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Abstract: The design optimization of a direct-drive permanent magnet synchronous generator
(DDPMSG) is of great significance for wind turbines because of its unique advantages. This paper
proposes a two-stage model to realize multi-objective design optimization for a 6 MW DDPMSG. In
the first stage, a surrogate optimized response surface model based on an improved sparrow search
algorithm (ISSA) was established for modeling the cogging torque and generator efficiency. In the
second-stage model, a multi-objective optimization model is proposed to optimize the cogging torque
and generator efficiency of the DDPMSG. Finally, the proposed two-stage model was used for a
6 MW DDPMSG design optimization, and the simulation results demonstrated the superiority and
rationality of the proposed model. In the first-stage model, the proposed surrogate model based
on the ISSA had a better modeling accuracy and lower errors. Compared with traditional response
surface models and correlation analysis models, the proposed optimized surrogate model reduced
errors in the cogging torque by 34.63% and 42.97%, respectively, while the errors in the efficiency
models were reduced by 12.92% and 60.78%, respectively, which indicates the superiority of the
first-stage model. In the second stage, compared with the single-objective optimization model, the
multi-objective optimization model achieved a trade-off optimization between the cogging torque
and the efficiency. Compared with the cogging torque optimization model, the proposed model
optimized the efficiency by 101.41%. Compared with the efficiency optimization model, the proposed
model reduced the cogging torque by 16.67%. These results verified the superiority and rationality of
the second-stage model.

Keywords: permanent magnet synchronous generators; multi-objective design optimization;
improved sparrow search algorithm; non-dominated sorting genetic algorithm II

1. Introduction

With the rapid development of the social economy, the increasing consumption of
traditional energy poses a significant challenge to the sustainable development of society.
Therefore, there is an urgent need to develop and utilize new energy sources [1]. Wind
energy has the advantages of large reserves and is pollution-free; thus, it has attracted
considerable attention. Currently, wind power generation technology is developing rapidly
and becoming increasingly mature [2,3]. Common wind turbine generators include doubly
fed induction generators (DFIGs) and DDPMSGs. Due to the different motor structures,
the efficiency of the DDPMSG is significantly better than that of the DFIG. Therefore, it is
widely used in wind power generation.

Owing to the use of permanent magnet excitation and no excitation loss, the DDPMSG
has a higher power generation efficiency. Compared with traditional electric excitation
generators, it has the advantages of being lightweight and having a small size, high
power density, high efficiency, and high power factor [4–6]. Compared with the DFIG,
it has higher stability and lower operation and maintenance costs. Therefore, the design
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and optimization of the DDPMSG has become a research hotspot in the wind power
industry [7,8].

In recent research, some physical assumptions were usually used to simplify the
analytical model of the generator and resulted in simple algebraic equations. Furthermore,
this strategy was applied to optimize the design of the generators. In DDPMSG design,
because of the influence of the cogging torque, it is necessary to establish a complex and
accurate analytical model for generator optimization in terms of the cogging torque and
efficiency [9–11]. Guo et al. [12] established finite element models with different stator
slot and rotor pole combinations to analyze the effect of the pole arc coefficient on the
cogging torque. Fang and Chen [13] proposed an analytical model to reduce the cogging
torque according to the principle of a flux-modulated generator for wave energy conversion.
Zhang et al. [14] used a finite element analysis method to minimize the cogging torque.
Yang et al. [15] established an analytical model for motor cogging torque based on the
energy method and then optimized the combination of the unit machine and slot width to
reduce the cogging torque. In addition, some scholars established analytical models for
the motor cogging torque and other influencing factors, such as the magnetic pole shape
and pole arc coefficient [16–18], to achieve motor design optimization. Although generator
optimization based on analytical models has a high accuracy, it is often difficult to establish
an analytical model when considering a larger number of parameters. Because of the more
complex relationships between various variables, the analytical model of the generator
is more complex, and the corresponding calculation cost is high, making it difficult to
solve effectively.

One way to overcome these difficulties is to replace the analytical model with an agent
model. Therefore, generator design optimization based on the agent model requires less
computational time because it reduces the number of necessary finite element simulations
and the solving process of analytical models. In this regard, commonly used agent models
include the response surface method, Kriging method, support vector machine, artificial
neural network, and space mapping. Kwon et al. [19] optimized the shape of the armature
core based on response surface analysis, which reduced the displacement force and har-
monic distortion rate of the back electromotive force. Li et al. [20] optimized the torque
of permanent magnet synchronous motors by establishing a Kriging model based on the
multi-objective evolutionary algorithm (MOEA). Ashabani et al. [21] presented an agent
model using the Taguchi method and an artificial neural network (ANN) for the shape
optimization of axially magnetized tubular linear permanent magnet (TLPM) motors. Liu
and Fu [22] built a dynamic double-response surface agent model based on RBF and the
least squares method, which accelerated the optimal design speed of a permanent magnet
motor. Sun et al. [23] employed the Pearson correlation coefficient analysis and cross-factor
variance analysis techniques to evaluate the correlations between the design parameters
and optimization objectives. Giurgea et al. [24] proposed a surrogate model for electrical
machines based on a statistical multiple correlation coefficient (R2) analysis and moving
least squares (MLS) approximation.

The use of surrogate models significantly reduces the computational complexity of
the model. However, DDPMSG design optimization based on surrogate models relies on
high-precision parameters. Statistical calculation methods may no longer meet the accuracy
requirements. With the development of artificial intelligence technology, many algorithms
have been used for model parameter optimization, such as genetic algorithms [25–29],
particle swarm optimization algorithms [30–32], and neural network models [33,34]. This
has led to the further development of surrogate models. However, surrogate models
based on neural networks rely on large amounts of training data. When the dataset size
is insufficient, it is prone to overfitting and other problems. However, models based on
traditional intelligent optimization algorithms are prone to becoming stuck in local optima
and have slow convergence speeds. In addition, most recent motor optimization research
focused on the single-objective optimization of the cogging torque, which could lead to a
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loss of generator efficiency. Therefore, developing an excellent surrogate model is of great
significance for optimizing DDPMSG designs.

To address these issues, a two-stage model for the design optimization of the DDPMSG
is proposed in this paper. In the first-stage model, an excellent surrogate model based on an
improved sparrow search algorithm (ISSA) was established. The combination of the ISSA
not only ensures the accuracy of the surrogate model but also avoids the shortcomings of
traditional algorithms. In the second stage, we achieved a trade-off optimization between
the DDPMSG cogging torque and efficiency by establishing a multi-objective optimization
model. In addition, the two-stage model proposed in this study can achieve efficient
integration of multi-objective optimization models and various surrogate models, which is
of great significance for the design optimization of a DDPMSG.

2. DDPMSG Model

The basic structure of a DDPMSG consists of a rotor, stator, winding, and permanent
magnet, as shown in Figure 1. The initial design parameters for DDPMSG are shown
in Appendix A. For these parts, we used Ansys Maxwell 2020 R1 analysis software to
analyze the relationships between various variables, the cogging torque, and the generator
efficiency [35]. The pole arc coefficient, which is one of the magnetic field distribution
parameters of a DDPMSG, is the ratio of the pole arc length to the pole spacing of the
permanent magnet, which affects the output power and torque of the generator. The air
gap length is the distance between the rotor and stator, which is closely related to the
generator torque, current, efficiency, and magnetic flux density. The tooth width and iron
core length affect the air gap magnetic density and the efficiency of the generator. Therefore,
it is necessary to optimize the pole arc coefficient, air gap length, tooth width, and iron core
length to improve the power generation performance of a DDPMSG.
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3. Two-Stage Optimization Model
3.1. First-Stage Optimization Model Based on ISSA

Based on the modeling of the DDPMSG, the first-stage model obtains the relationship
between the motorization objective and decision variables using the optimized response-
surface-method-based ISSA. As a comprehensive optimization method for experimental
design and mathematical modeling, the response surface method uses finite element sim-
ulation test data to fit and establish a mathematical relationship model reflecting each
optimization parameter and target. At present, the Box–Behnken design (BBD) experimen-
tal method and central composition design (CCD) are the most classic and commonly used
experimental design methods in response surface methods. Based on this, we adopted the
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most commonly used quadratic polynomial as the modeling formula, which is expressed
as follows:

f (x) = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k

∑
i=1

k

∑
j=1

βijxixj + ε ∀i ̸= j (1)

where f (x) denotes the fitting target. In this study, the optimization objectives of the
DDPMSG generator are represented. In this study, the two objectives were the cogging
torque and generator efficiency. X = [x1, · · · xk] represents the decision variable. In this
study, k = 4, and thus, the polar arc coefficient, air gap length, tooth width, and core length
were x1 to x4, respectively. β0 is a constant. βi is the coefficient of the first term. βii is a
quadratic coefficient. βij is the cross-term coefficient. ε is an error constant.

To ensure the fitting accuracy and reduce the experimental cost, the parameters of
model (1) were optimized based on an improved SSA-based Gaussian variation. The SSA
is a population optimization algorithm based on the foraging and anti-predation behaviors
of sparrows. It has the advantages of a fast convergence speed and strong optimization
ability. Therefore, it is widely used in renewable energy prediction and nonlinear problem
optimization. To prevent the traditional algorithm from falling into local optimal solutions,
we proposed an improved SSA (ISSA) based on Gaussian variation. Then, the ISSA was
used to optimize model (1). In the ISSA, the sparrow population includes the production
population, fraud population, and alarm population, and their formulas are shown in
Equations (2)–(4), respectively:

Piter+1
i,D =

{
Piter

i,D exp
(

−i
aMaxiter

)
R < ST

Piter
i,D + randL R ≥ ST

(2)

Piter+1
i,D =

Q exp
(

Piter
worst−Piter

i,D
i2

)
i > n

2

Piter
best +

∣∣∣Piter
i,D − Piter

best

∣∣∣ i ≤ n
2

(3)

Piter+1
i,D =

Piter
gest + γ

∣∣∣Piter
i,D − Piter

gest

∣∣∣ fi > fg

Piter
i,D + K |Piter

i,D −Piter
worst|

( fi− fw)+σ
fi = fg

(4)

where Equation (2) represents the production population. Equation (3) represents the fraud
population. Equation (4) represents the alarm population. Piter

i,D is the j-th dimensional
position information of the i-th sparrow individual at the iter-th iteration. R ∈ [0, 1] is a
warning value. ST ∈ [0.5, 1] is a safe value. iter is the iteration. a ∈ (0, 1] is a random
number. L is the identity matrix. Q is a constant. Piter

worst is the worst individual in the iter-th
iteration. Piter

best is the best individual in the iter-th iteration. Piter
gbest has been the best global

individual since the first iteration. γ is a step-controlled parameter. fi is the fitness of
the i-th sparrow individual. fg represents the fitness of the best sparrow individual. fw
represents the fitness of the best individual in the latest population.

K ∈ [−1, 1] is a random number. σ is a constant.
In most swarm intelligence algorithms, the location update depends on the direct

information interaction of each individual. Therefore, they tend to fall into locally optimal
solutions. The Gaussian variation strategy was introduced into the SSA to improve the
performance of the algorithm. The formula used is as follows:

Piter+1
i,D = Piter

i,D [0.5 + randN(0, 1)] (5)

where N(0, 1) stands for a normal distribution.
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According to Formula (1), the accuracy of the response surface model depends on
the model parameters. Therefore, the ISSA is used for parameter optimization of the
cogging torque response surface model and the generator efficiency response surface
model. Therefore, based on the response surface model of the cogging torque and generator
efficiency, the first-stage model is established by using the parameters of the response
surface model as decision variables, with the optimization objective of minimizing the error
between the response surface model and the actual results. Finally, the first stage model is
defined as follows:

Min
N
∑

n=1
| f1(Xn, β)− CORn|

s.t. β ∈ R
(6)

Min
N
∑

n=1
| f2(Xn, β)− ηn|

s.t. β ∈ R
(7)

where model (6) is the fitting model for the cogging torque. Model (7) is the fitting
model for DDPMSG efficiency. f1(Xn, β) is a response surface model of the cogging
torque constructed using model (1). f2(Xn, β) is a response surface model of the generator
efficiency constructed using model (1). Xn is the n-th group of the simulation data obtained
by the orthogonal test. CORn is the result of the cogging torque in the n-th test. ηn is the
result of the generator efficiency in the n-th test.

3.2. Second-Stage Optimization Model Based on NSGA-II

By solving models (6) and (7) using the ISSA, we can obtain the optimal surrogate
model of the cogging torque and generator efficiency. Based on the first stage model, the
second-stage optimization model aims to minimize the cogging torque of the DDPMSG and
maximize the generator efficiency, and it establishes the multi-objective design optimization
model of the DDPMSG. The mathematical model of the DDPMSG multi-objective design
optimization model is as follows: {

Min f1(X, β)
Max f2(X, β)

s.t. X ∈ [lb, ub]
(8)

where f1(Xn, β) is the optimized response surface model of the cogging torque obtained by
solving model (6). f2(Xn, β) is the optimized response surface model for efficiency obtained
by solving model (7). lb and ub are the upper and lower bounds of the optimized variables,
respectively. X is the decision variable that includes the polar arc coefficient, air gap length,
tooth width, and core length.

3.3. Model Solving

According to the definition of the optimization models of the two stages, the model-
solving framework is shown in Figure 2. The first-stage optimization model was solved
based on the ISSA, and the response surface model of the DDPMSG cogging torque and
efficiency was obtained. The solution process of the first-stage optimization model is
presented in Algorithm 1.

The second stage optimization model was solved based on the non-dominated sorting
genetic algorithm II (NSGA-II). The NSGA-II is a genetic algorithm based on the Pareto
optimization concept, which has been widely used in multi-objective optimization prob-
lems. The solution process of the second-stage optimization model based on the NSGA-II
is shown in Algorithm 2.
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Algorithm 1: The first-stage model-solving algorithm based on the ISSA

1. Input the DDPMSG generator test data.
2. Initialize the ISSA parameters, including the population size and number of iterations.
3. Establish the response surface model for the cogging torque and efficiency according to model 1.
4. Based on the experimental data, calculate the fitness of the individual population according to
models (6) and (7).
5. While (iter < Max_Iteration_Iter && Error > threshold)
6. Update the population according to Formulas (2) to (4).
7. Perform the population variation according to Formula (5).
8. Calculate the fitness of new population individuals according to models (6) and (7).
9. Update the optimal solution.
10. End While
11. Output the optimal model of the generator cogging torque and efficiency.

Algorithm 2: The second-stage model solving algorithm based on the NSGA-II

1. Solve the first-stage optimization model based on the ISSA and obtain model (8).
2. Initialize the NSGA-II parameters, including the population size, iteration number, crossover
probability, and mutation probability.
3. According to model (8), calculate the generator cogging torque and efficiency of the individual.
4. While (iter < Max_Iteration)
5. Perform the individual selection, crossover, and mutation.
6. Calculate the cogging torque and generator efficiency of the new population based on model (8).
7. Calculate the non-dominated sorting and crowding results.
8. End While
9. Output the optimal parameters of the generator.
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According to the two-stage model framework in Figure 2, Algorithms 1 and 2 are used
as the solving algorithms for each stage. The solving flowcharts of the proposed model are
shown in Figure 3.
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4. Simulation Analysis

To verify the effectiveness of the model, based on a two-stage optimization model,
we conducted a multi-objective optimization design for a 6 MW DDPMSG. The range
constraints of the decision variables are presented in Table 1. To obtain the response surface
model of the cogging torque and efficiency of the DDPMSG, an orthogonal simulation
experiment was conducted on the 6 MW DDPMSG based on the BBD experimental method.
The results of the simulation experiments are presented in Table 2.

Table 1. The 6 MW DDPMSG parameter ranges.

Parameter Range

Polar arc coefficient 0.65~0.8
Air gap length 2.5~4 mm

Tooth width 30~37.5 mm
Core length 1450~1600 mm

Table 2. The results of the orthogonal simulation experiment.

No. Polar Arc
Coefficient/mm

Air Gap
Length/mm

Tooth
Width/mm

Core
Length/mm

Cogging
Torque/

(×105 Nm)
Efficiency/%

1 0.65 2.5 30 1450 3.63 95.6
2 0.65 3 32.5 1500 2.85 95.5
3 0.65 3.5 35 1550 2.44 96.01
4 0.65 4 37.5 1600 1.69 97.35
5 0.7 2.5 32.5 1550 3.22 96.88
6 0.7 3 30 1600 3.25 97.45
7 0.7 3.5 37.5 1450 2.32 95.36
8 0.7 4 35 1500 2.84 96.32
9 0.75 2.5 35 1600 1.86 97.23
10 0.75 3 37.5 1550 2.68 97.34
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Table 2. Cont.

No. Polar Arc
Coefficient/mm

Air Gap
Length/mm

Tooth
Width/mm

Core
Length/mm

Cogging
Torque/

(×105 Nm)
Efficiency/%

11 0.75 3.5 30 1500 2.72 97.23
12 0.75 4 32.5 1450 2.45 95.67
13 0.8 2.5 37.5 1500 2.34 97.5
14 0.8 3 35 1450 2.92 96.88
15 0.8 3.5 32.5 1600 2.45 97.02
16 0.8 4 30 1550 2.63 95.46

According to Algorithm 1, the ISSA was applied to optimize the response surface
model. Subsequently, to demonstrate the superiority of the ISSA in the first-stage model,
we compared the proposed method with the surrogate model proposed by Giurgea et al. A
comparison of the cogging torque fitting results for each model is shown in Figure 4. A
comparison of the generator efficiency fitting results for each model is shown in Figure 5.
Figure 6 shows a comparison of the fitting errors for each model. According to the com-
parison results, it can be found that the response surface model optimized based on the
ISSA had a better fitting effect. Compared with the other models, the optimized response
surface model had significantly lower errors for both the cogging torque and generator
efficiency. From Figures 4 and 5, it can be seen that the surrogate model based on the
ISSA optimization had the best fitting effect for both the cogging torque and generator
efficiency among all models. According to Figure 6, compared with traditional response
surface models and correlation analysis models, the proposed optimized surrogate model
reduced errors in the cogging torque by 34.63% and 42.97%, respectively, while the errors
in the efficiency models were reduced by 12.92% and 60.78%, respectively, which indicates
the superiority of the first stage model. Therefore, the comparison results indicate the
superiority of the proposed method.
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Based on the modeling results of the first-stage model, the second-stage optimization
model used the NSGA-II to perform multi-objective optimization on the cogging torque
and generator efficiency of a 6 MW DDPMSG. The Pareto front diagram of the two-stage
optimization model based on the NSGA-II is shown in Figure 7. As shown in Figure 7,
there is a contradictory relationship between the cogging torque and generator efficiency
target. The optimization of the cogging torque target indicates a decrease in the generator
efficiency. Therefore, the multi-objective optimization design for a 6 MW DDPMSG is
extremely meaningful.
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To demonstrate the rationality of the second-stage model, a single-objective optimiza-
tion model for the cogging torque, a single-objective optimization model for the generator
efficiency, and a multi-objective optimization model were used for the model compari-
son. Figure 8 shows the comparison results of the cogging torque targets for each model.
Figure 9 shows a comparison of the generator efficiencies of each model. It is worth noting
that although the single-objective optimization model for the cogging torque had a better
cogging torque than the other models, its generator efficiency was the worst. Similarly,
under the single-objective optimization model of the generator efficiency, the generator
efficiency was optimal, but the cogging torque target was the worst. Compared with the
other two models, the multi-objective optimization model balanced the optimization of
the generator cogging torque and the generator efficiency. Compared with the cogging
torque optimization model, the proposed model optimized the generator efficiency by
101.41%. Compared with the efficiency optimization model, the proposed model reduced
the cogging torque by 16.67%. It not only optimized the cogging torque but also effectively
ensured the generator efficiency, which was of great significance for the design optimization
of the 6 MW DDPMSG.
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5. Conclusions

Considering the shortcomings of traditional generator design optimization methods,
a two-stage model framework is proposed in this paper to achieve the multi-objective
optimization of a 6 MW DDPMSG. On the one hand, an ISSA based on Gaussian mutation
was used for response surface model accuracy optimization. Compared with different
algorithms, the proposed surrogate model based on the ISSA had a better modeling accu-
racy and lower errors, which verified its superiority. Compared with traditional response
surface models and correlation analysis models, the proposed optimized surrogate model
reduced the errors in the cogging torque by 34.63% and 42.97%, respectively, while the
errors in the efficiency models were reduced by 12.92% and 60.78%, respectively. On the
other hand, we achieved multi-objective optimization of the cogging torque and generator
efficiency for a 6 MW DDPMSG based on the NSGA-II. Compared with the single-objective
optimization model, the proposed multi-objective optimization model could achieve a
trade-off between the cogging torque and the generator efficiency. Compared with the cog-
ging torque optimization model, the proposed model optimized the generator efficiency by
101.41%. Compared with the efficiency optimization model, the proposed model reduced
the cogging torque by 16.67%. These comparison results show the proposed model’s great
significance for the design optimization of a 6 MW DDPMSG.
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Appendix A

Table A1. Initial design parameters of the DDPMSG.

Parameters Values

Rated power (kW) 6000
Rated speed (rpm) 10.5

Permanent magnet model N45H
Rotor outer diameter (mm) 6434
Stator outer diameter (mm) 6098

Air gap (mm) 6
Length of stator (mm) 1640

Pole number 120
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