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Abstract: The following article presents a proprietary real-time localization system using tempo-
ral analysis techniques and detection and localization algorithms supported by machine learning
mechanisms. It covers both the technological aspects, such as proprietary electronics, and the overall
architecture of the system for managing human and fixed assets. Its origins lie in the ever-increasing
degree of automation in the management of company processes and the energy optimization associ-
ated with reducing the execution time of tasks in an intelligent building supported by in-building
navigation. The positioning and tracking of objects in the presented system was realized using
ultra-wideband radio tag technology. An exceptional focus has been placed on reducing the energy
requirements of the components in order to maximize battery runtime, generate savings in terms of
more efficient management of other energy consumers in the building and increase the equipment’s
overall lifespan.

Keywords: temporal distance scaling methods; ultra-wideband technologies; energy saving; machine
learning; indoor navigation; fixed asset management systems

1. Introduction

The widespread use of wireless technologies allows for the rapid transmission of
data between various devices, including the ubiquitous Internet of Things (IoT) sensors.
Indoor location appears to be a by-product of wireless technologies, but a very useful
one, with numerous applications in commercial buildings, for navigation purposes and
management systems. Various radio protocols are used for indoor positioning. Protocols
such as Bluetooth, ZigBee, Wi-Fi, LoRa, or the ultra-wideband (UWB) can be mentioned
here [1–3].

The implementation presented, is designed for goods positioning systems in ware-
house management. It uses temporal analysis techniques such as ToF (Time of Flight)
in combination with UWB (Ultra-WideBand) transmitter technology, whose hallmarks
are exceptional accuracy in determining the distance between two devices and resistance
to interference compared to transmission analysis methods [4,5]. The motivation for ad-
dressing the topic was the rapidly growing segment of UWB devices, the proliferation of
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which in recent years has enabled their successive implementation of this technology in an
increasing number of systems. Nevertheless, its potential remains untapped in terms of
location accuracy (single centimetres) or general compatibility with other types of systems.
Existing devices on the market today are often designed to operate within the device
pool of a single manufacturer and base their functionality solely on the radio layer. The
development of the device and its combination with various machine learning algorithms
was intended not only to improve the accuracy of the location, but also the complemen-
tarity of the functions performed in relation to the large-scale warehouse management
market. In addition, the entire hardware layer produced was designed and manufactured
in-house using as many elementary/fundamental solutions as possible. This provided
the opportunity to look for a hardware layer, every aspect of which could be tailored to
a specific industry. The established device network includes two proprietary hardware
solutions. One is the equivalent of a UWB tag in the system, while the other is a UWB
anchor. For the system to detect and track an object, the network requires a set of at least
one tag and three anchors [6,7]. As the number of tags increases, the load on the system
increases. When the number of anchors increases, this usually involves expanding the area
covered by the observation and improving the accuracy of the marker location [8]. The
equipment set up in this way can orient objects in space. At precise moments, the tags
force the anchors to interact by exchanging communication packets containing time stamps.
Based on these, the devices can calculate the distance separating them [9]. The distance
information is returned to the anchors, which have a permanent and direct connection to
the building’s local network. In this way, the information acquired by the devices is fed into
the computing cluster and processed by proprietary algorithms. The Cartesian coordinates
of the objects are returned, which are applied in real-time to the 3D visualization of the
building. The described methodology of operation is shown symbolically in Figure 1. A
detailed block diagram of the operation of the marker-anchor pair is presented in Figure 2.
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The visualizations generated by the system, together with the objects/goods being
tracked, can be displayed as part of the service on personal computers, tablets, or smart-
phones. Such a solution is primarily intended to support the management of fixed assets
and stored goods but in such a way as to contribute to optimizing the operation of the facil-
ity in terms of energy (ecology) and time (efficiency) [10,11]. Energy-saving mechanisms
also result not only from the system itself, but also from the hardware solutions used in
the proprietary devices. These solutions will be discussed in the chapter on the applied
hardware layer. In addition to a number of advantages, the system presented posed some
design and construction challenges along with them.

The main focus has been on eliminating or compensating for defects due to signal
distortion resulting from reflections and refractions when passing between two media
with different permeabilities (e.g., air-wall) and relatively higher (e.g., about Bluetooth or
ZigBee) energy requirements [12,13]. In the first case, this can result in localization errors
after a distance measurement of ±30 cm. With a technology tracking accuracy of up to
10 cm (potential), such a tolerance is unacceptable. Due to this fact, a set of proprietary
algorithms has been developed to stabilize the results obtained in this way and thus
increase measurement precision and reliability. In UWB localization, various algorithms are
employed to accurately estimate a device’s position. The selection of an algorithm depends
on factors such as the specific UWB system architecture, environmental conditions, and the
desired level of accuracy. One of the fundamental techniques is multilateration/trilateration,
which utilizes geometric principles to calculate the device’s position based on distance
measurements from multiple anchors. This method serves as a foundational algorithm in
UWB localization due to its simplicity and widespread use [14].

Weighted Least Squares (WLS) is another commonly used algorithm, leveraging op-
timization techniques to minimize the sum of squared errors. Often used in conjunction
with trilateration, WLS enhances accuracy, particularly in scenarios with noisy measure-
ments [15]. Maximum Likelihood Estimation (MLE) is a statistical approach that estimates
parameters by maximizing the likelihood function [16,17]. This technique proves useful for
modeling and estimating the statistical distribution of UWB measurements, contributing to
improved accuracy.

Probabilistic methods like Particle Filters are effective in dynamic and non-linear
environments [18,19]. These filters use a set of particles to represent possible system states
and update them based on measurements. Kalman Filtering, a recursive algorithm, is
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suitable for real-time UWB localization, especially in dynamic environments [20,21]. It can
be integrated into sensor fusion frameworks for enhanced accuracy.

Machine learning methodologies have gained widespread adoption across a spectrum
of localization-centric solutions. While machine learning has found extensive application
in computer tomography (CT), its utilization in UWB localization further underscores its
versatility and expanding reach [22,23]. Advanced pattern recognition and classification
techniques, such as k-nearest neighbors (KNN), support vector machines (SVM), and neural
networks, are finding increasing applications in UWB localization. This is particularly
valuable in fingerprint based UWB systems, where machine learning can adapt to changing
environmental conditions [24–26].

Mitigating errors caused by non-line-of-sight conditions is crucial in UWB localization.
Specialized algorithms address these challenges, improving reliability in scenarios where
direct line-of-sight measurements are difficult to achieve. Additionally, Time-Difference
of Arrival (TDoA) algorithms play a key role, converting time differences into distance
estimates in UWB systems with multiple anchors.

The methodology articulated in this treatise introduces a semi-supervised machine
learning paradigm that, in terms of precision, is comparable to the prevailing state-of-the-art
achievements in object localization.

2. Materials and Methods

For the system, two fundamental devices were designed from the ground up and
realized, between which there is a kind of synergy. Unlike transmission methods, they
cannot be considered simplistically as transmitter and receiver, as both devices actively
use two-way communication. The tag and the anchor have been made with a particular
focus on energy efficiency and miniaturization to maximize their range of applications in
different market sectors [27]. The UWB anchor seen in Figure 3 will be presented first.
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author’s ultra-wideband anchor.

For the anchor, a proprietary UWB transceiver solution was designed and fabricated
with dimensions of 61 mm (width) × 41 mm (length) × 1.6 mm (overall thickness) and a
thickness of 1/2 oz copper alone. Thanks to its surface area of 25 cm2, the anchor can be
installed almost anywhere, e.g., in an installation box. The anchor combines a DWM1000
ultra-wideband transceiver chip with an STM32F746IGK6 microcontroller and an ICS1894
Ethernet controller. In addition, the board is equipped with a transformer-based pairing of
the signals going in and out of the stack. Power is provided by a PoE (Power over Ethernet)
module. This ensures that both signals and power are supplied via the same full-size
RJ-45 connector. This saves PCB space and allows for simple installation using standard
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twisted-pair signal cable stretched as part of the construction of any modern building [16].
As an alternative control source, an nRF52832 microcontroller compatible with wireless
communication protocols such as IEEE 802.15.1, IEEE 802.15.4 or ANT can be used. Due to
the anchor’s unit load, the widely known and readily available PoE power supply allows
multiple devices to be powered simultaneously from a single power supply. This prompt
simplifying the power distribution system and integrating additional devices into the
building switchgear. This involves mounting the power supply in a DIN-rail cabinet.

Conversely, the ultra-wideband marker is a device whose size will determine its
bonding capabilities with the details (etching agents/commodities). For this reason, the
design measures 36 mm (width) × 26 mm (height) × 1.6 mm (overall thickness) and has a
copper thickness of 1/2 oz. This translates into a surface area of just under 9.4 cm2. This
represents a reduction in size of more than 60 percent compared to the anchor, which is
intended to allow the marker to be easily and quickly attached to even the smallest objects
being tracked. The appearance of the marker is presented in Figure 4. The presented
marker can be combined with many types of cells, but the optimal choice will be a Li-Po
cell with a geometric size that is less than or equal to the designed PCB. This will roughly
correspond to a battery with a capacity oscillating around the 1000 mAh value. To extend
the operating time in battery mode, marker trip conditioning was introduced in the PCB
design. The conditioning was implemented in the form of a 3-axis accelerometer (MC3413).
As with the anchor, the circuit responsible for transmitting the ultra-wideband signals was
the DWM1000 radio chip. The request conditioning, in this case, is based on the crossing
of the tripping threshold at which the system is considered to be at rest. Based on the
acceleration measured periodically in three axes, it became possible to excite the device in
well-defined situations.
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The spectrum of serviceable scenarios is endless in this, from environments filled with
heavy vibration-inducing equipment to areas completely free of interference. The setting is
stored in the nRF52832 wireless microcontroller, and the physical connection was realized
via a low-power variant of the I2C interface. In addition, the design has been enhanced
to support other sensors used to monitor environmental parameters for optimal storage
of goods. In this case, such sensors are thermometers (SHTC3/LPS22DFTR), hygrometers
(SHTC3), and pressure (LPS22DFTR) gauges. This solution allows an individual approach
to each load. This is important in view of the fact that, for example, despite a common
warehouse as a facility, the conditions in the different parts of the warehouse can differ
significantly. Another argument can be the differing requirements for the storage of the
goods. The set of acquired parameters is thus aggregated in the microcontroller’s memory
and cyclically sent via a protocol compliant with IEEE 802.15.1 (Bluetooth Low Energy) to
the nearest access point with access to the object’s local network. To protect configuration
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data and key measurement data, both devices (anchor and marker) were equipped with
FRAM-type non-volatile memories (MB85RC16PN/G/AMERE-1).

The abbreviated algorithm of the system using the presented hardware layer assumes
that the accelerometer located in the tag is excited by a motion stimulus, and then an
activation signal is sent by the digital layer of the accelerometer to the microcontroller
controlling the operation of the radio layer (nRF52832) via the I2C bus. The microcontroller
then initialises the transmission of the UWB signal to nearby anchors via the SPI bus. When
the signal from a given anchor returns to the tag, the distance is calculated based on the
time parameters and the speed of light in the medium (in this case, air). The finished
distance data together with additional data describing the environmental parameters are
sent back to the anchor, where in turn the data from the front-end RF UWB is transported
via the SPI bus to the STM microcontroller with Cortex-M core. The environmental data,
in turn, goes into the storage history for the purpose of controlling the storage status of
the load. This may involve generating a damage risk warning or exclusion for information
purposes. Once the data has been reprocessed, the location of users or assets is presented
to the user in graphical form via a dedicated application.

The methods employed in this study are integral to achieving precise and robust
localization in ultra-wideband (UWB) positioning. We present a comprehensive overview
of two distinct yet complementary approaches: Machine Learning Enhanced Trilateration
(MLET) and Localization by Optimization (LBO). These methodologies were developed
with the primary objective of enhancing the stability and continuity of localization processes.

The initial benchmark for our investigation is the standard trilateration algorithm,
which serves as a baseline reference against which the performance of the developed solu-
tions is evaluated [27]. Subsequently, we introduce MLET, a novel algorithm that harnesses
the power of machine learning to refine trilateration. This method involves formulating
circle equations based on the distances between pair anchors, with the intersections pro-
viding precise transmitter locations. The Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm ensures robustness by effectively differentiating relevant
points from outliers [28].

In contrast, the LBO approach leverages an optimization paradigm, where an objec-
tive function is minimized to yield accurate solutions. We detail the construction of the
objective function, involving residuals derived from the comparison between measured
and theoretical distances. This approach offers an alternative means of determining the
transmitter’s position by identifying the global minimum of the objective function through
various optimization methods.

The ensuing sections delve into the intricacies of each method, elucidating the un-
derlying principles, implementation details, and the rationale behind their application.
Through a comparative analysis, we aim to comprehensively understand the strengths and
limitations of MLET and LBO in the context of UWB localization.

The MLET (Machine Learning Enhanced Trilateration) algorithm starts with the collec-
tion of distance measurements from UWB (Ultra-WideBand) anchors to a mobile transmitter
device. This involves a meticulous process of synchronizing and calibrating UWB devices
to ensure that the data collected is both precise and reliable. The accuracy and consistency
of this data are paramount, as they form the foundational dataset upon which the MLET
algorithm operates. Advanced synchronization mechanisms are employed to ensure that all
measurements are taken within the same time frame, thus avoiding temporal discrepancies
that could affect the accuracy of the localization.

Following the data collection, the next phase involves preprocessing the data to
enhance its quality. This step includes sophisticated techniques for noise reduction and the
identification and removal of outliers. Statistical filtering methods are applied to smooth
out the data, reducing the impact of random noise. Anomaly detection algorithms are also
utilized to identify and eliminate data points that deviate significantly from the expected
range, ensuring that the dataset used for further analysis is robust and reliable. This



Energies 2024, 17, 4125 7 of 15

preprocessing phase is crucial for minimizing errors and ensuring that the subsequent steps
are based on high-quality data.

Once the data is preprocessed, the next step involves the formulation of circle equations
based on the distance measurements obtained from pairs of anchors. These equations are
pivotal in determining the potential intersections that signify the transmitter’s location.
Each pair of anchors forms a unique set of circles, and the precise calculation of these
intersections is essential for accurate localization. The process involves solving these circle
equations to find the points where the circles intersect, which represent potential locations
of the transmitter.

The core innovation of the MLET method lies in its use of the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm to differentiate between relevant
intersections and outliers. DBSCAN is employed to effectively cluster the intersection
points, distinguishing relevant location data from noise. This clustering technique is
essential in isolating accurate intersections and discarding outliers, significantly enhancing
the reliability and precision of the localization system. The implementation details of
DBSCAN include careful parameter selection and optimization to achieve the best results.
By fine-tuning these parameters, the algorithm can better adapt to the specific characteristics
of the dataset, ensuring optimal clustering performance.

Finally, the validation process of the MLET algorithm involves rigorous testing with
cross-validation techniques across different datasets. This step ensures the robustness and
accuracy of the algorithm under various real-world scenarios. The cross-validation process
involves dividing the dataset into multiple subsets, training the algorithm on some subsets
while testing it on others. This method helps in evaluating the algorithm’s performance
comprehensively, ensuring that it can generalize well to new, unseen data. Through this
rigorous validation, the effectiveness of the MLET method in achieving precise and reliable
indoor localization is demonstrated, confirming that it is both theoretically sound and
practically effective.

The Localization by Optimization (LBO) method represents a distinctive approach to
indoor positioning, focusing on the optimization paradigm to accurately determine the
transmitter’s location. This method begins with the collection of UWB (Ultra-WideBand)
measurements, which include distances from multiple anchors to the transmitter. Ensuring
the accuracy and consistency of these measurements is crucial, as the quality of the data di-
rectly impacts the performance of the LBO algorithm. This data collection process involves
advanced synchronization and calibration techniques to ensure that all measurements are
temporally aligned and accurate.

Once the data is collected, the core of the LBO method lies in the formulation of an
objective function. This function is constructed by defining residuals that represent the
difference between the measured distances and the theoretical distances calculated based
on the current estimated position of the transmitter. Mathematically, the residual for each
anchor i is given by:

u(i)

(→
x T

)
=

(
xa(i) − xT

)2
+
(

ya(i) − yT

)2
+

(
za(i) − zT

)2
− d2

(i), (1)

where xa(i), ya(i), za(i) are the coordinates of anchor i, xT , yT , zT are the coordinates of
transmitter, and d(i) is the measured distance between the anchor and transmitter. In an

ideal case, these residuals would vanish for the correct coordinates of
→
x T . We do not have

an ideal measurement; therefore, these quantities are non-zero. Then, the squares of defined
residuals are summed up, which gives us the objective function:

F
(
→
x T)

=
Na

∑
i

u(i)

(→
x T

)2
, (2)

which is summed over all anchors that are present in the system.
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This objective function quantifies the overall discrepancy between the measured and
theoretical distances, and the goal of the LBO method is to minimize this function to find
the optimal transmitter location.

To minimize the objective function, various optimization techniques can be em-
ployed [29,30]. One common approach is gradient descent, which iteratively adjusts
the estimated coordinates of the transmitter to reduce the objective function. In each it-
eration, the gradient of the objective function with respect to the transmitter coordinates
is computed, and the coordinates are updated in the direction that decreases the objec-
tive function. This process continues until the changes in the objective function become
negligible, indicating that an optimal solution has been found.

The validation process of the LBO method is critical to ensuring its robustness and
accuracy. This involves testing the algorithm with diverse datasets that simulate vari-
ous real-world conditions, including different spatial configurations and environmental
scenarios. Hold One Out validation techniques are employed to assess the algorithm’s
performance, wherein the dataset is divided into train and test set. By rigorously validating
the LBO method across different conditions, its practical effectiveness in achieving precise
and reliable indoor localization is demonstrated.

The LBO method offers several advantages, including its ability to handle complex
environments where direct line-of-sight measurements may not always be available. By
optimizing the overall discrepancy across all measurements, LBO can effectively mitigate
the impact of non-line-of-sight conditions and other sources of measurement noise. Ad-
ditionally, the flexibility in choosing different optimization techniques allows the LBO
method to be tailored to specific applications and computational resources, making it a
versatile solution for various indoor localization challenges.

3. Measurement Methodology

The time-of-flight analysis used in the system is based on the knowledge of two pa-
rameters: the time required for wireless data exchange between devices and the knowledge
of the speed of the electromagnetic wave characteristic of propagation in a given medium.
For obvious reasons, this will usually be vacuum or air, but equally important at certain
times may be the knowledge of the dependence on contact with obstacles such as terrain
obstacles, architectural buildings, or simply the human factor. This relationship, in its
simplest form, can be written as a formula [31]:

d =
c(t2 − t1)

2
(3)

where d is the distance between device A and B, c is the speed of light for the particular case
of the medium in which it propagates, while t1 and t2 are the time stamps, with t1 being the
start of the measurement and t2 its end. The resulting distance is the first and basic starting
information for the computational algorithms and machine learning mechanisms based
on which the object will be located. The more such reference points the system obtains in
relation to a specific marker, the smaller the uncertainty resulting from the current location
will be. However, the readings must result from devices correctly calibrated in terms
of hardware and software [32]. To improve subsequent analysis on cases consisting of
multiple readings for each device, the variation of the signal over time was tracked and
presented itself as shown in Figures 5 and 6. The graph in Figure 5 shows the variation
of the measured distance information returned by the marker and anchor as a function of
the measurement number for an object in motion. The graph in Figure 6 was made for a
non-moving object. This checked the variance of the received results.
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Figure 6. Plot of the variation of the measured distance as a function of the measurement number for
a stationary object.

In this case (second graph), for the first 120 samples, it was found that the difference
between the global extremes is usually around 10 cm, which, for several axes and one
plane, initially allows the tracking of small objects whose size does not necessarily exceed a
few cm.

To perform more complex tests, a real test environment was prepared in which the
equipment was installed. This was done by choosing a room with a complex shape to
gradually increase the model’s complexity and assess the impact of architectural obstacles
on the performance of the designed devices. Testing of the prototypes were conducted with
the largest possible area, a 5 m × 4 m rectangle. Models showing the entire room and the
object models used are shown in Figure 7.
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Tripods set at a height of 120 cm were used to position the anchors in the room. This
took into account the significant effect of the human body on the propagation speed of
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the electromagnetic wave in the room. This is due to the high water content of the human
body. This height is due to the concentration of matter at this height (waist to mid-torso)
for an average human height. In the context of transmission methods, water can be a
hard barrier to EM waves. However, in the case under consideration (a time-distance
measurement method), there are multiple changes in wave speed when passing through
an obstacle, which is a strongly heterogeneous mixture of matter. The radiated wave may
then undergo partial transition, refraction, or reflection, which considerably impacts the
final measurement result. The same applies to tracking objects through other objects or
walls with different intensities. A reference point consisting of an anchor and tripod in
the given configuration is shown in Figure 8. The anchor prototype has been fitted with a
dedicated enclosure (as has the marker), and on the right side of the anchor, you can see
the power supply using a twisted-pair Ethernet cable with an RJ-45 connector and a PoE
power supply.
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Figure 8. Finished prototype of ultra-wideband anchor installed at reference point.

The Table 1 presents the results of measuring distances to an anchor using Ultra-
Wideband (UWB) technology under two different scenarios: not covered and covered.
This comparison was made to assess the impact of measurement interference factors. In
the “Not covered” condition, where the measurements were taken without covering the
transmitter with human body, the real measurements range from 0.50 m to 3.19 m. The
corresponding UWB measurements show absolute errors ranging from 0.09 m to 0.25 m,
indicating a relatively high accuracy of the UWB technology in unobstructed conditions. In
the “Covered” condition, where the transmitter was covered with human body, the real
measurements range from 0.31 m to 3.04 m. Under these conditions, the absolute errors
are higher, ranging from 0.29 m to 0.40 m. This indicates that while UWB measurements
remain reasonably accurate, the presence of obstructions such as human body increases the
discrepancies between the real and measured distances. The comparison demonstrates the
impact of measurement interference factors, highlighting the need for further calibration or
algorithmic adjustments to maintain accuracy in the presence of such obstructions.
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Table 1. Measurement errors for two scenarios, with and without cover.

Not Covered Covered

Real measurement
[m]

UWB
measurement [m] Absolute error [m] Real measurement

[m]
UWB

measurement [m] Absolute error [m]

0.50 0.67 0.17 0.31 0.71 0.4
0.91 1.09 0.18 0.55 0.84 0.29
1.27 1.50 0.23 0.90 1.28 0.38
1.64 1.89 0.25 1.11 1.50 0.39
2.18 2.09 0.09 1.54 1.89 0.35
2.20 2.45 0.25 2.08 2.42 0.34
2.70 3.00 0.3 2.45 2.82 0.37
3.19 3.42 0.23 3.04 3.27 0.23

4. Results

The comprehensive analysis of the results reveals a notable superiority of the recently
introduced algorithms, namely Machine Learning Enhanced Trilateration (MLET) and
Localization by Optimization (LBO), when compared to the conventional trilateration
method. Figure 9 provides a detailed overview of the errors across various test cases,
showcasing the enhanced performance of both MLET and LBO. The average error across the
entire dataset underscores the effectiveness of these new algorithms, with MLET achieving
an impressive mean error of 11.31 cm, closely followed by LBO with an average error of
11.66 cm. This represents a substantial improvement of approximately 25% compared to
the mean error of 15.21 cm observed with standard trilateration.
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Figure 9. Positioning errors for all three algorithms—the distance between the real and computed
positions. For visualization, we picked cases where trilateration has solutions.

Beyond mere precision, the pivotal advantage of the newly proposed algorithms
lies in their robustness. The inherent limitation of trilateration, notably its inability to
provide solutions in the presence of significant measurement noise, is vividly illustrated
in Figure 10. In this depiction, only 5 out of 9 results exhibit a trilateration solution. In
stark contrast, MLET and LBO consistently deliver solutions for every sample in our
dataset, highlighting their robust nature. This robust performance is of utmost importance,
especially in practical applications like the production environment, where the inability to
ascertain the transmitter’s position can have severe consequences.
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Figure 10. Sample results of positioning algorithms. One can notice that trilateration does not always
have a solution, which is the main reason for development of new algorithms.

The detailed examination of these results reaffirms the heightened accuracy of MLET
and LBO and emphasizes their reliability in challenging scenarios characterized by sub-
stantial measurement noise. This robust performance positions the new algorithms as
promising solutions for real-world applications, addressing a critical limitation inherent
in traditional trilateration methods and ensuring precision and consistent performance in
diverse and demanding operational environments.

5. Discussion

The presented study delves into indoor localization using ultra-wideband (UWB)
technology, addressing the crucial challenges associated with signal distortion, energy
efficiency, and robustness in complex environments. The system, tailored for goods posi-
tioning in warehouse management, integrates temporal analysis techniques, specifically
Time of Flight (ToF), coupled with UWB transmitter technology to achieve exceptional
accuracy in distance determination. The implementation involves proprietary UWB tags
and anchors, forming a network capable of real-time object orientation within a given
space. Utilizing UWB technology, including protocols like Bluetooth, ZigBee, Wi-Fi, and
LoRa, is pivotal in achieving precise indoor positioning. The system’s design focuses on
overcoming limitations in traditional trilateration methods, particularly in scenarios with
significant measurement noise or signal distortion due to reflections and refractions. The
study introduces two fundamental devices, the UWB anchor, and the UWB tag, designed
for energy efficiency and miniaturization. The anchor, equipped with a UWB transceiver
chip, microcontroller, and Ethernet controller, ensures versatile installation options. The
compact UWB tag, designed for easy object attachment, incorporates an accelerometer for
marker trip conditioning and supports additional sensors for environmental parameter
monitoring. The research emphasizes the challenges of signal distortion due to reflections
and refractions. The system addresses this by introducing proprietary algorithms, such as
machine learning enhanced trilateration (MLET) and localization by optimization (LBO).
These algorithms stabilize results, increase measurement precision, and ensure reliable
performance despite environmental complexities.

Comparative analysis of the proposed algorithms (MLET and LBO) against standard
trilateration reveals superior accuracy and robustness. MLET and LBO consistently out-
perform trilateration, as demonstrated by lower average errors and the ability to provide
solutions for all samples in the dataset, even in challenging conditions with significant
measurement noise. The discussion extends to the real-world applicability of the system,
emphasizing its potential role in optimizing facility operations in terms of energy and time.



Energies 2024, 17, 4125 13 of 15

The energy-saving mechanisms, inherent in both the system and hardware solutions, align
with the broader goal of achieving ecological and efficient warehouse management.

While the proposed indoor localization system leveraging ultra-wideband (UWB)
technology and sophisticated algorithms (MLET and LBO) demonstrates notable advan-
tages, it is crucial to acknowledge certain limitations. The first limitation concerns the
system’s strong dependency on specific UWB tags and anchors. The system’s efficacy
is contingent upon the functionality and endurance of these hardware components, and
any shortcomings, such as limited battery life, could directly impact the overall perfor-
mance and practicality of the system. Scalability poses another challenge. As the number
of tracked objects, or tags, increases, so does the system load. The potential scalability
issues must be carefully considered, including the impact on overall performance and the
potential necessity for additional computational resources to handle the increased load.
Environmental factors can significantly influence the system’s performance. Interference
from other wireless devices, obstacles such as walls or large objects, and variations in the
physical environment may introduce challenges and diminish the system’s accuracy. Real-
world environments, particularly those with intricate structures and dynamic conditions,
present challenges for any localization system. The system’s ability to adapt to dynamic
changes, such as moving obstacles or environmental alterations, needs thorough evaluation.
Accurate calibration of both hardware and software components is critical for the system’s
precision. Any deviations from calibration standards may introduce errors in distance
measurements, compromising the system’s overall accuracy.

6. Conclusions

The paper underscores the effectiveness of employing ultra-wideband (UWB) technol-
ogy for indoor localization, recognizing its pivotal role in achieving exceptional accuracy in
distance determination. Specifically tailored for warehouse management, the system’s capa-
bility to furnish real-time Cartesian coordinates for tracked goods emerges as a noteworthy
contribution, promising optimization within logistics and overall operational efficiency.
Innovative strides in hardware solutions, encompassing UWB tags and anchors, are high-
lighted. The focus on energy efficiency and miniaturization, coupled with the integration
of additional sensors for environmental monitoring, showcases a comprehensive approach
designed to address the diverse needs of various market sectors.

Despite inherent challenges in indoor localization, such as signal distortion and mea-
surement noise, the paper underscores the triumphant performance of proprietary algo-
rithms. Notably, Machine Learning Enhanced Trilateration (MLET) and Localization by
Optimization (LBO) successfully navigate these challenges, elevating the stability and
precision of the system. A comparative analysis accentuates the robustness and accuracy of
MLET and LBO when juxtaposed with the traditional trilateration method. These novel
algorithms consistently outshine trilateration, furnishing more reliable solutions even with
significant measurement noise—an invaluable advantage for practical applications. The
system’s adaptability to real-world scenarios is a recurring theme, particularly its potential
to optimize facility operations concerning energy and time. The integrated energy-saving
mechanisms, both within the system and in the hardware solutions, align with broader
ecological and efficient warehouse management objectives.

The conclusion expresses confidence in the system’s practical viability and emphasizes
the necessity for continuous development and refinement. Future research directions
are proposed, encompassing scalability considerations, algorithmic optimization, and
potential integrations with other technologies. The demonstrated accuracy, robustness,
and adaptability position the proposed indoor localization system as a valuable asset in
warehouse management’s dynamic and challenging environments.
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