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Abstract: Cogeneration is an important means for heat supply enterprises to obtain heat, and accurate
load prediction is particularly crucial. The heat load of a centralized heat supply system is influenced
by various factors such as outdoor meteorological parameters, the building envelope structure, and
regulation control, which exhibit a strong coupling and nonlinearity. It is essential to identify the
key variables affecting the heat load at different heating stages through data mining techniques and
to use deep learning algorithms to precisely regulate the heating system based on load predictions.
In this study, a heat station in a northern Chinese city is taken as the subject of research. We apply
the Fuzzy Clustering based on Fourier distance (FCBD-FCM) algorithm to transform the factors
influencing the long and short-term load prediction of heat supply from the time domain to the
frequency domain. This transformation is used to analyze the degree of their impact on load changes
and to extract factors with significant influence as the multifeatured input variables for the prediction
model. Five neural network models for load prediction are established, namely, Backpropagation
(BP), convolutional neural network (CNN), Long Short-Term Memory (LSTM), CNN-LSTM, and
CNN-BiLSTM. These models are compared and analyzed for their performance in long-term, short-
term, and ultrashort-term heating load prediction. The findings indicate that the load prediction
accuracy is high when multifeatured input variables are based on fuzzy clustering. Furthermore, the
CNN-BiLSTM model notably enhances the prediction accuracy and generalization ability compared
to other models, with the Mean Absolute Percentage Error (MAPE) averaging within 3%.

Keywords: centralized heating; load forecasting; FCBD-FCM; deep learning; CNN-BiLSTM

1. Introduction

With the rapid advancement of urbanization and industrialization, China has emerged
as one of the largest district heating markets globally. High urban heating energy consump-
tion in northern China accounts for 22% of the total building energy consumption. Due
to the accelerated pace of urbanization, the heating area in northern cities and towns has
seen a significant increase, from 5 billion square meters in 2001 to 14.7 billion square meters
in 2018 [1]. This represents a substantial potential for energy conservation and reduction
in carbon emissions. Furthermore, the knowledge derived from data, facilitated by artifi-
cial intelligence and IoT technology, enables the realization of on-demand heating. This
advancement is aiding in the development of green and energy-saving heating solutions,
which is considered the current trend in the industry.

The application and development of intelligent heating monitoring systems have
resulted in the accumulation of vast quantities of data. Mining the heating characteristics
from these data to realize on-demand heating is of great importance. By extracting knowl-
edge from the data, energy efficiency can be improved, and energy saving and emission
reduction can be achieved. The fourth generation of centralized heat supply has introduced
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the concept of smart heat networks, emphasizing the significance of heat load prediction
technology [2,3]. The objective of heat load forecasting is to accurately predict the future
energy demands of heat users, thereby enabling the heat supply system to provide and
dispatch heat rationally. Through precise load forecasting, it is possible to reduce energy
consumption, enhance the performance of the heat supply system, and deliver higher
service quality. Consequently, there is an urgent necessity to analyze historical operation
data by applying advanced techniques judiciously, in order to enhance the accuracy of load
forecasting and ultimately achieve demand-based heat supply. This research can provide
guidance for the regulation of centralized heat supply, leading to a reduction in energy
waste and savings in heat supply costs.

Data mining techniques have been extensively utilized in the operation of building en-
ergy systems to enhance energy efficiency [4–6]. The forecasting of building energy system
loads is predominantly associated with data mining techniques, which typically encompass
four stages: data standardization, feature selection, model parameter optimization, and
model construction and training. Feature selection is conducted through data mining to
isolate the variables that significantly impact the load, and model training is executed
using these extracted features. Zhao and Magoulès et al. [7] examined seven building load
forecasting methods employing supervised data mining-based techniques. Ahmad et al. [8]
and Chalal et al. [9] reviewed two prevalent supervised artificial neural networks (ANN)
and support vector machine (SVM) algorithms for building load forecasting. Amasyail
et al. [10] outlined fourteen supervised data mining algorithms. The most commonly
utilized unsupervised data mining methods for recognizing building operation patterns
include the Association Rule Mining (ARM) method, clustering methods, and motif detec-
tion methods. Carmo et al. [11] identified two distinct types of heat load patterns using
the K-means clustering method, and based on pattern clustering, analyzed the effects of
factors such as building area, building age, and heating form on different load patterns. P.
Gianniou et al. [12] applied the K-means method to cluster the daily heat load profiles of
8293 households in Aarhus, Denmark, categorizing the end users of the heating system into
five classes based on daily consumption. Tureczek et al. [13] concluded that the K-means
method was incapable of addressing the autocorrelation of heating system operation data.
Thus, they proposed a data transformation method that combined a wavelet transform and
autocorrelation, resulting in improved clustering outcomes. J. Yang et al. [14] introduced a
novel K-means clustering algorithm to identify various patterns of building thermal energy
consumption over time, suggesting that prediction accuracy could be enhanced through
clustering. Chicco et al. [15] conducted a comprehensive comparison of several typical
clustering algorithms for identifying typical electrical load patterns and determined that K-
means clustering outperformed other algorithms in pattern recognition. Nikolaou et al. [16]
found that K-means clustering was more effective and suitable for building thermal load
classification when five clustering methods were employed to ascertain the energy and
thermal comfort classes of public buildings. Lu et al. [6], aiming to efficiently diagnose and
optimize the operation of a district heating station, utilized historical heating operation
data. They quantitatively identified and assessed the existing regulation strategies of the
district heating station using a Gaussian Mixture Model (GMM)-based unsupervised data
mining method for the backward identification of existing operation strategies.

Data mining is utilized to analyze and process vast quantities of historical data. It
serves to reduce the dimensionality of input parameters and eliminate interfering variables,
thereby preparing for subsequent heat load prediction. This process can enhance the
accuracy of heat load forecasting and expedite the calculation speed.

Currently, there are two prevalent methods employed for building heat load prediction:
white-box models, which are physical models grounded in physical information like build-
ing details and weather conditions, and black-box data-driven models, which are models
that leverage machine learning and deep learning and are founded on data information.

For the physics-based model, the initial task is to construct a detailed physical model
of the building. This model should encompass information such as the building’s geometry,
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thermal performance, and internal activities. Subsequently, the model must be validated
using pertinent weather data, internal activity data, and heat load data to ensure its
precision. Zhao et al. [7] employed a thermophysical model to forecast the energy demand
of a building under fluctuating outdoor meteorological conditions. This was achieved
by conducting multi-parameter simulations of the actual building-specific parameters,
including the building’s structural form, envelope, internal equipment, the number of
occupants, and heating facilities.

The U.S. Building Industry Council has developed Energy10 software, while Canada
has produced software like FRAME and VISION, which are extensively utilized in sim-
ulating the thermal performance of maintenance structures. Energy simulation software
developed by Tsinghua University in China, known as Dest, is also widely applied for
analyzing building energy consumption. Protić et al. [17] discovered through a case study
that predictions of building energy consumption made by artificial neural networks were
comparable to those from EnergyPlus software. The findings indicated that despite the
EnergyPlus model being constructed with very detailed information about the building, its
prediction error was comparable to that of an ANN trained on 17 months of historical data.

Prediction methods based on physical models that simulate the actual energy con-
sumption of a heating system can produce reliable outcomes. However, they necessitate a
substantial amount of detailed building information and numerous assumptions to imple-
ment heat and mass transfer equations for calculating heat loads. The process from model
construction to simulation completion is time-consuming and labor-intensive. Moreover,
if there is a discrepancy between the assumed information and the actual thermal mass
process, this deviation could result in significant differences in the results [18]. In many
instances, acquiring all the necessary information is not feasible. Ultimately, incomplete
and inaccurate inputs used in the simulation may lead to substantial discrepancies between
the model’s predictions and actual outcomes [19].

To address the limitations inherent in physical models, researchers have turned their
focus towards black-box data-driven models. These models are capable of achieving their
objectives solely through the analysis of data, facilitated by machine learning or deep
learning algorithms. The concept of using linear regression models for the prediction of
heat loads in large buildings was initially introduced in 1984 [20]. Since then, a variety of
methodologies have been explored by researchers, including the application of support
vector machines (SVMs) [21], artificial neural networks (ANNs) [22], Extreme Learning
Machines [23], Regression Trees [24], random forests [25], Expert Hierarchical Mixing [26],
Multilayer Perceptual Machines (MLPs) [27], Long Short-Term Memory (LSTM) mod-
els [28], and XGBoost [29].

A multivariate linear method for predicting heat loads at heat exchange stations was
proposed by Idowu et al. [30]. The model was constructed using four key parameters
as inputs: outdoor temperature, time series, historical heat load values, and the physical
parameters of the heat exchanger station. Wang et al. [29] utilized Long Short-Term Memory
networks (LSTM) and Gradient Boosted Decision Tree (XGBoost) algorithms to predict
building heat loads. It was found that while LSTM performed well in short-term predictions,
its performance in long-term predictions was suboptimal, being significantly influenced
by outdoor meteorological parameters. Dalipi et al. [31] employed three load prediction
algorithms—Support Vector Regression (SVR), Partial Least Squares (PLS), and random
forest (RF)—to forecast heat loads of a heating system, utilizing data from multiple locations.
The accuracy of the heat load predictions was assessed using the Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and the Correlation Coefficient method.
The results indicated that SVR exhibited the highest accuracy for heat load prediction
in heating systems. Yan et al. [32] introduced Principal Component Analysis (PCA) to
enhance the precision of artificial neural networks. It was discovered that building heat
loads were predominantly influenced by external environmental parameters. In many cases,
the PCA-SVR model was considered the preferred choice for load forecasting. Ahmad
et al. [33] presented artificial neural networks and support vector machines, which had
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distinct advantages in capturing nonlinearities for load forecasting in the built environment.
These models were capable of delivering accurate predictions and were well-suited for
practical application of the forecasted values.

The accuracy of various algorithms for predicting thermal loads in buildings has been
scrutinized by researchers. A comparison was made by Li [34] between support vector
machines and artificial neural network models for predicting hourly building cooling loads.
The findings indicated that the support vector machine algorithm was more effective in pre-
dicting the cooling load. Wang et al. [35] conducted a comparison between seven shallow
machine learning, two deep learning, and three heuristic methods. The results demon-
strated that the LSTM model was superior for short-term (1 h ahead) building cold load
predictions, while the XGBoost model excelled in long-term (24 h or more ahead) building
cold load predictions. The comparison revealed that Support Vector Regression (SVR)
outperforms the artificial neural network (ANN) in terms of predictive performance. In the
realm of machine learning, methods such as combinatorial algorithm prediction [10,36–39]
and ensemble learning [40–43] have been progressively integrated into the domain of
heat load prediction. Hybrid models have notably enhanced short-term load prediction
capabilities when compared to single models. Guo et al. [44] developed four hybrid mod-
els aimed at improving the accuracy of heating and cooling load predictions. Matthew
Motoki et al. [45] employed three algorithms—boosting [46], LightGBM, and Multilayer
Perceptron (MLP)—for load forecasting tasks. They then utilized a weighted generalized
mean to ensemble the model predictions, which yielded better forecasting accuracy. M.
Protić et al. [19] introduced a novel approach based on an SVM and a discrete wavelet
transform to devise nine distinct SVM–wavelet forecasting models for loads predicted 1 to
24 h in advance. The SVM–wavelet model predictions were contrasted with Genetic Algo-
rithm (GA) and ANN models. The experimental outcomes suggest that the SVM–wavelet
forecasting method offered improved prediction accuracy and generalization compared
to GA and ANN models. J. Song et al. [47] proposed an estimation model grounded in
the spatiotemporal hybrid convolutional neural network and long short-term memory
(CNN-LSTM). This model was designed to accurately predict heat loads, accounting for
complex trends, nonlinearities, and significant thermal inertia. The experimental results
illustrated that the CNN-LSTM algorithm possessed a distinct advantage in prediction
accuracy. The Mean Absolute Percentage Error (MAPE) of the evaluation index for the
four heat exchanger stations ranged between 3.1% and 4.1%. The algorithm was adept at
accommodating heat load data with varying numerical scales, thereby better fulfilling the
demands of practical engineering applications. In contrast to physical models, black-box
models necessitate only a sufficient quantity of historical building operation data with-
out extensive building information. This can substantially reduce the time required for
inputting the necessary information. Despite the proliferation of load forecasting models,
the development of accurate load forecasting models tailored to heating loads of varying
durations remains an area for improvement.

This study conducts an analysis of load forecasting and data mining within the context
of heating systems. A notable absence in load forecasting is the analysis of factors that
influence the load, a deficiency that data mining methodologies are capable of remedying.
Data mining techniques are employed to extract valuable insights from the historical
operational data of a system. When these data are analyzed in conjunction with specialized
knowledge, it can lead to enhancements in the energy efficiency of the system’s operation.
Load forecasting leverages collected data and applies machine learning methodologies
to uncover patterns in the data’s fluctuations. This process aims to anticipate changes
in future periods, thereby informing the operational execution of a project. A research
approach that integrates both data mining and load forecasting involves the extraction
of data features through various data mining techniques. Subsequently, an appropriate
predictive model is applied to refine predictions and augment the model’s accuracy. In
the current study, a hybrid research methodology that combines data mining with load
forecasting is utilized. Features of the data are extracted using fuzzy clustering based on
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the Fourier distance, and a predictive model that integrates a convolutional neural network
with a bidirectional long and short-term memory neural network is employed for load
forecasting. The amalgamation of these two research methodologies, as applied in this
study, may offer a viable approach for the investigation of heat supply systems on demand.

Section 2 delineates the research object and examines the diverse array of factors that
exert influence on the load. Section 3 elaborates on the research concept and the data
mining techniques employed in the study. Section 4 utilizes data mining techniques to
extract features from the data, applying specialized knowledge to ascertain the impact of
each factor on the heat load. Subsequently, these influencing factors are screened based on
the effects they exhibit. In the subsequent phase, load prediction algorithms are deployed
to forecast the heat load. A comparative analysis of the performance of several prediction
algorithms is conducted to identify a superior model. Section 5, which is the conclusion,
encapsulates a summary of all the findings and insights garnered throughout the study.

2. Research Subject
2.1. Heating System

The research subject of this paper was a heat exchange station located in a northern
Chinese city, encompassing a heating area of approximately 447,700 square meters. Within
this heating station, two gas-fired hot water boilers have been installed. The operation
information of these boilers is communicated with the centralized distribution control
system (DCS). However, the DCS does not participate in the control of boiler operations.
Instead, the secondary heat exchanger station facilitates automatic adjustment control. An
intelligent heating management platform was utilized to gather system operation data
throughout the entire heating season, which spanned from 15 November to 15 March of the
following year. This data collection occurred over approximately 121 days. Temperature
sensors, pressure sensors, flow meters, heat meters, and other monitoring devices were
employed for this purpose, with a sampling frequency set at once per minute.

The actual operational data from the heat station served as the foundation for em-
ploying data mining technology to analyze the underlying characteristics of the system’s
operations. Deep learning algorithms were then applied to address the future long-term,
short-term, and ultrashort-term energy demands. This approach aimed to enhance the preci-
sion of the heating system’s load forecasting, thereby enabling heating enterprises to make
informed decisions to optimize energy utilization, minimize energy wastage, and achieve the
objectives of energy conservation and carbon reduction. The intelligent heat supply manage-
ment platform was responsible for the collection of system operation data through the use of
monitoring equipment. This paper presents an analysis of the actual operational data from
the heating system for a single heating season, spanning from 2021 to 2022.

2.2. Influencing Factors’ Analysis of Heat Load
2.2.1. Variation in Heat Load with Meteorological Parameters

Currently, the regulation of the majority of heating systems is predicated on the
application of climate compensation technology. Climate compensation operates on the
principle of dynamically adjusting the heating system in accordance with pre-established
compensation curves. These curves are utilized to calculate the outdoor temperature, taking
into account the prevailing outdoor temperature and the primary return water temperature.
The outdoor temperature and solar irradiance are identified as the primary factors that
exert the most significant influence on heating regulation, and they are also recognized as
the principal sources of disturbance. When examining the outdoor temperature and solar
irradiance data from February 1 to February 16, it becomes evident that there is an initial
negative correlation observed between the heat load and both the outdoor temperature
and solar irradiance. The variation in the heat load in relation to the outdoor temperature
and the intensity of solar radiation is depicted in Figure 1. Similarly, when considering
the outdoor wind speed data from March 5 to March 20, an initial positive correlation is
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observed between the heat load and the outdoor wind speed. The relationship between the
change in heat load and the outdoor wind speed is illustrated in Figure 2.
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2.2.2. Variation in Heating Load with Dynamic Control Settings

Regulatory factors of both the primary and secondary sides of a heat supply network,
such as water supply temperature, return water temperature, water supply pressure,
return water pressure, and the degree of primary side valve opening, exert a significant
influence on the operation of the heating system. At present, most site technicians at
heat stations pre-set the supply and return water temperatures, supply and return water
pressures, and primary side valve opening degrees based on anticipated changes in outdoor
temperature. The change in setting of the supply and valve opening takes place once every
hour. However, despite the fact that this method of regulation can address heating demands,
it is not without its issues. On one hand, the inherent inertia of the district heating system
necessitates that technicians adjust the system in anticipation of sudden changes in outdoor
weather to meet the heat demands of end users. This requires operators to accurately gauge
both the timing and magnitude of the adjustments, a task that is exceedingly challenging.
On the other hand, manual adjustment of the primary pipe network demands a high level
of skilled experience and is often devoid of theoretical backing. Improper adjustments can
result in either over-heating or under-heating. An excess of heat supply leads to waste,
while an insufficient supply fails to ensure the thermal comfort required by end users. The
diurnal variations in valve opening values and heat loads are illustrated in Figure 3.
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Typically, the set point of the boiler temperature is reduced during the night. However,
as depicted in Figure 3, heat is continuously supplied throughout the day. This strategy
is adopted due to the advanced age of the buildings included in this study, which suffer
from suboptimal thermal insulation of the building envelope. Continuous heat supply is
essential to satisfy the heating requirements of the residents.

3. Methodology

A combination of data mining algorithms was utilized to enhance prediction accuracy,
specifically the CNN-BiLSTM prediction algorithm that is based on fuzzy clustering. The
methodology encompassed four distinct stages: data pre-processing and clustering analysis,
comparative evaluation of multiple prediction models, and load prediction, as depicted in
Figure 4.
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In this study, data collected via IoT technology were initially subjected to a data
cleaning process to eliminate outliers, remove duplicate values, and address missing values
within the original dataset. Subsequently, a cluster analysis was conducted to unearth the
underlying knowledge within the data and to pinpoint the factors exerting a significant
influence on the load. The dataset, once clustered, was partitioned into training, testing,
and validation subsets, which were subsequently fed into the neural network models for
the purpose of load prediction. Five distinct neural network models were constructed: BP,
CNN, LSTM, CNN-LSTM, and CNN-BiLSTM. The predictive accuracy of these models
was assessed and compared using four evaluation metrics: Mean Absolute Error (MAE),
Root-Mean-Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and coefficient
of determination (R2). The models’ prediction accuracy and generalization capabilities were
compared across all predictive models. The model exhibiting the lowest Mean Absolute
Percentage Error (MAPE) was selected as the optimal choice.
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3.1. Data Mining
3.1.1. Data Pre-Processing

Some values within the operational data were significantly deviant from actual op-
erational values and were classified as outliers. These anomalies can exert a substantial
impact on the data mining analysis.

In this study, the Jupyter platform of Python was employed for data cleaning and
pre-processing to address missing and anomalous values, as detailed below:

1. Pre-processing of missing value data: When a variable contained between 5% to
30% missing values, a random forest multiple imputation model was utilized to fill and
complete the data using Python libraries. If a variable contained more than 30% missing
values, it was deemed invalid and was consequently discarded.

2. Pre-processing of outlier data: Outliers were identified using box plots (the quartile
method), and data substitution was carried out using the mean value of the adjacent
data points. For continuously repeated data, if a sequence of data repeated for more
than 5 instances consecutively, the data series was judged to be anomalous and was
directly rejected.

3.1.2. Fuzzy Clustering

Clustering algorithms represent the most prevalent form of unsupervised learning,
classifying objects into distinct groups predicated on the degree of similarity among the
data. These algorithms adjust the pertinent clustering parameters to achieve rational
clustering outcomes without the need for data labeling. Fuzzy clustering is currently being
explored more intensively across various domains, offering a qualitative improvement in
clustering results. Among the more widely recognized clustering techniques is the fuzzy
K-means clustering (FCM). This method categorizes data into various classes within a
Euclidean space. Both from a theoretical and practical standpoint, the fuzzy K-means
clustering algorithm demonstrates superior segmentation efficiency when compared to
other segmentation methods, particularly when incorporating fuzzy local information in
conjunction with K-means clustering. Given that outdoor meteorological parameters and
system operation status parameters of heat exchange stations are gathered across different
time series, the data for each influencing factor were transformed from the time domain to
the frequency domain. This transformation was based on the Fourier coefficient distance
(FCBD), necessitating only a select few Fourier coefficients to project high-dimensional data
into a lower-dimensional space. When integrated with an unsupervised data analysis, the
FCM method was capable of segmenting each variable influencing the heating load into n
predefined clusters. The hidden characteristics were then analyzed through a distinctive
algorithmic logical framework, namely, the FCBD-FCM method.

The specific steps were as follows:
(1) Establish the whole dataset. Firstly, the FCBD is used to map the disturbance

variables such as outdoor temperature, outdoor wind speed, and insolation and the 12
influencing factors of the regulation variables such as supply and return water temperature
and pressure and regulating valve opening to build the dataset separately from the heat
exchange station.

(2) Define X as the total dataset (including the mapped heating load of the heat
exchanger station and other influencing factors). X =

[
X1, X2, X3, . . . , X12]

T . N is the total
data volume, and M is the number of clusters, 2 ≤ M ≤ N.

(3) Initializing the dataset Xi, Xi ̸= , Xi ̸= X and 1 ≤ i ≤ M. The clustering centers
are then calculated as:

ci =
∑N

j=1 µijXj

∑N
j=1 µk

ij
(1)

(4) Calculate the distance between the cluster data and the cluster center

d(X, ci) =
M
∑

i=1

N
∑

i=1
µij

∥∥Xj − ci
∥∥2

(2)
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Among them, ∥·∥ is the Euclidean norm, µij is the value of point j in cluster i, and

M
∑

i=1
µij = 1(i, j = 1, 2, 3, . . . , N) (3)

under this condition; the value is between 0 and 1.
(5) Determine the clusters according to the minimum distance;
(6) Recalculate new cluster centers based on the calculated cluster centers and repeat

step (4) until the termination condition is satisfied. The maximum number of iterations
used in this study was 100, and the termination condition of the algorithm was specified as
an absolute change in the cluster centers of less than 1 × 10−6. In this paper, the K value
was determined by the elbow method, and the evaluation index of the elbow method was
the SSE (sum of the squared errors), whose formula is shown in the following equation:

SSE =
k
∑

i=1
∑

p∈Ci

|p − mi|
2

(4)

where i denotes the ith cluster, p is the sample point, m is the center of mass (the mean of
all points in the sample), and SSE is the clustering error of all samples, which represents
the clustering effect. The elbow method was used to determine a K value of 3 in this paper.

3.2. Heat Load Forecast
3.2.1. Predictive Models’ Construction

BP, CNN, and LSTM are recognized as commonly utilized and efficacious neural
network models within the realm of machine learning. BP neural networks are lauded
for their clear algorithm derivation, elevated learning accuracy, and expedited operational
velocity. Nonetheless, they are not without their drawbacks, which include a propensity to
converge on local minima and a sensitivity to initial weights that significantly influences
the training duration. The convolutional neural network (CNN) primarily excels due to
its use of convolutional kernels for localized perception, thereby adeptly capturing local
features. Moreover, the parameters of these kernels can be shared, leading to a reduction
in the network’s overall parameter count. This diminishes the likelihood of overfitting
and bolsters the model’s generalization capabilities. The incorporation of pooling layers in
CNNs serves to curtail computational demands, thereby enhancing the model’s efficiency
and robustness. However, CNNs may exhibit limitations when it comes to the extraction
of global features. Long Short-Term Memory (LSTM) networks are designed to learn and
retain long-term dependencies through a gating mechanism. This capability allows them
to effectively address challenges associated with the processing of long sequences and to
mitigate the issue of vanishing gradients. Consequently, LSTM networks are particularly
adept at handling complex sequence prediction tasks. However, the architectural design of
LSTM networks may not be as proficient in extracting local features from data.

In this study, an attempt was made to construct a hybrid model that leveraged the
advantageous aspects of each algorithm, thereby enhancing performance in load fore-
casting for heating systems. The CNN-BiLSTM network structure comprises several key
components, including a convolutional layer, a bidirectional Long Short-Term Memory
(LSTM) network, and a fully connected layer. The convolutional neural network (CNN) is
primarily utilized for extracting local features from the input sequence. It accomplishes this
by performing sliding window operations with convolutional kernels to extract significant
features from the input sequence. The Long Short-Term Memory network (LSTM) is a
recurrent neural network well-suited for sequence modeling. The bidirectional Long Short-
Term Memory network (BiLSTM) processes sequence data while considering contextual
information and models long-term dependencies in the sequence using hidden states in
both forward and backward directions. The fully connected layer serves to amalgamate the
outputs of the CNN and BiLSTM network to produce the final prediction. The LSTM recur-
rent neural network is capable of retaining and memorizing relatively important historical
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information. However, it cannot utilize the hidden information from subsequent neurons
or future information during network learning. This limitation can result in the omission
of information in the final state, which may impact the accuracy of the model’s predictive
classification. Consequently, this study combined a bidirectional Long Short-Term Memory
neural network with a convolutional neural network for load prediction. The parameters
of the constructed neural network model are presented in Table 1.

Table 1. Neural network model parameters.

Category Hidden Layer Number Hidden Layer Unit Number(s) Activation

BP 4 256/128/64/32 ReLU
CNN 2 64/32 ReLU
LSTM 7 6 Sigmoid

CNN-LSTM 7 6 ReLU and Sigmoid
CNN-BiLSTM 7 6 ReLU and Sigmoid

3.2.2. Evaluation Indexes for Predictive Models

When analyzing the prediction results of heating load forecasting models, obtaining a
clear picture of the accuracy of each model is challenging due to the substantial volume
of data input across varying time periods. Consequently, the prediction results should be
comprehensively assessed using four evaluation metrics: Mean Absolute Error (MAE), Root-
Mean-Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and the coefficient of
determination (R2). These metrics were employed to ascertain the optimal prediction model.
The MAE represents the average value of the absolute error and provides a more realistic
reflection of the discrepancy between forecasted and actual values. The RMSE quantifies
the sample standard deviation of the residuals, that is, the differences between predicted
and observed values. The MAPE, theoretically, indicates that a smaller value corresponds to
a better fit of the prediction model and higher accuracy. R2 measures the proportion of the
variance in the dependent variable that is predictable from the independent variables. The
range of R2 is typically from 0 to 1, with values closer to 1 indicating a stronger explanatory
power of the variables and a better model fit.

MAE = 1
n

n
∑

i=1
|ŷi − yi| (5)

RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2 (6)

MAPE =
100%

n

n
∑

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (7)

R2 = 1 − ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−y)2 (8)

4. Results and Discussion
4.1. Clustering Results

The data analysis was conducted using the FCBD-FCM algorithm, implemented
through R language programming, to determine the correlation between the 12 influencing
factors of the heating station and the heating load, without consideration of the operator
experience. During the Fourier variation process, each influencing factor was transformed
into a dimensionless form, which more accurately reflected the physical properties of the
system. The clustering results, which include U (representing the 12 influencing factors)
and Q (representing the heating load), are presented in Figure 5 to evaluate the strong
correlation points of these factors in relation to the heating load. These factors were
categorized into three distinct groups, with the details of the results provided in Table 2.
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The figure indicates that there was a close relationship between the first category and the
heating load when the average value of the Fourier distance associated with U and the
Fourier distance associated with Q were below 0.2.
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Table 2. FCBD-FCM clustering results.

Category Influencing Factors

Cluster.1
Outdoor temperature, outdoor wind speed, primary network water supply

pressure, primary network return pressure, secondary network water
supply pressure, secondary network return pressure

Cluster.2 Primary network return water temperature, secondary network supply
water temperature, secondary network return water temperature

Cluster.3 Solar irradiance, valve opening degree, primary secondary network water
supply temperature

The impact of disturbance and regulation factors on both long-term and short-term
heat supply was categorized into three distinct groups, as presented in Table 2. Category 1
was primarily associated with disturbance factors, which included outdoor temperature,
outdoor wind speed, primary network water supply pressure, primary network water
return pressure, secondary network water supply pressure, and secondary network water
return pressure. These factors were delineated as having a direct influence on heat supply.
Category 2 was characterized by factors on the user side, which were noted for their larger
distance from Cluster 1. This distance was indicative of a lag effect associated with the
user side, suggesting an indirect influence on heat supply. The factors in this category were
recognized for their delayed response to changes in the heat supply system. Category 3
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mainly encompassed regulatory factors, such as the opening degree of the primary network
regulating valve, which in turn affects the primary network water supply temperature. The
weak correlation observed with insolation was attributed to its being subject to a range of
comprehensive building factors, including the heat transfer characteristics of the envelope
structure, among others. This indicated that while solar radiation was a factor, its impact
was moderated by various other elements within the building’s structure.

In this section, the results of an analysis of the influence exerted by disturbing variables
such as outdoor temperature, outdoor wind speed, and insolation, along with regulatory
variables including supply and return water temperature, pressure, and the opening of
regulating valves, on the heating load are presented. This analysis was performed using
the fuzzy clustering method based on the Fourier distance. The results obtained from this
analysis were expected to be instrumental in the subsequent prediction of heat load.

4.2. Comparison of the Results of Several Prediction Methods
4.2.1. Long-Term Heat Load Forecast

For the purpose of forecasting the quantity of natural gas required in advance for the
subsequent heating season, it is deemed essential to predict the long-term heating load. In
this study, historical heat load data from a single heating season, spanning from 2021 to
2022, were selected to serve as the sole feature input variables for each model. The data
were divided such that 80% constituted the training set, with the remaining 20% allocated
to the validation set. The outcomes of the long-term load prediction which pertained to a
30-day period for each predictive model are illustrated in Figure 6.
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Five predictive models—BP, LSTM, CNN, CNN-LSTM, and CNN-BiLSTM—were
utilized for the long-term forecasting of heat load. The predictive conclusions can be
inferred from the data presented in Figure 6 and Table 3. These models were capable of
more accurately depicting the trend in load changes for the forthcoming heating season,
with the predicted trends generally aligning with the actual values, making them suitable
for long-term heat load prediction.

Table 3. Evaluation of each prediction model.

Model MAE RMSE MAPE R2

BP 8.162 9.404 2.921% 0.7710
LSTM 5.783 6.598 1.929% 0.8041
CNN 6.564 7.331 2.531% 0.7088

CNN-LSTM 4.961 5.638 2.258% 0.8278
CNN-BiLSTM 3.786 4.664 1.272% 0.8821

Among the models, the neural network BP model had the highest Mean Absolute
Percentage Error (MAPE) at 2.921%, while the CNN-BiLSTM model showed the lowest
MAPE at 1.272%. Consequently, the CNN-BiLSTM deep learning algorithm, which inte-
grated convolutional and bidirectional LSTM networks, was found to yield superior results
for long-term heat load prediction and was considered to have greater predictive accuracy
compared to other neural network algorithms.

4.2.2. Short-Term Heat Load Forecast

To enhance the control performance of the heating system and achieve energy savings
while ensuring user comfort, short-term heat load prediction for the next day is necessary.
The accuracy of each prediction model was compared by considering historical heat load
data with multivariate input parameters such as outdoor temperature, outdoor wind speed,
primary network water supply pressure, primary network return pressure, secondary
network water supply pressure, and secondary network return pressure. This compari-
son aimed to determine a more accurate prediction model with superior generalization
capability for practical engineering applications.

In this study, historical heat load data from one heating season, ranging from 2021 to
2022, were selected as both single feature input variables and multifeature input variables
for each model. Eighty percent of the data were designated as the training set, while twenty
percent were allocated as the validation set. The short-term load (24 h) prediction results
for each prediction model are displayed in Figure 7.

From the results presented in Figure 7 and Table 4, it is observed that the CNN-BiLSTM
prediction model demonstrated superior comprehensive performance when the evaluation
indexes of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean
Ab-solute Percentage Error (MAPE) were compared. The multifeature prediction model,
enhanced through data mining, exhibited greater stability, higher prediction accuracy, and
a more effective prediction outcome. This model can provide guidance for the actual
operation and regulation of the heating system.

Table 4. Evaluation of each short-term prediction model with multiple features.

Model MAE RMSE MAPE R2

BP 2.964 3.572 7.998% 0.89
LSTM 3.565 3.446 3.671% 0.898
CNN 3.413 3.923 4.525% 0.9023

CNN-LSTM 2.842 3.325 4.509% 0.9327
CNN-BiLSTM 2.2546 2.954 2.09% 0.9469
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4.2.3. Ultrashort-Term Heat Load Forecast

Due to the significant short-term fluctuations in the operating parameters of the
heating system, the accurate selection of variables that exert the greatest influence on
the load in the ultrashort term as input feature values is crucial for the precision of load
prediction. In this study, historical heat load data from one heating season, spanning from
2021 to 2022, were selected to serve as both single feature input variables and multifeature
input variables for each model. Eighty percent of the data were designated for the training
set, while twenty percent were allocated for the validation set. The ultrashort-term load
(1 h) prediction results for each prediction model are depicted in Figure 8 and detailed in
Table 5.

Table 5. Evaluation of each ultrashort-term prediction model with multiple features.

Model MAE RMSE MAPE R2

BP 3.382 3.881 2.37% 0.9084
LSTM 2.868 3.271 1.65% 0.9349
CNN 3.195 3.671 1.747% 0.918

CNN-LSTM 2.161 2.52 1.167% 0.9613
CNN-BiLSTM 1.691 1.966 0.737% 0.9764

From Figure 8 and Table 5, it can be observed that upon comparing the five evaluation
metrics of MAE, RMSE, and MAPE, the combined algorithm was identified as the opti-
mal for ultrashort-term time series load forecasting. The ultrashort-term CNN-BiLSTM
forecasting model was found to be more effective, with an MAPE of less than 2%.
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The generation of the above results is analyzed as follows: Data mining is a process
that discovers features from data, revealing hidden information. Clustering, an unsu-
pervised learning method, categorizes objects within a dataset into groups with similar
characteristics, thereby revealing relationships within the data. Clustering does not re-
quire data labeling, which allows for an exploratory analysis of the data structure without
prior knowledge. Additionally, clustering can reduce the complexity of a dataset, thus
decreasing its dimensionality and simplifying the data, which in turn makes subsequent
data processing algorithms faster and more accurate. In this study, clustering was utilized
in data processing for machine learning predictive analytics to reduce data dimensionality
and enhance the accuracy and speed of the predictive model.

CNN-BiLSTM networks offer advantages in load forecasting. Load forecasting tasks
typically involve time-series data, and CNN-BiLSTM networks can effectively capture
temporal features to better model data dynamics. BiLSTM, by using bidirectional hidden
states, can consider inputs at the current moment and subsequent moments simultaneously,
providing a more comprehensive understanding and prediction of sequence data depen-
dencies. CNNs employ sliding window operations in the convolutional layer to efficiently
extract local features in the input sequence, which is crucial for load forecasting as load
fluctuations are often linked to local features. The CNN-BiLSTM network is capable of
automatically learning complex feature representations in the input sequence to capture
information relevant for load forecasting based on high-dimensional features.

Consequently, the clustering algorithm can reduce the data’s dimensionality and
decrease the input parameters and noise for subsequent prediction algorithms, thereby im-
proving the speed and accuracy of these algorithms. The CNN-BiLSTM network combines
the strengths of convolutional neural networks and bidirectional Long Short-Term Memory
networks, enabling better extraction of temporal features, consideration of contextual infor-
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mation, and extraction of important local features from input sequences, which enhances
the prediction performance.

5. Conclusions

The fuzzy clustering method based on the Fourier distance (FCBD-FCM) was utilized
to conduct a comprehensive analysis of the multivariate factors that affect the heating
load. Five predictive models, namely, BP, LSTM, CNN, CNN-LSTM, and CNN-BiLSTM,
were established and applied to different phases of the heating system characterized by
time-series data to facilitate on-demand heating.

The conclusions drawn from the study are as follows:
1. The influencing factors were categorized into three distinct groups using the Fourier

distance fuzzy clustering (FCBD-FCM) method. Factors that exerted a more significant
impact on load variation were identified and subsequently utilized as input variables for
subsequent load predictions.

2. The BP, LSTM, CNN, CNN-LSTM, and CNN-BiLSTM predictive models were
constructed. These models employed the six most influential variables on the heating
load as inputs to forecast the heat load. The findings indicated that the CNN-BiLSTM
model outperformed the other four models. The MAE values for CNN-BiLSTM model in
long-term, short-term and ultrashort-term load forecasting were 3.786, 2.2546, and 1.691,
the RMSE values were 4.664, 2.954, and 1.966, the MAPE values were 1.272%, 2.09%, and
0.737%, and the R2 values were 0.8821, 0.9469, and 0.9764.
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load in district heating systems using the support vector machine with a discrete wavelet transform algorithm. Energy 2015, 87,
343–351. [CrossRef]

18. Imam, S.; A Coley, D.; Walker, I. The building performance gap: Are modellers literate? Build. Serv. Eng. Res. Technol. 2017, 38,
351–375. [CrossRef]

19. Li, X.; Wen, J. Review of building energy modeling for control and operation. Renew. Sustain. Energy Rev. 2014, 37, 517–537.
[CrossRef]

20. Forrester, J.R.; Wepfer, W.J. Formulation of a load prediction algorithm for a large commercial building. Ashrae Trans. 1984, 90,
536–551.

21. Zhao, H.X.; Magoulès, F. Parallel Support Vector Machines Applied to the Prediction of Multiple Buildings Energy Consumption.
J. Algorithms Comput. Technol. 2010, 4, 231–249. [CrossRef]

22. Wei, Y.; Xia, L.; Pan, S.; Wu, J.; Zhang, X.; Han, M.; Zhang, W.; Xie, J.; Li, Q. Prediction of occupancy level and energy consumption
in office building using blind system identification and neural networks. Appl. Energy 2019, 240, 276–294. [CrossRef]

23. Guo, Y.; Wang, J.; Chen, H.; Li, G.; Liu, J.; Xu, C.; Huang, R.; Huang, Y. Machine learning-based thermal response time ahead
energy demand prediction for building heating systems. Appl. Energy 2018, 221, 16–27. [CrossRef]

24. Chou, J.-S.; Bui, D.-K. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy
Build. 2014, 82, 437–446. [CrossRef]

25. Fan, C.; Xiao, F.; Wang, S. Development of prediction models for next-day building energy consumption and peak power demand
using data mining techniques. Appl. Energy 2014, 127, 1–10. [CrossRef]

26. Edwards, R.E.; New, J.; Parker, L.E. Predicting future hourly residential electrical consumption: A machine learning case study.
Energy Build. 2012, 49, 591–603. [CrossRef]

27. Massana, J.; Pous, C.; Burgas, L.; Melendez, J.; Colomer, J. Short-term load forecasting in a non-residential building contrasting
models and attributes. Energy Build. 2015, 92, 322–330. [CrossRef]

28. Li, Y.; Tong, Z.; Tong, S.; Westerdahl, D. A data-driven interval forecasting model for building energy prediction using attention-
based LSTM and fuzzy information granulation. Sustain. Cities Soc. 2022, 76, 103481. [CrossRef]

29. Wang, Z.; Hong, T.; Piette, M.A. Building thermal load prediction through shallow machine learning and deep learning. Appl.
Energy 2020, 263, 114683. [CrossRef]

30. Idowu, S.; Saguna, S.; Åhlund, C.; Schelén, O. Applied machine learning: Forecasting heat load in district heating system. Energy
Build. 2016, 133, 478–488. [CrossRef]

31. Dalipi, F.; Yayilgan, S.Y.; Gebremedhin, A. Data-Driven Machine-Learning Model in District Heating System for Heat Load
Prediction: A Comparison Study. Appl. Comput. Intell. Soft Comput. 2016, 2016, 1–11. [CrossRef]

32. Ding, Y.; Zhang, Q.; Yuan, T.; Yang, F. Effect of input variables on cooling load prediction accuracy of an office building. Appl.
Therm. Eng. 2018, 128, 225–234. [CrossRef]

33. Ahmad, T.; Chen, H.; Guo, Y.; Wang, J. A comprehensive overview on the data driven and large scale based approaches for
forecasting of building energy demand: A review. Energy Build. 2018, 165, 301–320. [CrossRef]

34. Li, Q.; Meng, Q.; Cai, J.; Yoshino, H.; Mochida, A. Applying support vector machine to predict hourly cooling load in the building.
Appl. Energy 2009, 86, 2249–2256. [CrossRef]

35. Wang, Z.; Hong, T.; Piette, M.A. Data fusion in predicting internal heat gains for office buildings through a deep learning
approach. Appl. Energy 2019, 240, 386–398. [CrossRef]

36. Lee, W.-Y.; House, J.M.; Kyong, N.-H. Subsystem level fault diagnosis of a building’s air-handling unit using general regression
neural networks. Appl. Energy 2004, 77, 153–170. [CrossRef]

37. Du, Z.; Fan, B.; Jin, X.; Chi, J. Fault detection and diagnosis for buildings and HVAC systems using combined neural networks
and subtractive clustering analysis. J. Affect. Disord. 2014, 73, 1–11. [CrossRef]

38. Du, Z.; Fan, B.; Chi, J.; Jin, X. Sensor fault detection and its efficiency analysis in air handling unit using the combined neural
networks. Energy Build. 2014, 72, 157–166. [CrossRef]

39. Zhao, Y.; Wang, S.; Xiao, F. A system-level incipient fault-detection method for HVAC systems. HVAC&R Res. 2013, 19, 593–601.
[CrossRef]

40. Li, G.; Hu, Y.; Chen, H.; Li, H.; Hu, M.; Guo, Y.; Liu, J.; Sun, S.; Sun, M. Data partitioning and association mining for identifying
VRF energy consumption patterns under various part loads and refrigerant charge conditions. Appl. Energy 2017, 185, 846–861.
[CrossRef]

https://doi.org/10.1016/j.enbuild.2018.10.009
https://doi.org/10.1016/j.enbuild.2017.03.071
https://doi.org/10.1016/j.energy.2011.12.031
https://doi.org/10.1109/TSG.2012.2215059
https://doi.org/10.1016/j.energy.2015.04.109
https://doi.org/10.1177/0143624416684641
https://doi.org/10.1016/j.rser.2014.05.056
https://doi.org/10.1260/1748-3018.4.2.231
https://doi.org/10.1016/j.apenergy.2019.02.056
https://doi.org/10.1016/j.apenergy.2018.03.125
https://doi.org/10.1016/j.enbuild.2014.07.036
https://doi.org/10.1016/j.apenergy.2014.04.016
https://doi.org/10.1016/j.enbuild.2012.03.010
https://doi.org/10.1016/j.enbuild.2015.02.007
https://doi.org/10.1016/j.scs.2021.103481
https://doi.org/10.1016/j.apenergy.2020.114683
https://doi.org/10.1016/j.enbuild.2016.09.068
https://doi.org/10.1155/2016/3403150
https://doi.org/10.1016/j.applthermaleng.2017.09.007
https://doi.org/10.1016/j.enbuild.2018.01.017
https://doi.org/10.1016/j.apenergy.2008.11.035
https://doi.org/10.1016/j.apenergy.2019.02.066
https://doi.org/10.1016/S0306-2619(03)00107-7
https://doi.org/10.1016/j.buildenv.2013.11.021
https://doi.org/10.1016/j.enbuild.2013.12.038
https://doi.org/10.1080/10789669.2013.789371
https://doi.org/10.1016/j.apenergy.2016.10.091


Energies 2024, 17, 4190 19 of 19

41. Xue, P.; Zhou, Z.; Fang, X.; Chen, X.; Liu, L.; Liu, Y.; Liu, J. Fault detection and operation optimization in district heating
substations based on data mining techniques. Appl. Energy 2017, 205, 926–940. [CrossRef]

42. Gadd, H.; Werner, S. Fault detection in district heating substations. Appl. Energy 2015, 157, 51–59. [CrossRef]
43. Miller, C.; Nagy, Z.; Schlueter, A. A review of unsupervised statistical learning and visual analytics techniques applied to

performance analysis of non-residential buildings. Renew. Sustain. Energy Rev. 2018, 81, 1365–1377. [CrossRef]
44. Guo, J.; Yun, S.; Meng, Y.; He, N.; Ye, D.; Zhao, Z.; Jia, L.; Yang, L. Prediction of heating and cooling loads based on light gradient

boosting machine algorithms. J. Affect. Disord. 2023, 236, 110252. [CrossRef]
45. Miller, C.; Arjunan, P.; Kathirgamanathan, A.; Fu, C.; Roth, J.; Park, J.Y.; Balbach, C.; Gowri, K.; Nagy, Z.; Fontanini, A.D.; et al.

The ASHRAE Great Energy Predictor III competition: Overview and results. Sci. Technol. Built Environ. 2020, 26, 1427–1447.
[CrossRef]

46. Prokhorenkova, L.O.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features.
Neural Inf. Process. Syst. 2018, 31, 6639–6649.

47. Song, J.; Zhang, L.; Xue, G.; Ma, Y.; Gao, S.; Jiang, Q. Predicting hourly heating load in a district heating system based on a hybrid
CNN-LSTM model. Energy Build. 2021, 243, 110998. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.apenergy.2017.08.035
https://doi.org/10.1016/j.apenergy.2015.07.061
https://doi.org/10.1016/j.rser.2017.05.124
https://doi.org/10.1016/j.buildenv.2023.110252
https://doi.org/10.1080/23744731.2020.1795514
https://doi.org/10.1016/j.enbuild.2021.110998

	Introduction 
	Research Subject 
	Heating System 
	Influencing Factors’ Analysis of Heat Load 
	Variation in Heat Load with Meteorological Parameters 
	Variation in Heating Load with Dynamic Control Settings 


	Methodology 
	Data Mining 
	Data Pre-Processing 
	Fuzzy Clustering 

	Heat Load Forecast 
	Predictive Models’ Construction 
	Evaluation Indexes for Predictive Models 


	Results and Discussion 
	Clustering Results 
	Comparison of the Results of Several Prediction Methods 
	Long-Term Heat Load Forecast 
	Short-Term Heat Load Forecast 
	Ultrashort-Term Heat Load Forecast 


	Conclusions 
	References

