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Abstract: This paper proposes firstly a Second Order Sliding Mode Control (SOSMC) based on a Super
Twisting Algorithm (STA) (SOSMC-STA) combined with a Direct Field-Oriented Control (DFOC)
strategy of a Five-Phase Induction Motor (FPIM). The SOSMC-STA is suggested for overcoming
the shortcomings of the Proportional Integral Controller (PIC) and the Conventional Sliding Mode
Controller (CSMC). Indeed, the main limitations of the PIC are the slower speed response, the
tuning difficulty of its parameters, and the sensitivity to changes in system parameters, including
variations in process dynamics, load changes, or changes in setpoint. It is also limited to linear
systems. Regarding the CSMC technique, its limitation is the chattering phenomenon, characterized
by the rapid switching of the control signal. This phenomenon includes high-frequency oscillations
which induce wear and tear on mechanical systems, adversely affecting performance. Secondly,
this paper also proposes a Loss Model Controller (LMC) for FPIM energy optimization. Thus, the
suggested LMC chooses the optimal flux magnitude required by the FPIM for each applied load
torque, which consequently reduces the losses and the FPIM efficiency. The performance of the
optimized DFOC-SOSMC-STA based on the LMC is verified using numerical simulation under the
Matlab environment. The analysis of the simulation results shows that the DFOC-SOSMC-STA
guarantees a high dynamic response, chattering reduction, good precision, and robustness in case
of external load or parameter disturbances. Moreover, the DFOC-SOSMC-STA, combined with the
LMC, reduces losses and increases efficiency.

Keywords: five-phase induction motor; sliding mode control; chattering attenuation; direct field-
oriented control; loss model control

1. Introduction

In recent years, there has been an increasing interest in using multiphase Induction
Motors (IMs) in various industrial applications. Multiphase motors can have several
advantages over traditional three-phase motors, including improved performance and
efficiency [1]. Multiphase motors can operate with more than three phases, typically
ranging from five to nine phases [2,3]. The increased number of phases results in a more
sinusoidal current waveform, which reduces the losses caused by higher current harmon-
ics [3]. Additionally, the increased number of phases can reduce the magnitude of the
electromagnetic torque ripple, resulting in smoother operations and less mechanical stress
on the motor [4]. Furthermore, multiphase motors can provide improved reliability and
fault tolerance compared to three-phase motors [5]. If one phase fails in a three-phase
motor, the motor will cease to function. However, in a multiphase motor, the remaining
phases can compensate for the lost phase, allowing the motor to continue to operate at a
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reduced level of performance. Multiphase motors have been applied in various industries,
including electric traction, aviation, and ship propulsion. In these industries, the improved
performance and efficiency of multiphase motors can provide significant benefits, such as
reduced energy consumption and increased reliability [1–6].

It should be noted that the control of Five-Phase Induction Motors (FPIMs) holds
immense significance in various industrial applications. Unlike traditional three-phase
motors, FPIMs offer superior performance, efficiency, and reliability. Precise control of
these motors allows for smoother operations, reduced vibrations, and enhanced torque
production, making them ideal for demanding tasks, such as robotics, electric vehicles, and
aerospace applications. Thus, the two most widely recognized and used control strategies
for motors, especially for Five-Phase Induction Motors (FPIM), are Direct Field-Oriented
Control (DFOC) [7] and Direct Torque Control (DTC) [8]. In fact, DFOC is based on a
rotor flux regulation loop and internal current control loops to achieve an independent
regulation of the flux level and the load current component that describes the electromag-
netic torque. The DTC enables direct control of the machine’s torque and flux levels by
eliminating current control loops and using hysteresis controllers. Both control structures
have advantages and disadvantages, extensively discussed in various publications [9], with
one group of scientists supporting DFOC and another group of scientists supporting DTC.
In modern industrial control applications, control structures must meet all requirements
in terms of complexity, parameter sensitivity, dynamic performance, and cost. Ultimately,
the choice between DFOC and DTC depends on the specific application requirements, as
well as the cost and design complexities associated with each technique. DTC exhibits
significant ripples in the electromagnetic torque and stator flux, remarkable distortions
in the stator current, and variations in the switching frequency, which causes mechanical
vibrations and switching losses, leading to premature ageing of the system [10,11]. On
the other hand, DFOC offers good performance in terms of accuracy, reduced ripples and
distortions, and constant switching frequency [12].

The classical DFOC strategy includes control loops based on Proportional-Integral
Controllers (PICs) for controlling the rotor speed, the rotor flux, and the direct/quadratic
current components. The gain values of these controllers are typically obtained through an
analytical method based on a simplified linear IM model. Furthermore, these gain values are
closely related to the IM parameters. Consequently, PICs exhibit limited performance in the
presence of disturbances, uncertainties, and variations in IM parameters. Additionally, the
system dynamics and stability are affected [13]. To address the constraints of the mentioned
approach and achieve improved control performance in the face of uncertainties and exter-
nal disturbances, robust nonlinear control techniques, modified linear control techniques,
and intelligent control methods have been developed for IM control and other industrial
systems. These methods include cascaded control [6], input-output feedback lineariza-
tion [14], Modified Linear Technique [15], Bat algorithm based control and modified bat
algorithm based control [16], Error Feedback Fuzzy Model [17], fuzzy logic control [18,19],
predictive control [20,21], and Sliding Mode Control (SMC) [5,14,22–25], among others
like exact tracking error dynamics passive output feedback (ETEDPOF) methodology [26]
and robust adaptive control [27]. Certainly, as outlined in [27], the authors devised a PD
controller incorporating a neural network-based cascade scheme to effectively handle the
compensation of uncertainties in a robot manipulator.

In the same context, and relative to the other control techniques, the SMC offers distinct
advantages relative to other control strategies in various engineering applications. One of
its primary benefits is its robustness in the face of uncertainties and external disturbances.
The SMC excels at maintaining system stability and performance, even when confronted
with unpredictable variations or disturbances, making it particularly suitable for complex
and dynamic systems. Another key advantage of SMC is its ability to handle nonlinear
systems effectively. Unlike linear control strategies that may struggle with nonlinearities,
SMC can be designed to accommodate and control such systems, providing precise and
reliable performance. Furthermore, SMC can offer faster transient responses, reduced
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settling times, and improved tracking accuracy compared to some traditional control
methods [28]. Therefore, the use of the DFOC strategy with Conventional Sliding Mode
Controllers (CSMCs) offers good performance compared to DFOC-PICs and is characterized
by its simplicity in design and implementation. The combination of DFOC and CSMCs
(DFOC-CSMCs) is an effective control method due to its superior robustness against model
uncertainties, parameter variations, and external disturbances [29,30]. It is worth noting
that the main drawback of DFOC-SMCs is the undesirable effect known as “chattering”.
This phenomenon includes high-frequency oscillations that lead to dynamic instability
of the system. Relatively speaking, several studies on CSMCs have focused on reducing
chattering [31–33]. The solutions developed in these studies to mitigate the chattering
phenomenon are as follows:

- Replacing discontinuous control functions with “saturation” or “sigmoid” functions is
a common approach used in SMC to achieve continuous control and reduce vibrations.
However, one of the main drawbacks of this approach is that the system state trajectory
does not converge exactly towards the sliding surface but wraps around it, which can
reduce the system’s accuracy and robustness to disturbances [34–36].

- A controller with a dynamic gain can be a useful tool in situations where there are
uncertainties or disturbances in the system being controlled. Adaptive SMC, which
adjusts the gain based on the level of uncertainties or disturbances, can be particularly
effective in reducing chattering. In [37], adaptive SMC with first-order adaptation
is proposed for the control of electropneumatic actuators. The controller used an
adaptive gain that was updated online based on the system output error and its
time derivative. The controller was evaluated with simulation studies and showed
improved performance compared to fixed-gain SMC. In [38], robust adaptive SMC
was put forward for Takagi-Sugeno fuzzy systems. The controller used a dynamic
gain that was updated online based on a measure of the uncertainty in the system. The
controller was suggested to provide improved tracking performance and robustness
to uncertainties in the system. Overall, adaptive SMC with a dynamic gain can be an
effective tool for controlling systems with uncertainties or disturbances. By adjusting
the gain based on the uncertainty level, these controllers can provide improved
performance and reduced chattering compared to fixed-gain controllers.

- Several researchers have also advocated the use of fractional-order SMC to overcome
the limitations of CSMC. In contrast to CSMC, fractional-order SMC incorporates a
fractional-order term in the sliding surface [39]. This fundamental operation of frac-
tional calculus involves performing differentiations and integrations with fractional
exponents, necessitating digital circuits with higher computational power.

- Fractional-order SMC has certain limitations, particularly concerning the considera-
tion of uncertainties and sensitivity to noise, which pose challenges in its design and
implementation. To address these limitations, researchers have explored approaches to
make fractional-order SMC more robust, including fuzzy logic techniques and neural
networks, to adjust the controller parameters based on changing system conditions.
This enhances performance and reduces sensitivity to disturbances and uncertain-
ties [40–42]. Nonetheless, fractional-order SMCs have shown promising results in
controlling nonlinear systems [43–45]. The combination of fractional-order sliding
mode control and intelligent techniques can improve robustness and reduce vibrations,
but it also increases the complexity of the implemented algorithms, requiring digital
circuits with higher computational power.

- The sliding surface is a key component in SMC that helps to drive the system towards
a desired state or trajectory. The addition of integral parts to the sliding surface is a
modification that can improve the performance of the controller. This modification
aims to address the issue of chattering, which is a common problem in SMC [22,23].

- In their research [46], the authors introduced a high-gain approach to mitigate position
or velocity perturbations in inverted pendulums. This method, in contrast to a sliding
mode control technique, produced a control signal without inducing chattering.
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- In their work, [46,47] introduced higher-order SMCs. The latter generalized first-order
control by utilizing higher-order derivatives of the sliding surface (S) instead of re-
stricting itself to just the first derivative. However, to implement such a controller,
derivatives of the sliding variable were necessary, making this approach more de-
manding in terms of the required information for its design. An outstanding exception
was the super-twisting sliding mode algorithm, which only requires the measurement
of the sliding variable. This method is highly powerful and therefore very appealing
for controlling three-phase induction motors and other applications, as was demon-
strated in [14,48–51]. Currently, the latest control technique has been proposed by a
few researchers for controlling the FPIM. Unfortunately, its performance has not been
detailed in [52,53]. In their investigation [46], the authors used a Direct Field-Oriented
Control (DFOC) method employing a second order Supertwisting Algorithm (STA)
for a five-phase squirrel-cage induction motor. Although the supertwisting algorithm
was proposed to enhance control loops for rotor speed, rotor flux, and currents, the
study falls short in providing a thorough examination of the control system’s perfor-
mance. Notably, aspects such as robustness under load torque disturbances, variations
in rotor resistance, and the Total Harmonic Distortion (THD) of the stator current,
especially at low speeds, have not been extensively discussed. In another related
study [53], the authors presented an enhanced field-oriented control of FPIM using
an STA exclusively for inner current control loops. Unfortunately, simulation studies
in this work lack comprehensive details, as the authors only presented a scenario in
steady-state operation without a load.

In this work, we attempt to develop and apply Second Order Sliding Mode Controllers
(SOSMCs) based on the Super Twisting Algorithm (STA) (SOSMC-STAs) based DFOC for
an FPIM with a highly detailed performance analysis based on multiple evaluation sce-
narios in steady state and at low-speed ranges, under sudden load torque application and
rotor resistance variations. The proposed SOSMC-STA performance will be analyzed using
other criteria, such as the Integral of Absolute Error (IAE), the Integral of Squared Error
(ISE), the Integral of Time multiplied by Absolute Error (ITAE), and the Total Harmonic
Distortion (THD). This comprehensive study distinguishes itself from previously published
research works and will present valuable results that are particularly beneficial for de-
signers of variable-speed drives. The proposed SOSMC-STAs controllers are combined
with the DFOC strategy, which will be denoted by DFOC-SOSMC-STAs in the rest of the
paper. Furthermore, in our work, the suggested DFOC-SOSMC-STAs are compared with
classical DFOC based on PICs (DFOC-PICs), classical DFOC based on Integral-Proportional
Controllers (DFOC-IPCs), and DFOC based on CSMCs (DFOC-CSMCs). The comparison
results show that the proposed DFOC-SOSMC-STAs reduce chattering, increase speed and
precision, enhance the control system robustness against variations in FPIM parameters
and load disturbances, and stand out for their remarkable simplicity in terms of design
and implementation.

Recently, electric motors have been estimated to consume a significant portion of
the world’s electricity. According to data from the International Energy Agency (IEA),
electric motors account for approximately 45–50% of global electricity consumption in the
industrial and commercial sectors combined. This includes both low-power motors found
in appliances and high-power motors used in heavy industrial applications. In this context,
several researchers have proposed various approaches to improve the energy efficiency
of IMs by selecting the optimal reference flux for each load. These approaches can be
categorized into two main categories: the Search Controller (SC) [54–59], and the Loss
Model Controller (LMC) [49,59]. Indeed, the Search Controller (SC) relies on measuring the
Input power or the DC bus power and applying artificial intelligence (fuzzy logic, neural
networks, P&O, etc.) to find the rotor flux reference that results in minimum power for a
given load. The SC method is insensitive to motor parameters, but it requires additional
hardware to measure the DC bus current. The main drawbacks of the search-based control
SC are slow convergence and torque ripples [57,59]. The LMC is based on the steady-state
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model of the IM, expressed in the rotor flux orientation reference frame, to select the
optimal rotor flux reference that will be online-tuned to optimize the IM efficiency. This
rotor flux reference is determined based on the calculation of minimum IM losses. The
LMC method has the advantage of being simple and fast. However, its accuracy depends
on correct motor modeling and loss estimation. Adding the LMC to DFOC is one of the
control strategies aimed at energy savings. It is true that the LMC has been addressed in
the literature for conventional structure machines like three-phase induction machines,
but, unfortunately, it is not applied to five-phase induction machines. In this context, we
have currently initiated the minimization of copper losses for the FPIM to determine the
reference rotor flux for a given load torque profile. We have demonstrated that adjusting
the rotor flux level in accordance with the load ensures better steady-state operation of the
machine without significantly sacrificing the dynamics of the torque or speed response.
In this context, we can identify the second significant contribution of this article which
consists of applying the LMC to an FPIM.

Finally, our primary objectives and contributions to both theoretical and simulation
studies can be summarized as follows:

(i) An updated vector control approach, employing the SOSMC-STAs for the FPIM, is
presented. This novel control scheme offers several benefits, including enhanced
system robustness against load disturbances and stator resistance variations, reduced
chattering, rapid convergence with high precision, and minimized torque ripples. It is
noteworthy that the existing literature primarily uses PI-based or SMC-based vector
control for the FPIM without the STA.

(ii) LMC for FPIM loss minimization is put forward to calculate the optimal required
rotor flux as a function of motor operation conditions, which consequently reduces
the electrical energy consumption in steady-state operations and improves the FPIM
efficiency. To the best of our knowledge, this marks the initial utilization of LMC in
the literature in conjunction with DFOC-SOSMC-STAs to enhance the efficiency of
the FPIM.

(iii) In simulation, the suggested vector control strategy, employing the STSMC-STAs,
is developed within the Matlab/Simulink environment. The results demonstrate
outstanding robustness in the face of load torque disturbances, stator resistance
variations, and rapid dynamic responses with exceptional precision.

(iv) A comparative analysis involving various simulation scenarios is conducted to eval-
uate the performance of PICs, IPCs, CSMCs, and our proposed SOSMC-STAs. The
results indicate that the suggested controller outperforms the others across multiple
criteria, including speed response time, speed overshooting, robustness against load
disturbances and parameter variations, chattering reduction, and torque ripple mini-
mization. Moreover, the proposed LMC offers satisfactory performance in terms of
efficiency optimization.

The structure of the remaining part of the article is as follows: Section 2 intro-
duces the state model of the FPIM, while Section 3 presents the DFOC control strategy.
Sections 4 and 5 are dedicated to synthesizing PI and IP controllers, respectively, for speed,
rotor flux, as well as direct and quadrature stator currents. In Section 6, we develop
CSMS and SOSSMC-STAs for speed, direct and quadrature stator currents, and rotor
flux. Section 7 discusses the optimization strategy for FPIM efficiency based on the loss
model. Simulation results, evaluating the performance of the proposed control strategy, are
presented in Section 8. Finally, our conclusions are provided in Section 9.

2. Modeling of FPIM

The formulation of the FPIM in the rotating reference frame (d-q, x-y) yields the
following electrical and mechanical equations [5,6,60]:
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

.
isd = K

Tr
ψrd + K·p·Ω·ψrq − γ·isd + ωs·isq +

vsd
σLs.

isq = −K·p·Ω·ψrd +
K
Tr

ψrq − γ·isq − ωs·isd +
vsq
σLs.

isx = − Rs
Lls

isx +
1

Lls
vsx

.
isy = − Rs

Lls
isy +

1
Lls

vsy
.
ψrd = − 1

Tr
·ψrd + ωr·ψrq +

Lm
Tr
·isd.

ψrq = −ωr·ψrd − 1
Tr
·ψrq +

Lm
Tr
·isq

.
ω = p

J (Te − Tl)−
f
J ω

(1)

In addition, the electromagnetic Te torque and the mechanical equation of the FPIM
can be determined by:

Te =
p·M
Lr

·
(
ψrd·isq − ψrqisd

)
(2)

.
Ω =

Te

J
− TL

J
− f

J
·Ω (3)

where:

■ σ = 1 − Lm
2

Ls ·Lr
, K = 1−σ

Lm ·σ , Tr =
Lr
Rr

, Ts =
Ls
Rs

, γ = 1
σ·Ts

+ 1
Tr
· 1−σ

σ , Lm = 5
2 M

■ isd, isq, isx, isy: d-q, x-y-axis stator current components,
■ vsd, vsq, vsx, vsy: d-q, x-y-axis stator voltage components,
■ ψrd, ψrq: d-q-axis rotor flux components,
■ ωs: synchronous angular speed,
■ Ω: mechanical speed,
■ ω: electrical motor speed (ω = pΩ),
■ ωr: slip angular speed (ωs − ω),
■ Rs, Rr: stator and rotor resistance,
■ M: Maximum value of the stator to rotor mutual inductances in the phase.
■ Ls, Lr: stator and rotor cyclic inductance,
■ Lm: cyclic mutual inductance stator-rotor,
■ Lls: stator leakage inductance,
■ Tr, Ts: stator and rotor time constant,
■ σ: leakage coefficient,
■ p: pole-pair number,
■ J: rotor Inertia,
■ f : viscous Friction coefficient.

3. Rotor Field Orientation Vector Control

The field-oriented control strategy was developed to control the electromagnetic torque
in transient conditions. The concept of decoupling in vector control of alternating current
machines emerged in the late 1960s. Initially, in 1969, Hasse introduced the method of indi-
rect field-oriented control, followed by Blaschke in 1971 who developed a theory of control
known as DFOC. These approaches have enabled the assimilation of the asynchronous
machine with a separately excited direct current machine, where a natural decoupling
exists between the flux and the electromagnetic torque. This is achieved by considering the
orientation of the flux relative to the d-axis.{

ψrd = ψr
ψrq = 0

(4)

Given that ψrq = 0 and ψr = ψrd, the set of FPIM equations presented in (1) and (2)
will be as follows:
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

.
isd = K

Tr
ψr − γ·isd + ωs·isq +

vsd
σLs.

isq = −K·p·Ω·ψr − γ·isq − ωs·isd +
vsq
σLs.

isx = − Rs
Lls

isx +
1

Lls
vsx

.
isy = − Rs

Lls
isy +

1
Lls

vsy
.
ψr = − 1

Tr
·ψr +

Lm
Tr
·isd

0 = −ωr·ψr +
Lm
Tr
·isq

.
ω = p

J (Te − Tl)−
f
J ω

(5)

Te = P· Lm

Lr
·
(
ψr·isq

)
(6)

Considering (5), the quantities ψr, ωs and θs are given by the following equations:
ψr =

Lm
1+Tr ·s isd

ωs =
Lm

ψr ·Tr
·isq + pΩ

θs =
∫
(ωr + p·Ω)·dt

(7)

where θs is the angle of the direct and inverse Park transformations. From (5), the direct
and quadrature stator voltages are given by the following equations, respectively:{

vsd = σLs
.
isd + γσLsisd − σLs

K
Tr

ψr − σLsωsisq

vsq = σLs
.
isq + γσLsisq + σLsKpΩψr + σLsωsisd

(8)

To ensure decoupling between the two axes (d, q) and to calculate the controller
coefficients for the stator currents in a straightforward manner, we can rewrite the FPIM
equations as follows: {

vsd = vd + ed
vsq = vq + eq

(9)

with: {
vd = σLs

.
isd + γσLsisd

vq = σLs
.
isq + γσLsisq

(10)

and {
ed = −σLs

K
Tr

ψr − σLsωsisq

eq = σLsKpΩψr + σLsωsisd
(11)

ed: d- back electromotive force.
eq: q- back electromotive force.

The expressions for the direct and quadrature stator currents are given by the following
equations, respectively. The direct stator current is given by:

isd =

γ
σLs

1 + 1
γ s

·vd (12)

The quadrature stator current is as follows:

isq =

γ
σLs

1 + 1
γ s

·vq (13)

Equations (6) and (7) show that the electromagnetic torque and the magnetic flux
are individually regulated based on currents isq and isd. Thus, the decoupling between
the torque and the flux is ensured by the independence between isq and isd according
to (12) and (13).
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Figure 1 represents the schematic of DFOC for the FPIM. The components of this
control include the speed control loop, stator current control loops isq, isd, isx and isy, the
rotor flux control loop ψr, the estimation block of θs, ωr and ψr, the direct and inverse Park
transformation blocks, and the decoupling calculation blocks ed and eq.
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The speed is regulated by a proportional-integral controller (PIC), and the output of
this controller represents the reference for the electromagnetic torque T∗

e . Equation (5) allows
us to calculate the reference for the quadrature stator current i∗sq for the inner current loop
isd. Through a proportional-integral controller (PIC), the current controller isd provides the
reference v∗q that is added to eq to construct the reference for the quadrature voltage v∗sq.

In parallel with the speed loop, there is a rotor flux regulation loop Ψr cascaded with a
direct stator current regulation loop isd. The rotor flux controller provides the reference for
the stator current i∗sd, and the current controller gives the reference v∗q . This is added to ed
to form a reference for the stator voltage v∗sd. The goal is to adjust this current i∗sd to keep
the rotor flux in phase with the d-axis reference.

Currents isx and isy are kept at zero since neither of them contributes to torque genera-
tion. The decoupling block calculates ed to and eq, which are essential for making the d and
q axes completely independent.

The FPIM is powered by a five-leg inverter and is controlled using a Space Vector
Pulse Width Modulation (SVPWM) technique employing four vectors per sector [61].

The conventional DFOC control strategy uses PICs for the different control loops, but it
is not robust against parameter variations in the machine and against external disturbances.
Particularly at low-speed ranges, it does not accurately track either speed or torque profiles.
To overcome the latter control technique limitations, a hybrid control technique based on
the combination between the DFOC strategy and SOSMCs based on STA (SOSMC-STAs) is
proposed, and will be developed in the following sections [8,20].

4. Synthesis of PI Controller
4.1. Speed PI Controller

The block diagram of the closed-loop speed controller is depicted in Figure 2 [14,62].
The integral and proportional parameters of this controller are denoted as KpΩ and TiΩ,
respectively. Ω and Ω* represent the actual and reference rotor speeds, respectively. T∗

e
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and Tl represent the reference and load torque, respectively. The adjustment of the speed
controller parameters is carried out to achieve the desired performance of the closed-loop
system by specifying the damping coefficient ξ and the natural frequency w0. Referring to
Figure 2, the closed-loop transfer function Gcl(s) can be expressed as follows:

Gcl(s) =
TiΩs + 1

JTiΩ
KpΩ

s2 + TiΩ

(
1 + f

KpΩ

)
s + 1

(14)

By identifying the denominator of Gcl(s) into a canonical form s2

w2
0
+ 2ξ

w0
s+ 1, we obtain

the following relationships: 
1

w2
0
= JTiΩ

KpΩ

2ξ
w0

= TiΩ

(
1 + f

KpΩ

) (15)

To achieve an overshoot-free response, the damping coefficient is set to ξ = 1, corre-
sponding to the following relation: w0 × tresp = 4.75, as stated in Table A3 Here, tresp
represents the speed response time.
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4.2. Currents PI Controllers

The control loops for currents are established within the (d-q) and (x-y) frames. Fixed
reference currents facilitate the utilization of PI controllers, simplifying and enhancing
control efficiency. The parameters of the PI current controllers are determined by two
criteria [62,63], which are:

(i) The zero point of the current controller nullifies the dominant time constant’s pole in
the process.

(ii) The feedback loop’s time constant is deliberately set lower than that of the process.

The block diagram of the closed-loop for the d-q current controllers is depicted in
Figure 3.
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The transfer function of the open loop along the d-q axis current is provided by:

Gdqo(s) = KPp

Tips + 1
Tips

· 1

σLs

(
1 + 1

γ s
) (16)

Considering the first rule:

Tips + 1 = 1 +
1
γ

s (17)

Consequently, the simplified closed-loop transfer function is formulated as follows:

Gdqc(s) =
1

1 +
TipσLs
Kppγ s

=
1

1 + Tcs
(18)

TC is the time constant of the feedback loop of the d-q axis current loop is set at a fixed
value according to [14,60,61].

TC =
TipσLs

Kppγ
(19)

Therefore, the parameters for the d-q axis current controllers are as follows:{
Tip = 1

γ

Kpp = σLs
0.116γ

(20)

The block diagram of the closed-loop for the x-y current controllers is depicted in
Figure 4.
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Figure 4. Block diagram of the closed-loop for the x-y current controllers.

The same method is applied to determine the parameters of the PI controllers for the
x-y current components, resulting in: {

Tix = Lls
Rs

Kpx = Rs
0.116

(21)

4.3. Flux PI Controller

Respecting the first and second synthesis rules for PI controllers from reference [62,63],
the parameters of the flux controller in Figure 5 are selected by:{

Tiφr = Tr
Kpφr =

1
0.116·Lm

(22)
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5. Synthesis of IP Controllers

The functional diagram presenting a system defined by its transfer function G(s) with
the IP controller is depicted in Figure 6 [61].
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Referring to references [14,63], the parameters ki and kp are given by the following expressions:{
ki =

94
k

kp = 24
τ

(23)

According to (23), the parameters of the following controllers are defined:

5.1. Speed IP Controller

The speed controller parameters are given by (24):{
ki = 94 f
kp = 24

J
f (24)

5.2. Currents IP Controllers

Parameters for the d-q axis current controllers{
ki =

94σLs
γ

kp = 24γ
(25)

Parameters for the x-y axis current controllers{
ki = 94Rs

kp = 24
Lls

RS
(26)

5.3. Flux IP Controller

The Formula (27) presents the parameters of the flux controller.{
ki =

94
Lm

kp = 24
Tr

(27)
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6. Theory for SMC Based DFOC for FPIM

The robustness of SMC relies on its intrinsic ability to maintain stable control despite
the presence of uncertainties, disturbances, and variations in the system dynamics. This ro-
bustness primarily stems from the key characteristics of the control technique [23,31,63,64]:

✔ Sliding surface: SMC utilizes a sliding surface to guide the trajectory of the system
state in tracking a desired reference trajectory. The sliding surface acts as a “virtual
wall” that the system is compelled to follow. This means that, regardless of the
inherent uncertainties of the system or external disturbances, the control action is
designed to keep the system state on this sliding surface.

✔ Discontinuous control action: SMC employs a discontinuous control law that switches
the control action to keep the system on the sliding surface. This control action
changes instantaneously, essentially ignoring small perturbations and focusing on
maintaining the system on the sliding surface.

✔ Invariance principle: The essential foundation of SMC lies in the invariance principle,
stating that once the system reaches the sliding surface, it will remain there indefinitely.
This invariance ensures that the system maintains its robustness against uncertain-
ties and disturbances, as it is designed to stay on the sliding surface regardless of
external influences.

✔ Chattering: Although chattering is generally considered an undesirable feature of
SMC, it contributes to the robustness of the control approach. Chattering helps
mitigate uncertainties and disturbances by quickly adapting the control action to the
changing dynamics of the system.

The concept of SMC consists of three phases: an initial reaching phase, where the
state trajectory is directed towards the surface S = 0 and reaches it in a finite time. This is
followed by a sliding phase, where the trajectory slides on the switching surface towards
an equilibrium point. The fundamental principle of SMC is illustrated in Figure 7 [65,66].
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In this context, the SMC law consists of two terms [67]:

u = ueq + unl (28)
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In this context, the SMC law consists of two terms [67]: 𝑢 = 𝑢௘௤ + 𝑢௡௟ (28)

 A continuous term “ueq” describing the system dynamics on the sliding surface. 
 A discontinuous term “unl” describing the system dynamics during the reaching 

mode. 
To synthesize an SMC law, the following steps should be followed [22,25,67]: 

(i) Choosing of the sliding surfaces, 

A discontinuous term “unl” describing the system dynamics during the reaching mode.

To synthesize an SMC law, the following steps should be followed [22,25,67]:

(i) Choosing of the sliding surfaces,
(ii) Establishing a control strategy to guide the system state trajectory towards a prede-

fined surface within a finite time,
(iii) Verifying the stability conditions that can be defined by applying the Lyapunov function.
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6.1. Synthesis of Speed CSMC

According to the SMC theory, the control law that describes the reference electromag-
netic torque is defined as follows [14,22,23]:

Te
∗ = Teeq + Tenl (29)

where Teeq and Tenl respectively represent the equivalent part and the non-linear part of the
reference torque Te

∗. The chosen sliding surface is defined by the speed error, as illustrated
by (30): {

SΩ = Ω − Ω∗
.
SΩ =

.
Ω −

.
Ω

∗ (30)

The main objective is that the actual speed Ω should track its reference.
Inserting (3) into the speed sliding surface derivative equation provided by (30),

we obtain:
.
SΩ =

1
J
(Te − TL − f Ω)−

.
Ω

∗
(31)

where J, f, TL and Te denote the inertia moment, the coefficient of friction, the load torque,
and the electromagnetic torque, respectively.

The necessary condition for the state of the system to follow the trajectory defined by
the sliding surface is SΩ =

.
SΩ = 0. This condition gives:

Teeq = TL + f Ω + J
.

Ω
∗

(32)

A discontinuous control action, defined by the term Tenl, is established to guarantee
finite time convergence towards the sliding surface, despite uncertainties and disturbances.
The discontinuous control is defined by (33):

Tenl = KΩsign(SΩ) (33)

where KΩ is a positive proportional gain of non-linear control relative to the speed controller,
and sign(.) is a sign function. Finally, the reference torque Te

∗ is defined by this equation:

T∗
e = TL + f Ω + J

.
Ω

∗
− KΩsign(SΩ) (34)

To check system stability, we use the Lyapunov function V, which is defined by
(35) [68]:

V =
1
2

S2
Ω (35)

If the time derivative of the Lyapunov function V is negative, it implies that
.

V(x) < 0 for
all x ̸= 0, in this scenario, we can confirm the conditions for the existence and achievability of
the sliding mode. Then, we differentiate V with respect to time as follows [14]:

.
V = SΩ

.
SΩ < 0 (36)

To verify the reachability condition of speed SMC, we can follow the steps outlined
below. By (35) with (32), we obtain the desired result in (37):

.
SΩ = −KΩ

J
sign(SΩ) (37)

Referring to (36), it can be rewritten as:

SΩ
.
SΩ = SΩ(−KΩ

J
sign(SΩ)) < 0 (38)
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With
SΩ(sign(SΩ)) =|SΩ|> 0 (39)

Using (38) and (39), we can obtain the following condition:

−KΩ

J
|SΩ| < 0 → KΩ

J
> 0 (40)

To ensure the stability of the speed controller, it is necessary to adjust gain in a way
that satisfies the inequality stated in (40).

6.2. Synthesis of Flux CSMC

Based on references [14,22,23], defining the SMC theory and the steps required for
SMC design as follows in Section 6 of this document, the control law and stability condition
of Flux CSMC are developed as shown below:

Flux CSMC generates the direct reference stator current i∗sd. The equivalent part and
non-linear part of the reference i∗sd are denoted and represented as follows:

i∗sd = isdeq + isdnl (41)

To determine the control law i∗sd, the sliding surface associated with the flux controller
is given by the following expression:

Sψr = ψr − ψ∗
r (42)

Equation (42) can be differentiated with respect to time, resulting in the following
time derivative: .

Sψr =
.
ψr −

.
ψ
∗
r (43)

From (5) we obtain:
.
ψr =

Lm

Tr
isd −

1
Tr

ψr (44)

By substituting (44) into (43), we obtain:

.
sψr =

Lm

Tr
isd −

1
Tr

ψr −
.
ψ
∗
r (45)

The condition necessary to fulfill the sliding mode is articulated as follows:

.
sψr = sψr = 0 (46)

From (46) and (45), the equivalent part of the reference current i∗sd is represented
as follows:

isdeq =
1

Lm
ψr +

Tr

Lm

.
ψ
∗
r (47)

The non-linear part of the reference i∗sd is as follows:

isdnl = Kψr sign
(
Sψr

)
with 0 < α < 1 (48)

The global control is as follows:

i∗sd =
1

Lm
ψr +

Tr

Lm

.
ψ
∗
r + Kψr sign(Sψr ); Lm > 0 (49)

To analyze the stability of the suggested approach, the Lyapunov function can be
employed, as given by (35). Thus, by substituting (49) into (45), we can obtain:

.
Sψr = − Lm

Tr
Kψr sign(Sψr ) (50)
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Using (36), the Lyapunov condition is given by:

Sψr

.
Sψr = Sψr (−

Lm

Tr
Kψr sign(Sψr )) < 0 (51)

Moreover,
Sψr sign

(
Sψr

)
=
∣∣Sψr

∣∣ (52)

Using (52) and (51) we obtain:

Sψr

.
Sψr = − Lm

Tr
Kψr

∣∣Sψr

∣∣ < 0 (53)

Knowing that
∣∣Sψr

∣∣ is always positive, we obtain:

Kψr >
Tr

Lm
(54)

To guarantee the stability of the flux controller, it is essential to fine-tune gain Kψr so
that it can meet the conditions of (54).

6.3. Synthesis of Direct Stator Current CSMC

The direct stator current controller supplies voltage vsd, which represents the first
term of the control reference voltage v∗sd, as given by (9). Based on references [55] and the
beginning of Section 6 of this document, the global control law of the direct stator current
controller is defined as follows:

v∗d = vdeq + vdnl (55)

where vdeq is the equivalent part of the control law, and vdnl is the non-linear part of the
control law.

To compute the control law vdeq, the sliding surface associated with the direct stator
current controller isd is given by:

Sisd = isd − i∗sd (56)

The time derivative of (56) is expressed as follows:

.
Sisd =

.
isd −

.
i
∗
sd (57)

From (10), we obtain the expression for:

.
isd =

vd
σLs

− γisd (58)

By substituting (58) into (57), we obtain:

.
sisd =

vd
σLs

− γisd −
.
i
∗
sd (59)

The condition required to meet the sliding mode is presented as follows:

sisd =
.
sisd = 0 (60)

According to (55)–(60), the control law of the equivalent part and the global control
law are given by (61) and (62), respectively:

vdeq = σLs(γisd + i∗sd) (61)

v∗d = σLs(γisd + i∗sd)− Kdsign(Sisd) (62)
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Kd: proportional gain of nonlinear control with respect to the direct stator current
controller. To assess system stability, we employ the Lyapunov function, which is defined
as follows [67]:

Visd =
1
2

S2
isd

(63)

Moreover, the stability condition is given by the following equation:

..
Visd = Sisd

.
Sisd (64)

By substituting (62) into (59), we obtain:

.
Sisd = − Kd

σLs
sign(Sisd) (65)

Using (64), the Lyapunov condition is calculated as follows:

Sisd

.
Sisd = −Sisd

Kd
σLs

sign(Sisd) ≺ 0 (66)

With
Sisd sign

(
Sisd

)
=
∣∣Sisd

∣∣ (67)∣∣Sisd

∣∣ is always positive, i.e., the stability condition is only satisfied when:

Kd
σLs

> 0 (68)

6.4. Synthesis of Quadratic Stator Current CSMC

The quadratic stator current controller supplies the first term v∗q of the quadratic
reference stator voltage v∗sq given by (9).

The global law for the quadratic stator current controller is defined as follows, based
on references [67] and Section 6 of this document:

v∗q = vqeq + vqnl (69)

with:

vqeq: the equivalent part of the control law,
vqnl : the non-linear part of the control law.

In order to determine the control law vqeq, the sliding surface associated with the
quadratic stator current controller is as follows:

Sisq = isq − i∗sq (70)

The time derivative of Equation (70) is expressed as follows:

.
Sisd =

.
isd −

.
i
∗
sd (71)

From (10), we derive the following expression:

..
isq =

vq

σLs
− γisq (72)

Inserting (72) into (71), we obtain:

.
sisq =

vd
σLs

− γisq − i∗sq (73)
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By applying the necessary condition to satisfy the sliding mode defined by (60) and
(69)–(73), the control law of the equivalent part and the global control law are given by
(74) and (75), respectively:

vqeq = σLs

(
γisq + i∗sq

)
(74)

v∗q = σLs

(
γisq + i∗sq

)
− Kqsign(Sisq) (75)

Kq: Positive proportional gain.
To evaluate the stability of the system, we utilize the Lyapunov function, defined

as follows:
V =

1
2

S2
iq (76)

In addition, the stability condition is expressed by the following equation:

.
V = Sisq

.
Sisq ≺ 0 (77)

Upon substituting (75) into (73), we obtain:

.
Sisq = − Kd

σLs
sign(Sisq) (78)

Using (77), the Lyapunov condition is calculated as follows:

Sisq

.
Sisq = −Sisq

Kd
σLs

sign(Sisq) ≺ 0 (79)

With:
Sisq sign

(
Sisq

)
=
∣∣∣Sisq

∣∣∣ (80)

Term |Sisd| is always positive, i.e., the stability condition is only satisfied when:

Kq

σLs
> 0 (81)

6.5. Synthesis of isx and isy Direct Stator Current CSMC

The two current controllers isx and isy supply the reference voltages v∗sx and v∗sy respectively.
Referring to (5) and Section 6 of this document, the global control law of v∗sx and v∗sy are
expressed by: {

v∗sx = vsxeq + vsxnl
v∗sy = vsyeq + vsynl

(82)

To calculate the two control laws v∗sx and v∗sy, we define the two slip surfaces Ssx and
Ssy, respectively linked to the isx and isy current controllers:{

Ssx = isx − i∗sx
Ssy = isy − i∗sy

(83)

The time derivative of (83) gives us:

.
Ssx =

.
isx −

.
i
∗
sx.

Ssy =
.
isy −

.
i
∗
sy

(84)

From (5), the isx and isy currents are expressed as follows:{ .
isx = − Rs

Lls
isx +

1
Lls

vsx
.
isy = − Rs

Lls
isy +

1
Lls

vsy
(85)
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By substituting (85) into (84), we obtain:
.
Ssx = − Rs

Lls
isx +

1
Lls

vsx −
.
i
∗
sx

.
Ssy = − Rs

Lls
isy +

1
Lls

vsy −
.
i
∗
sy

(86)

The application of the sliding surface (
.
S = S = 0) results in:{

veqsx = RSisx + Llsi∗sx
veqsy = RSisy + Llsi∗sy

(87)

And {
v∗sx = RSisx + Lls

.
i
∗
sx − Ksxsign(Ssx)

v∗sy = RSisy + Lls
.
i
∗
sy − Ksysign

(
Ssy
) (88)

To assess the system stability, we use the Lyapunov condition, which is defined
as follows: {

Sisx

.
Sisx < 0

Sisy

.
Sisy < 0

(89)

Inserting (88) into (86) yields:{ .
Ssx = −Ksx

Lls
sign(Ssx)

.
Ssy = −Ksy

Lls
sign

(
Ssy
) (90)

And {
Ssx

.
Ssx = −Ksx

Lls
Ssxsign(Ssx)

Ssy
.
Ssy = −Ksy

Lls
Ssysign

(
Ssy
) (91)

With: {
Ssxsign(Ssx) = |Ssx| > 0
Ssysign

(
Ssy
)
=
∣∣Ssy

∣∣ > 0
(92)

The stability condition defined by (77) is satisfied only when:{Ksx
Lls

> 0
Ksy
Lls

> 0
(93)

Remark: The “sign” function presented in Equations (33), (34), (49) and (75) induces
the chattering phenomenon [31–33]. In fact, this phenomenon can be mitigated by replacing
this function with “saturation” or “sigmoid” functions, but precision is lost [19]. To achieve
smooth control signals with reduced chattering, a second sliding mode control technique
based on the super-twisting algorithm will be developed and applied to the FPIM.

6.6. SOSMC Theory

In this section, we propose a new SOSMC control law that reduces disturbances caused
by changes or fluctuations in the parameters of FPIM. In an FPIM, the parameters can vary
due to external factors, such as temperature, wear, humidity, etc. These variations can
affect the dynamics of the FPIM, resulting in undesirable disturbances in the operation of
the FPIM.

In the context of SMC, the control law is designed to mitigate the effects of distur-
bances caused by these parametric variations. The objective is to make the system robust
against these variations so that it can maintain its desired behavior despite changes in
its parameters.

By using an appropriate combination of the equivalent control law ueq(t) and the STA
law uST(t), we can reduce the impact of parametric variations and the phenomenon of
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chattering that may occur when control is unstable or exhibits undesirable oscillations.
Integrating these two control laws provides a more robust approach to regulating the
system and mitigating disturbances caused by parametric variations [14,23].

u(t) = ueq(t) + uST(t) (94)

The STA uST is a second-order sliding mode. This controller slides on the space
s =

.
s = 0 using only the measurement of s without needing information on the time

derivative of the sliding surface s. The second-order super-twist algorithm defines the
control law as the sum of two terms. The first is defined by the integral of a discontinuous
function of the slip surface variable, while the second is a continuous function of the
slip surface variable to reduce the chattering effect [14,31,33]. The STA is defined as
follows [23,32,50]. {

uST = −λ|s|αsign(s) + u1.
u1 = −βsign(s)

(95)

where (s) is the sliding surface and the value of the parameter α comprises between 0 and
0.5. The parameters λ and β are the gains of the STA. These gains are positive constants [69].
The convergence of the control law that represents the STA is obtained by adjusting the
values of λ and β, which have effects on the steady-state response and accuracy of the
system, respectively. The sufficient conditions that ensure finite-time convergence are set
by Levant in [48] as follows. {

β > Φ
ΓM

λ2 ≥ 4ΦΓM(β+Φ)

Γ3
m(β−Φ)

(96)

where β, λ, Φ, and ΓM are positive constants, Φ is the positive bound of the uncertain
function Φ, and ΓM and Γm are the upper and lower positive bounds of the uncertain
function γ to the second derivative of the sliding surface given as follows [69].

..
S = ϕ(x, t) + γ(x, t)

.
u (97)

To guarantee the convergence of the sliding surface to zero in the presence of distur-
bances and uncertainties, functions ϕ(x, t) and γ(x, t) must satisfy the following conditions:
Φ ≥ |ϕ| and ΓM ≥ γ ≥ Γm > 0 [68,69].

6.7. Synthesis of Speed SOSMC-STA

Applying uncertainties, ∆
(

1
J

)
, ∆
(

TL
J

)
, and ∆

(
f
J

)
in the quantities 1

J , TL
J and f

J , re-
spectively, in Equation (3), we obtain the following equation [23]:

.
Ω =

Te

J
− TL

J
− f

J
·Ω + ∆

(
1
J

)
Te + ∆

(
TL
J

)
+ ∆

(
f
J

)
Ω

.
Ω =

Te

J
− TL

J
− f

J
·Ω +

.
∆Ω (98)

where,
.

∆Ω = ∆
(

1
J

)
Te + ∆

(
TL
J

)
+ ∆

(
f
J

)
Ω, represents the perturbation term. The sliding

surface, sΩ, is defined as the error, e(t), between the reference speed Ω∗ and the actual
speed Ω, as follows: 

SΩ = Ω − Ω∗

.
SΩ =

.
Ω −

.
Ω

∗
(99)

The required condition to achieve sliding mode is presented as follows:

SΩ =
.
SΩ = 0 (100)
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From (94), (95), (98), and (100) the reference torque generated by the speed SOSMC-STA
speed is given by the following equation:

Te−re f = TL + f Ω + J
.

Ω
∗
− J

.
∆Ω (101)

Referring to [23] and (94), the disturbance term is defined as follows:

−J
.

∆Ω = uST(t) (102)

By inserting (102) into (101), we obtain:

Te−re f = TL + f Ω + J
.

Ω
∗
− λΩ|s|

1
2 sign(sΩ)− βΩ

∫
sign(sΩ)dt (103)

Substituting (103) into (99) gives us:{ .
sΩ = − λΩ

J |s|
1
2 sign(sΩ) + u +

.
∆Ω

.
u = − βΩ

J sign(sΩ)
(104)

We assumed that: sΩ = z1, u = z2,
.

∆(Ω) = ε, λΩ
J = k1et βΩ

J = k2.
The Equation (104) can be rewritten as follows:{

.
z1 = −k1|z1|

1
2 sign(z1) + z2 + ε

.
z2 = −k2sign(z1)

(105)

Following [70–72], the stability analyses of the super-twisting speed controller repre-
sented by (105) are given as follows:

The candidate Lyapunov function for the perturbed system (105) is as follows [71]:

V(z) = 2k3|z1|+
1
2

z2
2 +

1
2

(
k1|z1|

1
2 sign(z1)− z2

)2
(106)

According to [71], the disturbance term of the system (105) is given by (107).

|ϵ| ≤ δ|Z1|
1
2 , δ ≥ 0 (107)

The proposed Lyapunov function given by (106) can be expressed in quadratic form
as follows:

V(z) = XT PX (108)

where XT = [X1, X2]
T = [|z1|

1
2 sign(z1), z2]

T
, P = 1

2

[
4k2 + k1 −k1
−k1 2

]
.

Since P is a positive definite symmetric matrix, we can establish the following inequality.

λmin{P}∥Z∥2
2 ≤ V ≤ λmax{P}∥Z∥2

2 (109)

where λmin{P} and λmax{P} respectively represent the smallest and largest eigenvalues of
the matrix P. and ∥.∥2 corresponds to the Euclidean norm of a vector.

The time derivative of X along the trajectories of the system (105) is computed in the
following manner:

.
X =

( .
X1
.

X2

)
=

1
|X1|

([
− 1

2 k1
1
2

−k3 0

](
X1

X2

)
+

(
1
0

)
|X1|ϵ

)
(110)
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where:
[
− 1

2 k1
1
2

−k3 0

]
= A, (1

0) = B and |X1|ϵ = φ.

.
X =

1
|X1|

(AX + Bφ) (111)

The time derivative of V along the trajectories of the X dynamics is computed
as follows:

.
V = XT P

.
X +

.
XT PX

.
V =

1
|X1|

(
X
φ

)T[AT P + PA PB
BT P 0

](
X
φ

)
(112)

According to (107), the following inequality is observed.

0 ≤ δ2|X1|2 − φ2 (113)

By adding (113) to the second term of (112), we obtain the inequality given by (114).

.
V ≤ 1

|X1|

(
(X

φ)
T
[

AT P + PA PB
BT P 0

]
(X

φ) + δ|X1|2 − φ2
)

.
V ≤ 1

|X1|

(
(X

φ)
T
[

AT P + PA + δC PB
BT P −1

]
(X

φ)

)
.

V ≤ − 1
|X1|

XTQX

(114)

where

C =

[
1 0
0 0

]
And

∼
Q =

k1

2

(
2k2 + k2

1 −
(

4 k2
k1
+ k1

)
δ −(k1 + 2δ)

−(k1 + 2δ) 1

)

The time derivative of V is considered negative if
∼
Q > 0. It is clear that this holds true

when the gains satisfy the inequality defined by (115) below [71,72].

k1 > 2δk2 > k1
5δk1 + 4δ2

2(k1 − 2δ)
(115)

Q is a positive definite symmetric matrix. Consequently, this inequality is established.

.
V ≤ − 1

|X1|
XTQX ≤ − 1

X1
λmin{Q}∥X∥2

2 ≤ −γ̌
√

V (116)

where λmin{Q} denotes the smallest eigenvalue of Q, and γ̌ is a positive constant given by
the following expression [71].

γ̌ =
λmin{Q}

√
λmin{P}

λmax{P} Ť =
2V

1
2 (z0)

γ̌
(117)

According to [71–73] and following (115) and (117), z1 and z2 converge to the origin in
a finite time.



Energies 2024, 17, 4192 22 of 37

6.8. Synthesis of Flux SOSMC-STA

According to (47), (94), and (95), the reference direct stator current generated by the
Flux SOSMC-STA is:

isd−re f =
1

Lm
ψr +

Tr

Lm

.
ψ
∗
r − λψr

∣∣sψr

∣∣ 1
2 sign(sψr )− βψr

∫
sign

(
sψr

)
dt (118)

The direct stator current control law given by (118) must satisfy the Lyapunov stability
condition presented by (51) to ensure flux control stability. The substitution of (118) into
(45) yields:

.
sψr = − Lm

Tr
λψr

∣∣sψr

∣∣ 1
2 sign(sψr )−

Lm

Tr
βψr

∫
sign

(
sψr

)
dt (119)

Next, the Lyapunov stability condition is as follows:

sψr

.
sψr = − Lm

Tr
λψr sψr

∣∣sψr

∣∣ 1
2 sign

(
sψr

)
− Lm

Tr
βψr sψr

∫
sign

(
sψr

)
dt (120)

Therefore, according to (51), the flux control stability condition is satisfied only when
Lm
Tr

λψr > 0 and Lm
Tr

βψr > 0.

6.9. Synthesis of Direct Stator Current SOSMC-STA

Respecting (61), (94), and (95), the reference direct voltage generated by the direct
stator current SOSMC-STA is as follows:

vd−re f = σLs(γisd + i∗sd)− λvd |sisd|
1
2 sign(sisd)− βvd

∫
sign(sisd)dt (121)

The direct stator voltage control law given by (121) must satisfy the Lyapunov stability
condition presented by (51) to ensure direct stator current control stability. By introducing
(121) into (59), we obtain:

.
sisd = −

λvd

σLs
|sisd|

1
2 sign(sisd)−

βvd

σLs

∫
sign(sisd)dt (122)

According to the Lyapunov stability condition, the direct stator current control stability

is guaranteed only when
λvd
σLs

> 0 and
βvd
σLs

> 0.

6.10. Synthesis of Quadratic Stator Current SOSMC-STA

Applying uncertainties, ∆
(

1
σLs

)
, ∆(γ) in terms 1

σLs
, and γ, respectively, in Equation (72),

we obtain [23]:
..

isq =
vq

σLs
− γisq + ∆isq (123)

where ∆isq = ∆
(

1
σLs

)
vq − ∆(γ)isq.

Based on (94), (95), and (123), the reference quadratic voltage generated by the
quadratic stator current SOSMC-STA is as follows [23]:

vq−re f = σLs

(
γisq + i∗sq

)
− λvq |s|

1
2 sign(s)− βvq

∫
sign(s)dt + ∆v (124)

where ∆v = σLS·∆isq.
By substituting (124) into (73), we obtain:

.
sisq = −

λvq

σLs

∣∣sisq
∣∣ 1

2 sign
(
sisq
)
−

βvq

σLs

∫
sign

(
sisq
)
dt+∆isq (125)
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The Equation (125) can be rewritten as follows:
.
sisq = − λvq

σLs

∣∣sisq
∣∣ 1

2 sign
(
sisq
)
+ u + ∆isq

.
u = − βvq

σLs
sign

(
sisq
) (126)

We pose: sisq = z1i, u = z2i, ∆v = εi,
λvq
σLs

= k1iet
βvq
σLs

= k2i.
We obtain the following system:{

.
z1i = −k1i|z1|

1
2 sign(z1i) + z2i + εi.

z2i = −k2isign(z1i)
(127)

Respecting the steps of the stability analyses of the super-twisting speed controller
represented by (105), the constants k1i and k2i that ensure the global asymptotic stability of
the system (127) are given by (128).

k1i > 2δik2i > k1
5δik1i + 4δi2

2(k1i − 2δi)
(128)

where |ϵi| ≤ δi|Z1i|
1
2 , δ ≥ 0

According to (128) and (117), the variables z1i and z2i converge to the origin in finite
time [71,72].

7. LMC for Efficiency Optimization of FPIM

The losses in asynchronous motors can be categorized into several types, including
copper losses, iron losses, mechanical losses, and total losses. Copper losses are associated
with ohmic losses in the stator and rotor windings. Iron losses are related to losses in the
motor’s ferromagnetic core. Mechanical losses are due to friction and ventilation losses.
Total losses represent the sum of all these losses. Using the steady-state equivalent circuit
of the FPIM with respect to the synchronous reference frame [6,49,51], the copper losses of
the FPIM are given by the following expressions:ps = Rs

(
i2sd + i2sq

)
pr = Rr

(
i2rd + i2rq

) (129)

The losses in the stator core are composed of hysteresis losses and eddy current losses.

p f s = phs + pes = kh fsψ2
s + ke f 2

s ψ2
s (130)

The losses in the rotor core p f r are very low compared to the losses in the stator and
are generally neglected.

with:

ps, pr: stator and rotor copper losses,
isd, isq: direct and quadrature components of stator current,
p f s, p f r: stator and rotor core losses,
phs, pes: hysteresis and eddy current losses in stator,
kh, ke: are the hysteresis and eddy current coefficients related to magnetic circuit properties,
fs: stator frequency.

The LMC strategy focuses on reducing the copper losses in the stator and rotor
windings of the FPIM in the steady state by optimizing the rotor flux to achieve maximum
efficiency. In this case, we will simplify the optimization process by neglecting the iron
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losses. Consequently, the total copper losses in the FPIM are the sum of the stator and rotor
copper losses [6,49].

pc−loss = ps + pr = Rs

(
i2sd + i2sq

)
+ Rr

(
i2rd + i2rq

)
(131)

According to the FPIM-DFOC model given by (5) and (6), the steady-state flux ψr and
the electromagnetic torque Te are expressed as follows, respectively:

.
ψr = 0 = − 1

Tr
ψr +

Lm

Tr
isd → ψr = Lmisd (132)

Te = P· Lm

Lr
·
(
ψr·isq

)
(133)

From (132) and (133), we find: {
isd = ψr

Lm

isq = LrTe
pLmψr

(134)

Referring to [6,60], and respecting the DFOC control strategy, flows ψrd and ψrq are
expressed respectively by the following equations:{

ψrd = ψr = Lrird + Lmisd
ψrq = 0 = Lrirq + Lmisq

(135)

By introducing (132) and (134) into (135), we obtain:{
ird = 0
irq = − Te

pψr

(136)

By substituting (134) and (136) into (131), we obtain:

pc−loss =
Rs

(Lm)2 ψ2
r +

[
Rr

p2 + Rs

(
Lr

pLm

)2
]

T2
e

ψ2
r

(137)

In a steady-state condition, the optimal flux can be ascertained by equating the deriva-
tive of the total copper loss expression with respect to the rotor flux to zero.

∂Pc−loss
∂ψr

= 0 (138)

The solution to (138) gives:

ψ∗
r−opt = λopt

√
T∗

e (139)

with: λopt =
(

λ2
λ1

) 1
4 and λ1 = Rs

L2
m

; λ2 = Rr
p2 + Rs

(
Lr

pLm

)2
.

The diagram of the DFOC-SOSMC-STA based on LMC is given in Figure 8.
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8. Simulation Results and Discussion

The developed control algorithms are validated through numerical simulation us-
ing Matlab/Simulink R2018a software. The solver used in the Simulink model is ode8
(DORMAND-Prince), with a sampling time of 50 × 10−6. The parameters and charac-
teristics of the FPIM are presented in Tables A1 and A2 in Appendix A. In this section,
we present and evaluate the simulation results of PICs, IPCs, CSMCs, and our proposed
SOSMC-STAs-based DFOC approach for an FPIM. In the first case, the main objective is to
attain better performance of the suggested SOSMC-STAs in terms of robustness, accuracy,
fast response, etc. Indeed, these advantages include reducing oscillations/chattering in the
electromagnetic torque and speed, precise tracking of reference speed and torque profiles,
as well as their resistance to changes in load torque and rotor resistance.

In the second case, a loss minimization mechanism based on LMC is proposed and
integrated into the suggested DFOC-SOSMC-STAs, with the goal of improving efficiency.
Moreover, our DFOC-SOSMC-STAs strategy with the LMC mechanism is introduced in
order to calculate the optimal rotor flux amplitude for each applied load torque. Thus, for
evaluating the LMC performance, simulation studies are conducted with and without LMC
to demonstrate the reduction in losses and the enhancement of FPIM efficiency when the
LMC mechanism is employed.

Furthermore, additional criteria are employed for performance assessment: the Inte-
gral of Absolute Error (IAE), the Integral of Squared Error (ISE), and the Integral of Time
multiplied by Absolute Error (ITAE). The speed errors are defined as follows:

e = Ω − Ω∗ (140)
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Ω∗ Represents the reference speeds for both machines, and Ω represents the actual
speeds of the FPIM, respectively. IAE, ISE, and ITAE are defined as follows [74]:

IAE =
∫ t

0 |e(t)|dt
ISE =

∫ t
0 e(t)2dt

ITAE =
∫ t

0 t|e(t)|dt
(141)

To demonstrate the effectiveness of both control strategies, a series of tests is carried
out under various operating scenarios. The comparative study is consequently conducted
across four distinct modes, as outlined below:

8.1. First Case: Performances Analysis of Suggested SOSMC-STAs in Steady State Operation

The objective of this study is to test, analyze, and compare the performance of PICs,
IPCs, CSMCs, and our proposed SOSMC-STAs in terms of speed overshooting and dynamic
response, accuracy in tracking, torque ripples, speed oscillations, stator current distortions,
and robustness against sudden load torque variations. The test is conducted as follows:

The reference speed is set to 150 rad/s from 0.5 s to 8 s, and then to −150 rad/s from
8 s to 12 s. The load torque is fixed at 7.2 Nm applied at t = 5 s and kept constant until
the end of the simulation. The parameters of the proposed controllers are provided in
Appendix A (Table A2). The simulation results are presented in Figures 9–12.
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According to Figure 9a, it is clearly shown that the PICs exhibit unacceptable speed
overshooting both during the setpoint application and during the direction reversal. How-
ever, this is not the case for the three other controllers. In fact, when the FPIM is controlled
by the DFOC based on the IPCs, the CSMCs, and our proposed SOSMC-STAs, the actual
speed converges to its reference without overshooting. Moreover, the static error of speed
can be considered as neglected, thanks to the presence of the sign-type discontinuous
control term in CSMCs and our SOSMC-STAs, as well as the integration of PICs and IPs. In
addition, CSMCs and our SOSMC-STAs demonstrate robustness against load variations,
while PICs and IPs are sensitive. Furthermore, referring to Figure 9a, it can be seen that
the suggested SOSMC-STAs provide better performance in terms of fast convergence and
robustness under sudden load torque applications and neglected oscillations around the
reference speed. More details and comparisons are presented in Table 1.

Figure 9b illustrates the electromagnetic torque response provided by the FPIM when
it is controlled through the aforementioned controllers. It can be seen that the proposed
SOSMC-STAs converge rapidly to the load torque reference profile and exhibit significantly
reduced chattering compared to the other controllers. In contrast, PICs and IPCs are
characterized by relatively slow convergence, while the SMCs are fast, but exhibit chattering
exceeding 40% of the nominal value. Therefore, the proposed SOSMC-STAs remain the
best in terms of convergence speed and reduction of chattering phenomena compared to
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the other tested controllers. For further clarification, a comparative study is provided in
Table 1.
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Table 1. Comparison of different controllers (PICs, IPs, CSMCs, SOSMC-STAs) in outer speed loop.

Control Strategy DFOC

Criteria
Controller

PICs IPCs CSMCs Proposed
SOSMC-STAs

Speed convergence time (s) 2 1 0.35 0.31
Drop in speed when load is applied (rad/s) 28.6 10.8 0.4 0.2
Chattering Very low Very low 0.085 Neglected
Speed response time after applying load (s) 1.3 0.85 0.005 0.003
Overshooting (rad/s) 30 0 0.2 Neglected
Torque ripples (%) 1.19 1.19 47.6 0.47
Torque response time when a load is applied (s) 2 1 neglected Neglected

Current distortions Slightly
distorted

Slightly
distorted Heavily distorted Slightly distorted

THD (%) 17.67 13.91 99.17 13.19

Figure 10 illustrates the evolution of the direct and quadratic stator current components
isd and isq, and the rotor flux module. As depicted in Figure 10a,b, it can be seen that the
direct stator current component and flux, and both the quadrature stator current and
the torque, are proportional, which confirms that decoupling between the flux and the
torque is effective. As shown in these figures, for CSMCs the current components isd and
isq converge rapidly towards their reference values, but with high chattering. However,
when the PICs and IPCs are employed, the chattering is attenuated, but a slow convergence
in observed. It can be seen also that the suggested SOSMC-STAs provide excellent and
better performance that combines rapid convergence and neglected chattering. Figure 10c
shows the responses of the rotor flux when the FPIM is controlled with PICs, IPCs, SMCs,
and our proposed SOSMC-STAs, respectively. For all controllers, the responses are fast,
precise, and do not exhibit overshooting, except for the SMCs, which exhibit chattering
phenomena in their response.

The simulation results presented in Figures 11 and 12 depict the five-phase stator
currents of the FPIM under the control of the DFOC strategies based on PICs, IPCs, SMCs,
and our proposed SOSMC-STAs, respectively. These results indicate that the SMCs generate
stator currents with significant harmonics and relatively high amplitudes compared to the
other tested controllers, which is deemed unacceptable in terms of harmonic presence.

8.2. Second Case: Performance Analysis of Suggested SOSMC-STAs at Low Speed

The objective of this scenario is to justify the better performance provided by the
suggested SOSMC-STAs even at low-speed operations. In fact, in Figure 13, a simulation
study of a gradual startup with a progressive direction reversal of the machine according
to the speed reference profile given by the same figure is conducted. From 5 s until the end
of the simulation, a constant load torque of 7.2 Nm is applied. It can be observed that the
choice of PICs and IPCs is not appropriate, as the speed reaches negative values during
the application of the load. On the other hand, the speed response shows a decrease of
0.12 rad/s and 0.09 rad/s, respectively, for SMCs and our suggested SOSMC-STAs, just
at the moment of load applications. Then it follows its reference profile with ripples of
0.1 rad/s for SMCs and neglected ripples for the proposed SOSMC-STAs. The SMCs still
exhibit a chattering phenomenon. For further clarification, a comparative study is provided
in Table 2.
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Table 2. Performance analysis of proposed controller at low speed.

Control Strategy DFOC

Criteria
Controller PICs IPCs CSMCs Proposed SOSMC-STA

Tracking Accuracy Poor Medium Good Excellent

Deviation when load is applied (rad/s) 10 to −18 10 to −0.9 10 to 9.88 10 to 9.9
Speed response time to reach 10 1 0.5 Neglected Neglected
Speed response time to reach −10 1 0.5 Neglected Neglected
Chattering (%) 0.05 0.05 0.3 Neglected
Decision Not suitable Not suitable Not suitable Suitable
ITAE 79.37 61.09 2.93 0.02
IAE 20.97 11.25 0.49 0.0004
ISE 364.1 44.66 0.03 1.8 × 10−5

8.3. Robustness Study of Suggested SOSMC-STAs with Rotor Resistance Variation at Low Speed

This case is put forward in order to compare the robustness of PICs, IPCs, CSMCs,
and our proposed SOSMC-STAs under stator resistance variations at low-speed operations.
Indeed, the speed reference is maintained at 5 rad/s from 0.5 s until the end of the simula-
tion. At t = 3 s, a load torque of 7.2 Nm is applied, and from t = 5.5 s to t = 7.7 s, the rotor
resistance is increased to reach 1.75 × Rrn, as given in Figure 14a. From 10.5 s until the end
of the simulation, the rotor resistance decreases to reach its nominal value Rrn. Figure 14b
illustrates the low rotor speed response under resistance variations. It is observed that at
the moment of the rotor resistance variation, whether it is 75% or −75%, the rotor speed
exhibits a significant overshooting, reaching approximately 60% for PICs and 20% for IPCs.
In contrast, for the CSMCs, the speed remains relatively close to the reference profile with
oscillations of about 3% around it. As for the SOSMC-STAs, the speed follows the reference
with negligible disturbances. These results confirm the robustness of the SOSMC-STAs.
Figure 14c depicts the variation in the electromagnetic torque for the four different types
of controllers being compared. One can observe that the employment of CSMCs exhibits
rapid convergence towards the load torque and maintains robustness even when the rotor
resistance varies. However, they introduce significant torque ripples. IPCs and PICs show
slow convergence towards the load and additional oscillations when the rotor resistance
changes. However, the suggested SOSMC-STA provides satisfactory performance in terms
of ripple reduction, rapid convergence towards the reference, and excellent robustness
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under rotor resistance variations. To provide additional clarity, a comparative analysis is
presented in Table 3.
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torque response.

Table 3. Analysis of Proposed Controller at Low Speed.

Control Strategy DFOC

Criteria
Controller

PICs IPCs CSMCs Proposed SOSMC-STA

Speed response time (s) 1.25 0.625 0.016 0.012
Speed overshoot (%) 1 0 Neglected 0
Speed deviation when Rr increases (rad/s) 5 to 4 to 8 5 to 4 to 6 Neglected Neglected
Speed deviation when Rr decreases (rad/s) 5 to 7 to 2 5 to 6 to 3.5 Neglected Neglected
Chattering (%) Neglected Neglected 3 Neglected
Robustness under Rr variation Poor Poor Good Excellent

8.4. Fourth Case: Loss Reduction and Efficiency Optimization

This scenario is proposed in order to test the performance of the suggested LMC
mechanism-based DFOC with our SOSMC-STAs in terms of loss reduction and efficiency
optimization. The reference speed is maintained at 150 rad/s starting from t = 0.5 s, while
a load torque of 7.2 Nm is introduced at t = 3 s. The FPIM starts with a constant flux
reference of 1 Wb, and at t = 4 s the LMC strategy is activated. The simulation results
are illustrated in Figure 15, highlighting the total copper losses and the efficiency of the
FPIM, respectively. These results confirm the effectiveness of integrating the LMC with the
DFOC-SOSMC-STAs. Table 4 provides these comparison results in a numerical form.
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Table 4. Numerical Values from Simulation of LMC Integrated With DFOC-SOSMC-STAs.

Criteria
DFOC Based on Proposed SOSMC-STAs

Without LMC With LMC

Power losses (W) 380 304.9
Efficiency (%) 76.85 80.5

9. Conclusions

In this paper, an improved DFOC based on new SOSMC-STAs and an LMC mechanism
for an FPIM has been developed, designed, and simulated using the Matlab/Simulink
environment. Hence, the key findings in this current study can be encapsulated as follows:

Firstly, for enhancing the speed, flux, quadratic, and direct current regulation loops,
PICs and IPCs are replaced by new, robust SOSMC-STAs. The SOSMC-STAs are proposed
in order to improve DFOC robustness under rotor resistance variations and sudden load
torque applications. Moreover, the latter controller is also suggested for preventing the
chattering phenomenon which exists when CSMCs are employed. A comparative study
between four controllers, which are PICs, IPCs, CSMCs, and our proposed SOSMC-STA-
based DFOC, is put forward. This comparison illustrates that, when combined with
the DFOC strategy, the latter controllers deliver superior performance, characterized by
faster speed and torque responses, minimized ripples, and robustness in the face of rotor
resistance variations. Indeed, simulation has been conducted across various operating
conditions, including rated loads and speeds, low-speed operations, and variations in
rotor resistance.

Secondly, this paper introduces an LMC based on online loss minimization for the
FPIM. It is developed and added to the architecture of the suggested DFOC based on
the SOSMC-STAs with the aim of reducing electrical energy consumption under nominal
operations. The performance of the control strategy based on the proposed LMC is verified
through a simulation study. The obtained results of the proposed DFOC based on the
SOSMC-STAs and the LMC are compared with the proposed DFOC based on SOSMC-
STAs without LMC methods. These results recorded better performance in terms of lower
losses and greater efficiency. In fact, when the LMC is employed the power losses and
the efficiency are equal to 304.9 W and 80.5%, respectively, whereas, without the LMC,
the aforementioned control method records efficiency and power losses of 76.85% and
380 W, respectively.

Nevertheless, the outcomes affirm that the DFOC strategy based on the STA and LMC
technique formulated in this paper stands as an appealing and promising alternative for the
high-performance control of multi-phase machines. Nonetheless, it is essential to acknowl-
edge that each control method comes with its own advantages and limitations. Therefore,
there are additional challenges that need to be addressed in our forthcoming research:
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(i) The proposed control method will be subject to validation through experimentation
on a test bench based on an FPIM, a five-leg voltage source inverter, and a dSPACE
controller board.

(ii) We will incorporate into the optimization algorithm the experimental model of iron
losses, which also depends on the rotor flux level. Consequently, we can determine
the optimal rotor flux that minimizes the total active losses.

(iii) The extension of the recommended control algorithm may serve as a fault-tolerant
control technique under certain fault conditions.
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Appendix A

Table A1. Parameters of FPIM.

Symbol Value

Rs/Rr 10 Ω/6.3 Ω
Ls/Lr/Lm 0.46 H/0.46 H/0.42 H

Lls/Llr 0.04 H/0.04 H
J/P/f 0.03 Kg·m2/2/0.008 N·m·s

Ten 8.33 N·m

Table A2. Parameters of the proposed SOSMC-STA controller and CSMC controller.

Controller Type Parameters Value

Suggested SOSMC-STA speed controller
λΩ 20

βΩ 0.02

SOSMC-STA rotor flux controller
λψr 40

βψr 0.02

SOSMC-STA d-axis current controller
λd 80

βd 0.02

SOSMC-STA q-axis current controller
λq 80

βq 0.02

CSMC flux controller kΩ 60

CSMC speed controller kψr 12

CSMC d-axis current controller kd 400

CSMC q-axis current controller kq 400
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Table A2. Cont.

Controller Type Parameters Value

PI d(q)-axis current controller
TiΩ 0.005

KpΩ 0.0033

PI x(y)-axis current controller
Tix 0.002

Kpx 86

PI flux controller
Tiφr 0.073

Kpφr 8.2

PI speed controller
TiΩ 0.12

KpΩ 0.94

IP d(q)-axis current controller
ki 0.036

kp 4795

IP x(y)-axis current controller
ki 940

kp 47,000

IP flux controller
ki 89.5

kp 3289

IP speed controller
ki 0.75

kp 6.4

Table A3. The relationship between ξ and ω0 tresp.

Symbol ξ w0×tresp

0.4 7.7
0.5 5.3
0.6 5.2
0.7 3
1 4.75
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