition of I(x), to rule out as
implausible further regions of the input space.

Particularly in early waves, not ruling out an input x (i.e., I(x) ≤ T) does not suggest
that the input will lead to a match. Indeed, the implausibility of x may be low as a
consequence of large emulator uncertainty (term ŝj(x) in Equation (6)), rather than because
of actual proximity between the emulated prediction and the observation. However,
emulator uncertainty is typically reduced between waves, because the new emulators are
trained on smaller regions and on more design points. Reducing emulator uncertainty leads
to larger implausibilities and, therefore, to more inputs being discarded as implausible.
This is why HM proceeds in sequential waves.

We note an additional property of the IMs defined in (6). Since they only involve
differences (numerator) and measures of variability (denominator), they can be computed
for any quantity for which measurements are available, even if these are measured on
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non-positive scales. This marks a crucial difference with respect to Formulas (1) and (2),
and allows also robustly performing HM on physical quantities such as temperature.

Moreover, if additional sources of uncertainty are recognized and quantified, these can
be easily included in the denominator of Ij(x), expression (6). We note additionally that
the definition of the overall IM I(x) in Equation (7) can be easily customized. For example,
I(x) may be defined as the second- or third-highest value of all Ij(x), to avoid classifying
as implausible an input that matches all but one or two observations: a similar approach is
followed in the initial HM waves in [20].

We conclude this section with a consideration. By designing model runs only where
needed, HM allows the researcher to focus sequentially on the region of interest, while
keeping the overall number of runs low. This is crucial in medium and high dimensions. In
these cases, the region where a match is possible may only represent a tiny fraction of the
space originally explored. An approach where compatibility with observations is checked
on a fixed (even large) number on runs across the original space, would almost surely miss
the region. The refocusing HM procedure instead allows identifying the region, even in
high dimensions.

The event where, at some wave, all inputs have been discarded as implausible is
possible and in fact very informative. Causes for a mismatch between model and data
may be multiple: (i) original parameter ranges are incorrect, (ii) there is a problem with
the data, (iii) uncertainties are higher than estimated, (iv) the model dynamics have a flaw.
It is of course the researcher’s task to step back and analyze what caused the mismatch,
intervening in the model or in the assessment of uncertainties if necessary.

4. Case Study

This section describes the case study building used to illustrate the methodology in
Section 3, and its computer model. Longitudinal energy consumption and temperature
data were collected to history-match the model.

4.1. The Building and Its Energy Usage

The building is a detached two-story masonry construction, built in 1994. Two occu-
pants are the only residents of the dwelling and were asked to archive their gas cooker
and shower usage each day across an annual cycle. Given a very predictable pattern of
occupancy (both occupants had 8 a.m.–5 p.m. working commitments), it was possible
to limit the stochastic nature of occupant activity as far as practically manageable and to
use deterministic schedules to represent occupant interventions with the building and its
energy system. The building (with a gross area of 168.66 m2 and 19.73 m2 of unheated
space) is located in a UK built-up urban area and is only partly shaded on its west elevation
by an adjacent property (shading represented in the model).

Across the monitoring year (2016), the property had observed annual gas (15,381 kWh)
and electricity (2991 kWh) consumptions that respectively correspond to high and medium
UK domestic consumption values. The occupants utilized shower facilities at a measured
flow rate of 4.37 L/min and recorded on average eight 20 min showers per week corre-
sponding to an average of 50 L/person/day (occupants used cold water over wash basin
and dishwasher supplied with cold feed only). These recorded values are below UK average
domestic hot water usage (reported as 142 L/person/day [40] and 122 L/person/day [41]),
but primarily reflected the occupants’ heavy use of gym washing facilities. Gas cookers
(containing 3 kW and 5 kW hubs) were used on average 4 times a week for 1 hour per
cooking session.

4.2. The Model: Co-Dependency of Energy and Temperature Predictions

A model for energy consumption in the building was created using EnergyPlus (E+)
9.3.0 software. The basic principles of the software are described below, while greater
details of E+ operating principles are documented here [42].
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E+ is a collection of dynamic modules simulating different environmental, climatic,
and operational conditions that define both the flow and the stored quantity of energy
within building internal zones. The core of the program is a heat-balance equation (equa-
tion (2.4) in [42]) that is solved for all zones in the model. Once a simulation is launched,
the software deploys all relevant modules, to perform (i) a simultaneous calculation of
radiative and convective heat and mass transfer processes; (ii) adsorption and desorption
of moisture in building elements; and (iii) iterative interactions of plant, building fabric,
and zone air.

The interactions between E+ modules (with multiple equations solved simultaneously
and/or iteratively) therefore makes it difficult to pin down a single set of expressions
where most model prediction uncertainties lie. It is reasonable, however, to regard zone
air temperature as the interconnection where conductive, radiative, and convective heat
balance and mass transfers are realized. This underpins our model validation approach, in
which both energy and temperature data are examined.

4.3. Data Collection

A proprietary set of environmental and energy sensors were deployed to record
electricity consumption and zone temperatures (Figure 3). Temperature was compiled
in two rooms: the south-facing master bedroom and the north-facing kitchen. To reduce
measurement uncertainty, each of the two zones was equipped with two separate air
temperature sensors, whose average was considered. The sensors were positioned at 1.3 m
above floor level and set to log data at 30 s intervals.

Figure 3. (Left panel): power monitor used to characterize household appliances. (Right panel): AC
sensor, monitoring transmitters, and temperature sensors deployed in the case study building.

Gas consumption data were manually recorded on a monthly basis using a mains gas
meter. Electricity consumption was logged at 10 s intervals using two mains-powered clip-
on current sensors on the incoming live cable. The average of the two (practically identical)
readings formed the measured power usage. These data streams and the associated
equipment used are summarized in Table 2.

In order to parameterize the energy model more accurately, a plugin power monitor
was also used to characterize instantaneous and time-averaged consumption of the main
electrical devices (TV, washing machine, ICT).
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Table 2. Data collection equipment type and accuracy, as well as deployment details and purpose.

Frequency Instrument
(Accuracy) Location Duration Purpose

Mains Electricity 10 s 2 no CT clamp-on
sensors (±3%)

Main
Distribution

Boards
12 months • Measuring usage profile

• Initial model setup

Appliance
Electricity Variable Plugin power

monitor † --- ---

• Measuring instantaneous and time-
average usage of TV, Washing Ma-
chine, ICT

• Initial model setup

Natural Gas Monthly Manual Recording † Gas meters 12 months Target quantity for history matching

Temperature +
Relative humidity 30 s 4 no sensors

(±0.15 ◦C at 23 ◦C) 2 zones ‡ 12 months Target quantity for history matching

Shower Usage Daily Manual Recording --- --- • Estimating DHW Consumption
• Model Parameter

Gas Cooker Daily Manual Recording --- ---
• Estimating Cooking Gas Consump-

tion
• Model Parameter

† In the UK, gas and electricity meter’s accuracy needs to comply with SI684 (1983) [43] and IEC62053 [44],
respectively. These guidelines allow +2.5% or −3.5% of compound instantaneous deviations. ‡ South-facing
master bedroom and north-facing kitchen.

4.4. Model Inputs, Associated Ranges, and Outputs

By consulting the manufacturer’s specification and the house builder’s literature, a set
of eight uncertain parameters for the model were compiled. Lower and upper bands for
these were derived from the scientific literature and used to dictate the ranges explored in
the design runs (Table 3).

Table 3. The eight model parameters history-matched in this work, and their explored ranges in the
design runs used to train the emulators. The V8 parameter represents the fraction of consumed gas
employed for cooking.

Heating
Setpoint

(◦C)

Boiler
Seasonal
Efficiency

(%)

Ext. Wall
Insulation
Thickness

(cm)

Roof
Insulation
Thickness

(cm)

Floor
Insulation
Thickness

(cm)

Infiltr.
Rate

(ACH)

DHW
Consumpt.

(L/day)

Cooking
Gas
(%)

Short name V1 V2 V3 V4 V5 V6 V7 V8
Range [17.5, 20.5] [60, 75] [4, 6.3] [15, 21] [4.5, 5.5] [0.2, 0.95] [530, 1900] [1.05, 6.3]

As far as the opaque fabric of a building is concerned, variations in internal and
external air velocities are less pronounced in ground floors, but more significant for walls
and roofs. Therefore, smaller floor uncertainty margins are reported in the literature.
Estimation of building infiltration rates would instead require convoluted air permeability
tests. Table 4.16 of CIBSE guide A [24] outlines a range of 0.25 to 0.95 air change per
hour (ACH) for various 2-story buildings below 500 m2. Therefore, this was the range we
explored in our simulations. Domestic hot water (DHW) consumption followed a tailored
schedule in the model, running only for part of the day. The range reported in Table 3 refers
to the full-day equivalent DHW consumption.

With respect to glazed fabric, the manufacturer’s literature for glazing (installed in
2009) stated respective G- and U-values of 0.69 and 1.79 W/m2K. Error bands of ±5%
and ±2% for G- and U-values respectively altered the simulated gas consumption by only
±2.05 kWh (±0.013%). Given the negligible nature of this change, the fixed values provided
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by the manufacturer for the G- and U-values were used in the simulations. Finally, local
weather files compiled at a weather station approximately 3 miles away from the site were
used to support the model development.

We explore the model response at different values of the eight parameters in Table 3.
For any given parameter configuration, the model simulated monthly energy consumption
(gas and electricity) in the building and hourly temperature in two rooms (master bedroom
and kitchen). We employed actual gas consumption and temperature records to history-
match the eight parameters.

5. Results

This section illustrates the results of applying the statistical principles and methods in
Section 3 to the example study of Section 4. We initially history-match the model parameters
in Table 3 to the energy consumption in the building: for the sake of illustration, we just
use gas consumption. Later, we add the constraints from temperature, thus identifying a
region of parameter configurations matching both energy and environmental constraints at
the same time.

5.1. Running the Simulator
5.1.1. Experimental Design

As described in Section 3.2, the first step to build an emulator is to create the experimen-
tal design, i.e., the set of inputs x1, . . . , xn at which the simulator is run. We accomplished
this task via Latin hypercube sampling, easily performed in R via the “lhs” package.

A rule of thumb [45] suggests using a number of design runs equal to at least 10 times
the number of dimensions of the explored space: in our case, this translated into 80 or more
runs. Our simulator was, however, moderately fast to evaluate. This allowed us to create
a design of n = 1000 runs and perform the corresponding simulations in E+ in about 16
h. We stress, nonetheless, that a much smaller design is generally sufficient to perform
emulation and HM successfully. We discuss this in more detail in Section 5.6.

5.1.2. Simulated Gas Consumption

Figure 4 shows simulated values of monthly gas consumption in the design runs,
alongside the observed consumption for each month. A difference between summer and
non-summer months can be noticed: in June, July, and August, all model runs considerably
underestimated the observed consumption. This, in principle, does not rule out the possi-
bility that other inputs within the explored space (an eight-dimensional hypercube with
side ranges as in Table 3) may lead to a match. In our case, however, particularly in June
and July, the distance between simulations and observation was too large when compared
to the variability shown by the simulations, and this cannot lead to a match under the
levels of MD and OE we consider later. A simple linear regression model of the output also
confirms this.

As an illustration of the proposed methodology, in the following, we look for inputs
that match all nine non-summer monthly gas consumptions simultaneously, excluding
the three summer conditions from the match. It is important to note that, in a real case
study, the model’s underestimation of summer consumptions should be identified and
acted upon, prior to calibration/HM. While the most likely reason for the deviation was the
inability of deterministic schedules to capture stochastic aspects of energy governance in
the household (i.e., additional use of hot water/cooking in these months), any intervention
in the model to reflect historical occupant behavior for which we had little certainty would
have been speculative. However, greater insight into variations in seasonal energy use
would have allowed one or more parameters to be added as additional variables to be
history-matched.
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Figure 4. Distribution of simulated monthly gas consumption for the experimental design used in
this study (n = 1000 inputs). The dashed vertical line in a plot denotes the observed consumption for
that month.

5.2. Emulation of Monthly Gas Consumption

For each of the nine non-summer months, the design runs provided a dataset of
n = 1000 pairs (xi, yi), where xi ∈ R8 represents one configuration of the 8 input param-
eters and yi the associated simulated gas consumption. This dataset was used to build
an emulator of that month’s gas consumption, after linearly rescaling each of the eight
parameters into the range [−1, 1].

Several choices (of covariates, correlation lengths, prior variances) have to be made
when building an emulator, see Section 3.2. To validate these choices, we split the dataset
as follows:

• Training set (700 runs): used to train the emulators.
• Validation set (150 runs): used to decide on the values of the emulator hyperparame-

ters, by comparing the emulator’s performance on this set to the known simulator’s
outputs.

• Test set (150 runs): used to test the previously built emulators on a completely new set
of runs not used for training and validation.

We note again that such large training and validation/test sets are used here for illustration
purposes, but are not needed in general, see the comments in Section 5.6.

As discussed in Section 3.2, the prediction of the simulated consumption at an input x
is computed as the sum of (i) a linear regression part, (ii) a prediction of the residuals.

5.2.1. Linear Regression

The only choice to be made in building a regression model concerns the predictors
to use. For all months of interest, a preliminary exploration revealed that the response
y (gas consumption) was very well explained as a quadratic function of the eight input
parameters, denoted V1, . . . , V8 in Table 3. Thus, we proceeded as follows.

Let P be the set of all mutually orthogonal linear, quadratic, and interaction terms
of V1, . . . , V8 (for 8 parameters, there is a total 44 linear, quadratic, and interaction terms.
In R, these are be obtained via the command poly(X, deg = 2), where X is the 700 × 8
matrix whose rows are the training inputs). For a given integer k, we consider the linear
model with highest adjusted coefficient of determination (adj. R2) among all models with
exactly k of the predictors in P . In our case, the “best” 10 predictors yield models with
notably high adj. R2 (about 0.999) across all months. Hence, to keep the approach uniform,
for each month we consider the linear model with the best 10 predictors for that month,
summarized in Table 4. However, a different number of predictors for each output may be
considered in other case studies.

In general, such a high R2 should raise concerns about overfitting. In our case, this
concern can be ruled out by observing that only 10 predictors were used to explain the vari-
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ability of 700 observations. The high coefficient of determination mirrors the intrinsically
near-quadratic model dynamics.

5.2.2. Emulators of the Residuals

To build an emulator of the regression residuals of each month’s consumption, choices
about the following quantities had to be made: active parameters xA, correlation lengths dk,
prior emulator variance σ2

u , and noise variance σ2
ν , see Equation (A4) in Appendix A and

comments thereafter. We proceed as follows:

• Active parameters xA: To identify these, we look for the most significant second- and
third-order terms in a linear model of the regression residuals. Parameters appearing
by themselves with a high t-value (t > 8) are included as active. The inclusion
of parameters appearing alone with a lower t-value, or in interaction with other
parameters, is instead considered on a case by case basis, according to the emulator
performance on the validation set—see Section 5.2.3.

• Correlation lengths dk: In a given month, the same correlation length d is used for all
active parameters. The value of d for each month is chosen by assessing the emulator’s
performance on the validation set and is reported in Table 4. To attain a similar level of
correlation across the space, higher correlation lengths are used when a higher number
of active parameters is present.

• Prior variances σ2
u and σ2

ν : Let σ2 denote the variance of the regression residuals being
fitted. We then set σ2

u = 0.95σ2 and σ2
ν = 0.05σ2.

Table 4 provides details of all choices made to build each of the nine emulators,
including choices concerning the regression line. We discuss validation of the emulators in
the next section.

Table 4. Properties of the gas consumption emulators. For each month, from left to right: covariates
used to build the linear regression model; adjusted R2 of the linear model; variance of the regression
residuals; active parameters used in the covariance function; value of the correlation lengths (same
for all active parameters). In the predictor’s column, the ∗ symbol denotes the combination of all
linear and interaction terms: a ∗ b ∗ c = {a, b, c, ab, ac, bc}.

Predictors Adj. R2 σ2 Act. Params d

January V1 ∗ V2 ∗ V6, V3, V4, V2
2 , V2

6 0.9998 85.94 V1, V2, V3, V6, V8 0.8

February V1 ∗ V2 ∗ V6, V3, V4, V2
2 , V2

6 0.9997 52.30 V1, V2, V3, V7, V8 0.65

March V1 ∗ V2 ∗ V6, V3, V4, V2
2 , V2

6 0.9997 50.14 V1, V2, V3, V6, V7, V8 1.3

April V1 ∗ V2 ∗ V6, V3, V4, V2
2 , V2

6 0.9998 50.04 V1, V2, V3, V6, V8 1

May V1 ∗ V2 ∗ V6, V3, V8, V2
1 , V2

6 0.9989 206.45 V1, V2, V3, V4, V6, V8 1

September V1 ∗ V2 ∗ V6, V3, V4, V8, V2
6 0.9994 0.91 V1, V2, V3, V6, V7, V8 1.2

October V1 ∗ V2 ∗ V6, V3, V4, V8, V2
6 0.9996 24.40 V1, V2, V3, V6, V7, V8 1.4

November V1 ∗ V2 ∗ V6, V3, V4, V2
2 , V2

6 0.9998 57.35 V1, V2, V3, V6, V7, V8 1.2

December V1 ∗ V2 ∗ V6, V3, V4, V2
2 , V2

6 0.9998 68.77 V1, V2, V3, V6, V7, V8 1.3

5.2.3. Emulator Validation and Performance

The active parameters xA and correlation lengths d in Table 4 were chosen based on
the emulator’s performance on the validation set. The latter consists of 150 pairs (xi, yi)
not used during the emulator’s training, where each yi is the simulated output at input
xi. At each such xi, the emulator provides a prediction ŷi of yi and a standard deviation σ̂i
quantifying the uncertainty of the prediction.

We then consider the number of standard deviations that separate the emulator
prediction from the true simulated output:

εi =
ŷi − yi

σ̂i
, (8)
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and use εi to assess the emulator’s performance at xi. As we make no distributional
assumption about the emulator, we can once again appeal to Pukelsheim’s 3σ rule [39]
to constrain expected values of εi: for a reliable emulator, at least 95% of the εi should lie
between −3 and 3.

We validate this by considering, for each of the nine months, the plot of εi versus the
predictions ŷi, and check that the points in the plot are (randomly) scattered around the
line ε = 0, and with about 95% of the |εi| less than 3. We assess these properties visually
for different choices of active parameters and correlation lengths and choose the ones that
return plots with the desired properties. We tend to be slightly conservative in this phase,
by choosing correlation lengths which generally yield more than 95% of |εi| < 3. This is to
prevent making choices tailored to the specific points used for validation.

Once the parameters xA and d are chosen, we compute the standardized errors in
Equation (8) on the 150 elements of the test set, and confirm that no anomalies show up on
a set of points not used during training or validation.

5.3. Observational Error and Model Discrepancy

In order to perform HM, with the aim of identifying parameter configurations that
yield a match between predicted and observed consumptions, we need to quantify the OE
and MD that are used to define the IMs in Section 3.4. We proceed as follows.

1. The OE is set to 5% of the observed value z, in agreement with the manufacturer’s
largest accuracy band.

2. For illustrative purposes, we set MD to either 10% or 20% of the emulated consump-
tion and compare results in the two cases.

The last point is implemented by setting the Var(εj
MD) term in Equation (6) to be the

variance of a uniform random variable with range equal to α f̂ j(x) (α = 0.1, 0.2).
Note that, as discussed at the end of Section 3.3, accurate estimation of MD requires

careful statistical analyses and possibly additional model runs. However, an order of
magnitude between 10% and 20% of the simulated values is likely to represent a good
estimate in most energy applications. If there are reasons to believe that MD is significantly
higher, the possibility of revisiting the model should be considered, by possibly including
in the model additional key factors affecting the simulated dynamics.

5.4. History Matching

History matching can now be performed. Recall that the procedure sequentially
removes inputs x with implausibility I(x) = maxj Ij(x) larger than a threshold T: here, Ij
represents the implausibility of month j. In the following, we choose T = 4. As discussed
in Section 3.6, the choice of such a threshold ensures that the probability of incorrectly
rejecting an input x as implausible is kept small, whenever several observations are being
matched simultaneously (nine in our case).

With the above choices, a single wave of HM rules out 99.70% of the parameter space
as implausible when 10% MD is used, leaving only p = 0.30% as non-implausible. With 20%
MD, one wave of HM instead rules out 80.48% of the original space, leaving p = 19.52%
of it as non-implausible. These percentages were computed on a sample of N = 107

random inputs, generated as a Sobol sequence [46] in the eight-dimensional cube with side
ranges given in Table 3. The absolute error on the estimates using such a large sample
(approximately equal to

√
p(1 − p)/N ) thus leads to a relative error which is order of 10−2

and 10−3 in the two cases, respectively. This makes both estimates very accurate.
In this case, we do not need to proceed to further waves. For all months, the emulator

uncertainty, reported in Table 5, is 1–2 orders of magnitude lower than the combined one
from MD and OE. Additional waves therefore leave the IM essentially unchanged. We
comment further on this in Section 6.
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Table 5. For each month: variance of the regression residuals to which the emulator is fitted (first
row) and empirical 95% confidence interval of the emulator variance (second row), computed on the
150 test points. Unit: (kWh)2. A notable reduction between the original regression residuals and the
emulated residuals can be observed.

January February March April May September October November December

σ2 85.9 52.3 50.1 50.0 206.4 0.91 24.4 57.4 68.8

95% CI [6.6, 31.0] [5.9, 28.0] [3.1, 9.3] [3.2, 10.0] [16.8, 68.9] [0.06, 0.20] [1.5, 3.8] [3.8, 12.8] [4.3, 12.7]

5.4.1. Visualization of the Non-Implausible Region

The non-implausible region lives in an eight-dimensional space, one dimension per
input parameter. To identify parameters that play a role in constraining the region, we
inspect several two-dimensional scatter plots of the non-implausible inputs: specifically,
for each pair of the eight parameters, we look at how the non-implausible inputs scatter
along the selected two dimensions. For brevity, we do not report all scatter plots here. The
visual inspection reveals that the parameters infiltration rate (V6) and percentage of gas
used for cooking (V8) are particularly significant. To a lower extent, heating setpoint (V1)
also plays a role in classifying inputs as non-implausible. We thus inspect in more detail
the effect of these three parameters and their interdependence.

There are three pairs of the above parameters (V1–V6, V1–V8, V6–V8). Each column in
Figure 5 contains the minimum-implausibility plot (MIP, top row) and the optical-depth
plot (ODP, bottom row) for one of the three pairs. The MIP shows the minimum value
assumed by the implausibility measure I(x), when the two concerned parameters are fixed
to some value and the remaining six are free to vary. Thus, values greater than T = 4 in
a MIP identify pairs of values of the two parameters in question that always lead to an
implausible input, irrespective of the value taken by the remaining six parameters. On the
contrary, values lower than T = 4 in a MIP reveal the presence of non-implausible inputs
(i.e., inputs that can lead to a match with observed data). The percentage of these inputs,
across the remaining six dimensions, is shown in the ODP. Information provided by each
pair of MIP and associated ODP is thus complementary.

The panels in the middle and right columns of Figure 5 reveal that only values of
V8 higher than 5% are able to yield a match with the observed consumptions. Moreover,
such values should be paired with values of V6 approximately between 0.25 and 0.65 ACH
(rightmost panels). Note that the two variables seem to be relatively independent. A
stronger dependence can instead be seen between non-implausible values of V1 and V6
(leftmost panels): for example, higher non-implausible values of V6 can only be paired with
low values of V1.

The left subplots in Figure 5 also suggest that non-implausible values of V1 may also
be found to the left of the range originally explored. A similar consideration is valid for V8
values higher than 6.3% (the maximum value explored in the design runs). Similar findings
are not uncommon, particularly during the first wave of HM. In such a case, it is advisable
to step back and expand the ranges in question, running additional simulations in the
new region before proceeding with HM. In this example study, however, in accordance
with the methodological and illustrative aim of the work, we progress our illustration and
discussion, focusing on the ranges specified by Table 3.
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Figure 5. Two-dimensional views of the non-implausible region, when 10% model discrepancy is
used. Each plot concerns one pair of the three model parameters V1, V6, V8 (same pair along a given
column). Minimum implausibility plots (top panels): the color at the point of coordinates (x, y)
shows the minimum value taken by the IM I(x) when the two concerned parameters take the value
(x, y) and the remaining six parameters are free to vary. Optical depth plots (bottom panels): the
color at the point (x, y) shows the percentage likelihood that a match can be found with observed
data, when the two concerned parameters take value (x, y) and the remaining six are free to vary.

5.4.2. Sensitivity to Model Discrepancy Magnitude

Figure 6 shows ODPs for the same three parameters considered in Figure 5, but in
the case where MD is set to 20%. Roughly similar patterns emerge, but spread over larger
regions: due to a lower confidence in the model, we rule out fewer inputs as implausible.
The percentage of non-implausible inputs has risen to 19.52%, from only 0.3% in the 10%
MD case.

Figure 6. Optical depth plots, in the case of 20% MD—same three variables as Figure 5.

This comparison highlights the potential sensitivity of HM results to the choice of MD.
Note that the precision of the emulator(s) also plays a role. In our case, as Table 5 shows,
we have remarkably precise emulators. This implies that essentially all the uncertainty
accounted for in comparing emulator predictions and observations comes from MD and, to
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a lesser extent, OE. Doubling the MD will thus make inputs significantly more likely to be
deemed non-implausible.

5.4.3. Role of Different Constraints and Correlation among Outputs

Emulation allows us to explore a wide range of questions, for which it would otherwise
be impossible to draw sound inference. We briefly discuss one such example here: the
compatibility between the pair of observed consumptions in any two different months,
and the correlation of model outputs across months. Note, in fact, that a strong correlation
between two model outputs restricts the pairs of observed consumptions that can lead to a
match. This relationship is explored in Figure 7: the figure agglomerates different pieces of
information, which we explain and comment on below.

Each of the upper-diagonal panels of Figure 7 shows a scatter plot of emulated gas
consumption for a pair of months, on a random sample of 10,000 inputs. The observed
consumption to be matched is identified by a red cross. Whilst the latter is often outside the
region of outputs, the presence of MD (10%) and OE (5%) still allows identifying a region
of non-implausible outputs: this is highlighted in turquoise in each upper-diagonal plot.
Note: this is a subregion of the output space, not of the input space as in Figures 5 and 6.
The lower-diagonal panels display a zoom of this region, with points colored according
to the value of the overall IM (7). In these panels, each rectangle around the observed
consumption identifies the 5% OE.

Figure 7. Information on model outputs, observations, and each month’s contribution to reducing
the non-implausible region. Upper-diagonal panels: scatter plot of emulated gas consumption for
each pair of months (randomly selected 10,000 inputs). The red cross locates the observation to be
matched, the turquoise stain locates the non-implausible outputs. Lower-diagonal panels: zoom of
the non-implausible region, colored by implausibility measure (IM). Shaded rectangle around the
cross identifies 5% observational error. Diagonal panels: distribution of each month’s IM, on the
space deemed non-implausible when only constraints from the remaining months are considered.
The darker color denotes values outside the interval [−4, 4], i.e., identifies inputs that transition from
being non-implausible to being implausible when that month’s constraint is added.
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The histograms along the diagonal of Figure 7 instead show the distribution of the IM
of a given month (expression (6)), on the points that would be classified as non-implausible
if all months, except that one, were included in the HM procedure. The IM is reported
with its original sign: positive (negative) values denote an emulated consumption higher
(lower) than the observed one. Values outside the range [−4, 4] are highlighted by a darker
color. They correspond to gas consumptions (and associated parameter configurations
of the model) that match the observed consumption of all months, except the specific
month considered.

Months such as January, March, November, and December, where all values are
between −4 and 4, did not contribute to reducing the space once the other eight months’
constraints were included. On the other hand, a month such as September ruled out
around 85% of the space that would be considered non-implausible without the September
constraint itself.

As the upper-diagonal panels reveal, some of the simulated monthly consumptions
were highly correlated, e.g., January’s and February’s. In similar cases, matching one
month’s observed consumption will impose limits on which consumptions of the other
month can be simultaneously matched.

In the case of January and February, the cross aligns well with the line of simulated
consumptions, hence both observations can be easily matched simultaneously. However,
despite their high correlation, the two months do not play an interchangeable role. The Jan-
uary histogram reveals that the January constraint is redundant if the February constraint
is accounted for. On the other side, instead, including the February constraint ruled out
more than 50% of the space that was considered non-implausible without it (in particular,
when January was also accounted for). A similar reasoning holds true for other pairs of
strongly correlated outputs, e.g., Feb-Mar, Feb-Nov, and Oct-Nov to a lesser extent.

5.5. Adding Temperature Constraints

History matching can be performed with any model output for which observations
are available, a feature that marks a difference with measures such as MBE and CV(RMSE),
as discussed in Section 2.3. For illustrative purposes, in addition to gas consumption, in
this section, we history-match temperature records in the kitchen and master bedroom, for
which hourly time series are available both as observations and as model outputs.

Accounting for uncertainty when comparing simulations and observations is more
challenging for time series than it is for scalar quantities. The correlation across time should
be considered, for which dimension-reduction techniques or multidimensional IMs may
be employed. It is beyond the scope of this work to go into these details, some of which
are active areas of research. However, scalar quantities can be extracted from a time series
and history-matched through the same methodology discussed in Section 3. We provide an
illustration below.

In order to include summer constraints, we consider the following quantity: the aver-
age temperature difference in July between day (8 a.m.–11 p.m.) and night (00 a.m.–7 a.m.).
For each of the two rooms, we compute the above quantity for the 1000 design runs,
build an emulator of it as a function of the eight input parameters, and history-match the
parameters. We consider the same levels of MD (10%) and OE (5%) as in Section 5.4.1.

Accounting separately for each of the two temperature constraints classifies 17.26%
(kitchen) and 24.30% (master) of the space as non-implausible, respectively (we use the
threshold T = 3 here, since only one condition is considered in each of the two cases). A
total of 12.38% of the space is instead classified as non-implausible with respect to both
constraints at the same time. Unsurprisingly, a strong dependence between the constraints
coming from the two rooms emerges (0.12 is indeed much greater than 0.17 × 0.24).

Accounting simultaneously for both energy (gas) and environmental (temperature)
constraints classifies only 0.010% of the original eight-dimensional cube as non-implausible.
This is about four-times less than would be expected if the two constraints were inde-
pendent. The interplay between energy and environmental constraints is highlighted in
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Figure 8, in the case of the three parameters V1, V2, and V6. For each of them, the plot shows
the distribution of non-implausible values for that parameter, when the constraints from
either gas, or temperature, or both are considered. As an illustration, we comment on the
left plot of Figure 8, concerning the heating setpoint (V1).

Figure 8. Marginal distribution of three input variables on non-implausible points. The shaded
histograms mirror non-implausibility with respect to gas or temperature constraints only, the filled
histogram with respect to both.

On the one hand, if we only account for the July temperature constraint, the distribu-
tion of V1 values across the non-implausible inputs is uniform (red shade): this is expected,
as heating is switched off in summer and does not, therefore, affect room temperature. On
the other hand, imposing only the gas constraint (blue shade) yields a skewed distribu-
tion favoring lower values of V1. However, when both gas and temperature constraints
are considered, only higher V1 values turn out to be non-implausible (solid green). The
explanation for this is as follows: third parameters are present whose values are in fact
constrained by temperature, and which are correlated with V1. Forcing these parameters to
have temperature-compatible values rules out low values of V1.

A related phenomenon can be observed for the boiler efficiency parameter, the middle
plot of Figure 8. Finally, the infiltration rate, which plays an important role in limiting tem-
perature variations in the building, is indeed mainly driven by the temperature constraint
(red shade, rightmost plot in Figure 8). The additional imposition of the gas constraint only
slightly reduces its non-implausible range (solid green).

5.6. Results With a Smaller Experimental Design

As remarked previously, the size of the experimental design used in this work
(n = 1000) is much larger than typically needed. In the presence of eight parameters,
it is advisable to start with 80–100 design runs, but a smaller design can also be used if the
simulator is particularly slow to run.

Indeed, the main advantage of a large design is that precise emulators are obtained
from the first HM wave, hence a large portion of the parameter space may be ruled out
as implausible in early stages. However, even in the presence of a small design, the same
results will generally be achieved at the expense of one or two more waves.

In additional research that we do not detail here for brevity, we randomly subselected
100 of the design runs and used these to train (80 runs) and validate (20 runs) the new
emulators. The quadratic simulator dynamics were however easily captured by the smaller
design and, once again after just one wave of HM, the results were practically identical to
the ones shown in Section 5.

6. Conclusions and Extensions of the Work

This work presented a statistically robust way of accounting for uncertainty in pre-
calibration and calibration of building energy models. The methodology was illustrated on an
actual dwelling and its energy model, with the aim of simultaneously matching observations
of different nature: energy (gas use) and environmental (temperature in two zones) data.
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Typical sources of uncertainty (model discrepancy and observational error) and their
magnitude are accounted for in the proposed history matching (HM) framework. The
procedure quantifies the proximity between simulation results and observations in light
of the above uncertainties, ruling out regions of the input space where a match cannot be
achieved. The refocusing nature of HM allows locating the region where simulations and
observations can match, even when the latter only represents a very small portion of the
space originally explored. This feature marks a key difference with alternative approaches
where only the original model is used.

The value of the proposed HM framework is indeed in enabling an energy assessor to
explore a model’s response across the entire input space, at low computational cost. This is
achieved by Bayesian statistical models (emulators) that can run near instantaneously on
a personal laptop to estimate the response of the original model at a new range of input
configurations. The hmer R package [37] can be used to implement emulation and HM on
a personal device.

In the case study discussed in this work, the input region where gas simulations and
observations can match was identified using only one HM wave. This was due to the
fact that remarkably precise emulators could be built from the outset of work, to rapidly
assess the simulator’s response on the whole input space. Where more than one wave is
performed, the sequential procedure allows the researcher to add constraints as waves
proceed. A quantity that is difficult to emulate in an early wave often behaves more
smoothly within the more constrained NROY region of a later wave, and it can therefore be
emulated with greater precision at that stage.

We also note that, while HM classically employs emulators to approximate the model,
less precise statistical surrogates may also be used, especially during the first exploratory
stages of research. Using linear regression in conjunction with implausibility measures [47]
would still allow the researcher to rule out large parts of the input space as implausible,
while keeping time and computational costs to a minimum.

The principal value of this approach is the computational efficiency of emulation
over the original simulator. All emulation and HM computations carried out in this work
were performed on a personal laptop with 16 GB RAM and 1.9 GHz processor. Without
any parallelization, the gas computations (emulation and HM at 107 input configurations,
on nine months) were carried out in less than 28 hours. This duration is several orders
of magnitude faster than the E+ running times, and yet relatively slow for emulation
standards due to the large number of training points used (700). As a comparison, inference
on the same 107 inputs (on the nine months) using only 80 training points was performed
in 2 h and 5 min. If we were to use the original E+ simulator directly, performing 107

simulations would have required about 18 years.
This method can be extended to combine a simple, fast version and a more complex,

slow version of the simulator. This is referred to as multi-level emulation [48], which
combines information from the two and builds reliable emulators of the complex version.
In doing so, the practical applicability of the proposed methodology starts from calibration
of a single building fabric or energy model, with the possibility of building multi-level
emulators to assist with calibration of much more complex systems, such as a cluster of
buildings or even urban level energy models (where increasing the physical resolution of
the model imposes a significantly higher computational duty). Emulation case studies of
complex systems such as an urban energy model are still missing and as such can form the
basis of future works.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Alternating Current
ACH Air Change per Hour
BLE Bayes Linear Emulator
CT Current Transformers
DHW Domestic Hot Water
E+ EnergyPlus
HM History Matching
ICT Information and Communication Technologies
IM Implausibility Measure
MD Model Discrepancy
MIP Minimum Implausibility Plot
NROY Not Ruled-Out Yet
ODP Optical Depth Plot
OE Observational Error

Notation (Emulation and History-Matching)
The following notation is used in this manuscript:

f Simulator (computer model)
x General input to the simulator (vector of model parameter values)
x1, . . . , xn Experimental design used to train the emulator
f (x) Simulated output at input x
f̂ (x) Emulated output at input x
ŝ(x) Standard deviation associated with f̂ (x)
σ2 Standard deviation of regression residuals
di Correlation length of ith model parameter
x∗ Model input best representing the true system parameters
y True value of the system
z Measured value of the system
εMD Model discrepancy term
εOE Observational error term
Ij(x) Implausibility measure at input x, for output j
I(x) Overall implausibility measure at input x
T Threshold to identify an input x as implausible (I(x) > T)
Rk NROY region after wave k of HM

Appendix A. Emulators

This section provides details on the structure of a Bayes linear emulator (BLE) and the
choices that need to be made to train one. Following [38] and as anticipated in Section 3.2,
we model the output f (x) of the simulator at an input x as the sum of two terms:

https://collections.durham.ac.uk/files/r105741r794
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f (x) = ∑
j

β jgj(x) + u(x) . (A1)

The first term is a regression term with predictors gj(x): this term models the global
behavior of f across the whole input space. The second term u(x) instead captures the
local residual fluctuations of f .

In order to choose values of the coefficients β j and a statistical model of the term u(x),
the simulator is run n times at a sequence of n different inputs, which we denote here by
x1, . . . , xn. These form the so-called experimental design and the associated runs are named
design runs. A good experimental design must fill the input space well and have no two
points too close to each other [50]. In this work, we use Latin hypercube sampling [51] to
accomplish the goal.

Once the simulator has been run on the n elements of the experimental design and the
outputs yi = f (xi) become known, then

• The first term in Equation (A1) can be obtained by fitting a linear regression model
with predictors gj(x) to the known pairs (xi, yi).

• Values of the residual process u at each design point will then be known: ui =
yi − ∑ β jgj(xi). These values will oscillate around 0, with local patterns that the
regression term has not been able to detect. Starting from the known values u(xi) = ui,
values of u(x) for general x will be predicted via a BLE.

A BLE for u is built in two steps, by modeling u as a stochastic process for which u(xi)
are known. First, a prior mean E[u(x)] and prior covariance Cov[u(x), u(x ′)] of the process
u are assumed, at all inputs x, x ′ (choices detailed below). Hence, for any new input x,
these are adjusted to the values ui that the process u is known to take at the n inputs xi, by
using the two Bayes linear formulae below [52]:

EU [u(x)] = E[u(x)] +Cov[u(x), U] Var[U]−1 (U −E[U]) (A2)

VarU [u(x)] = Var[u(x)]−Cov[u(x), U] Var[U]−1 Cov[U, u(x)] (A3)

Here, U = (u1, . . . , un) is the vector of known values of the process u(·) at inputs x1, . . . , xn.
The quantities EU [u(x)] and VarU [u(x)] are termed adjusted mean and adjusted variance of
u(x) given U, respectively. They represent the best prediction and associated uncertainties
of u(x), given the known values u(x1), . . . , u(xn). Formulas (A2) and (A3) also hold if
u(x) is replaced by a vector V of unknown values of u(·) at an arbitrary set of new inputs.

Concerning the prior mean and covariance of u(·), we make the following choices.
The prior mean of u(x) is set to zero at all inputs x, since this is the mean we expect the
regression residuals to have. The prior covariance function of u is instead modeled via
a stationary kernel, i.e., a kernel for which the covariance between u(x) and u(x ′) only
depends on the difference x − x ′. Common choices in emulation are discussed in ([53]
[§4.2.1]). In this work, we use the squared exponential kernel:

Cov[u(x), u(x ′)] = σ2
u exp

(
−∑

k

(
xk − x′k

dk

)2)
(A4)

The subscript k in xk and x′k denotes the kth component of the two inputs, i.e., the kth model
parameter. The positive coefficient dk (correlation length or length scale) measures the
strength of correlation in output when the kth parameter is varied. Finally, the coefficient
σ2

u denotes the common prior variance of u(x) at all inputs x.
Expression (A4) has been written in terms of all components of the input vector x.

In practice, only a subset of the components (model parameters) often prove relevant to
explain most of the variability in u. We call these active parameters, and only use them in
expression (A4). This step reduces the dimension of the input space and has the significant
advantage of simplifying the search during HM. The small variability left in u, due to the
inactive parameters, is modeled as uncorrelated noise with constant variance σ2

ν .
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Technically, the above procedure builds an emulator of the residual process u. How-
ever, once the regression component in Equation (3) is added, an emulator of f is obtained.
At an input x, this provides a prediction f̂ (x) of the unknown value f (x), and a standard
deviation ŝ(x) quantifying the uncertainty of such prediction (square root of the adjusted
variance in Equation (A3)).

Appendix B. Implausibility Measures

This section provides additional insight into the derivation of Ij(x), expression (6), and
mathematical grounds for the choice of associated threshold values to be used in HM. The
index j is fixed here, hence we will remove it from the notation of this section for simplicity.
We will thus assume to have a simulator f of a physical system and one observation z of
the system. The latter is an imperfect measurement of the real system value y.

As introduced in Section 3.3, we suppose that there exists an unknown configuration
x∗ of model parameters that represents the true system’s parameters. In order to evaluate
whether an input x corresponds to the system’s parameters x∗, the following two quantities
should be compared:

(i) The value that the real system would take under conditions x;
(ii) The actual value that the real system takes (y)

By definition of x∗, the above two quantities coincide when x = x∗. None of the two
quantities is however available for general x. Nonetheless,

(I) The quantity in (i) can be approximated by f (x) (approximation affected by MD);
(II) The quantity in (ii) can be approximated by z (approximation affected by OE).

Moreover, if an emulator f̂ of f is available, f (x) can in turn be approximated by f̂ (x).
The difference f̂ (x)− z may then be considered as a proxy for the difference of the

unknown quantities in (i) and (ii). Mathematically, it is worth noticing that the former can
be decomposed into three components, each reflecting one of the above approximations:

z − f̂ (x) = (z − y) +
(
y − f (x)

)
+
(

f (x)− f̂ (x)
)

. (A5)

The first term is by definition the OE term εOE, cf. Equation (5). The second term, when
x = x∗, is the MD term εMD, cf. Equation (4). The third term is the difference between the
emulated and simulated output at x, which we denote here for convenience by εEm(x).

When x = x∗, we then have

| f̂ (x)− z| =
∣∣εMD + εOE + εEm(x)

∣∣ . (A6)

Therefore, under the reasonable assumption of independence among the three error terms
in Equation (A6), the expression of Ij(x), recalled below for convenience in (A7), represents
the absolute ratio between a random variable and its standard deviation

Ij(x) =
| f̂ (x)− z|√

Var(εMD) + Var(εOE) + Var(εEm(x))
. (A7)

Typical values of such a variable can be identified by appealing to Pukelsheim’s 3σ
rule [39]: the result states that, under the only assumption of unimodality, at least 95% of
the probability mass of any random variable lies within 3 standard deviations of the mean.
This implies that most values of Ij(x) should be smaller than 3 when the input x coincides
with the “best” input x∗. Equivalently, if an input x is such that Ij(x) > 3, then x can be
deemed implausible to represent the true system’s features x∗.
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