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Abstract: A modified onboard neuro-fuzzy adaptive (NFA) helicopter turboshaft engine (HTE)
automatic control system (ACS) is proposed, which is based on a circuit consisting of a research
object, a regulator, an emulator, a compensator, and an observer unit. In this scheme, it is proposed to
use the proposed AFNN six-layer hybrid neuro-fuzzy network (NFN) with Sugeno fuzzy inference
and a Gaussian membership function for fuzzy variables, which makes it possible to reduce the
HTE fuel consumption parameter transient process regulation time by 15.0 times compared with the
use of a traditional system automatic control (clear control), 17.5 times compared with the use of a
fuzzy ACS (fuzzy control), and 11.25 times compared with the use of a neuro-fuzzy reconfigured
ACS based on an ANFIS five-layer hybrid NFN. By applying the Lyapunov method as a criterion, its
system stability is proven at any time, with the exception of the initial time, since at the initial time
the system is in an equilibrium state. The use of the six-layer ANFF NFN made it possible to reduce
the I and II types of error in the HTE fuel consumption controlling task by 1.36. . .2.06 times compared
with the five-layer ANFIS NFN. This work also proposes an AFNN six-layer hybrid NFN training
algorithm, which, due to adaptive elements, allows one to change its parameters and settings in real
time based on changing conditions or external influences and, as a result, achieve an accuracy of up
to 99.98% in the HTE fuel consumption controlling task and reduce losses to 0.2%.

Keywords: helicopters turboshaft engines; automatic control system; neuro-fuzzy network;
bell-shaped membership function; ANFF; ANFIS; fuel consumption; transient process

1. Introduction
1.1. Relevance of the Research

Most dynamic systems operate under uncertainty conditions, where there are complex
and poorly understood relations between various technological factors, together with the
presence of external influences and random interference, as well as nonlinear elements
that make the conventional linear adaptive control algorithms difficult to apply [1,2]. In
such conditions, the development of effective control strategies becomes a particularly
important task. One approach to achieving this task is the hybrid use of neural networks
(NNs) [3,4] and fuzzy logic (FL) [5,6]. NNs can train from existing data and identify
complex nonlinear relations between the in- and output variables of a system. On the other
hand, FL allows us to describe fuzzy or uncertain quantities and relations between them,
which makes control models more flexible and adaptive to changing conditions. With
the NN and FL hybrid application, the control object and its regulator are described by
fuzzy adaptive models. These models can change their structure and parameters during
system operation depending on current conditions and control requirements. This approach
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makes it possible to effectively manage the advanced dynamic systems without requiring
precise knowledge of their internal structure or the nature of the influencing external
factors [7,8]. The use of hybrid control systems with NNs and FL can lead to significant
improvements in the performance and reliability of controlled objects under conditions
of environmental uncertainty and variability. Such systems can be successfully used in
various fields, including aviation [9,10], industry [11,12], transport [13,14], medicine [15,16],
and many others [17–20].

The relevance of this work lies in addressing the challenges faced by most dynamic
systems operating under uncertainty, where complex and poorly understood relationships
exist between various technological factors, external influences, and random interference,
making conventional linear adaptive control algorithms difficult to apply; the proposed
hybrid approach, combining neural networks and fuzzy logic, offers a flexible and adaptive
solution for effective management in dynamic environments across various fields.

1.2. State of the Art

Currently, hybrid control integrating NNs and FL is of particular relevance in the
gas turbine engine (GTE) controlling context, including HTE. GTEs are complex systems
operating under conditions of high dynamics and uncertainty [20,21]. This is where the
need arises to develop and apply effective control methods that can adapt to different
operating scenarios and ensure high engine performance and reliability. Hybrid control
systems, blending the benefits of NNs and FL, provide ample opportunities for fulfilling
such tasks [22,23].

For example, in [24], researches employed a fault diagnosis and control system for
operations using hybrid multi-mode approaches of the machine learning for monitoring
the system health status, using the integration of recurrent feature generation based on
NNs and diagnostic modules based on self-organizing maps, including the development
of systematic clustering and modeling methodology to create reliable diagnostic modules
and check the system efficiency using data from sensors as an example, in relation to the
compressor and GTE. A key disadvantage is the limitation of multi-mode and parallel faults,
which can pose serious obstacles to the development of reliable diagnostic techniques.

In [25], the authors proposed a model-based learning control method to improve
the control quality during the GTE afterburning phase, including offline training and
training modules, a power arm angle reference path module, and a built-in nonlinear
online inference module, which effectively reduces the total pressure fluctuation on turbine
outlet, increases the fan surge margin, and improves thrust linearity. The key disadvantage
of this method is its dependence on the accuracy of the model and the possibility of errors
due to imperfections in the system model representation.

In [26,27], a modified closed onboard neural network HTE ACS was developed, sup-
plemented with plug-in adaptive control software modules, including a signal adaptation
module, a parametric adaptation module, a linear model submodule, and a custom sub-
module model, differing from current systems, by separating into distinct links for GTE
and fuel metering unit (FMU); however, it overlooks the transient processes’ synchronism
in the fuel system and the engine itself, which can lead to problems with system overshoot.
Overshoot of the developed HTE ACS can cause sudden changes to occur under conditions
in control inputs or flight conditions, such as changes in speed, altitude, angle of attack,
or during sudden disturbances, such as turbulence of air flows or sudden changes in
aerodynamic conditions.

In order to possibly eliminate the overshooting problem of the HTE ACS, an alternative
method for its construction was developed in [28], which makes it possible to ensure
specified stability indicators by HTE reconfiguring ACS using hybrid NFNs of the ANFIS
type with a zero-order Takashi–Sugeno–Kanga training algorithm. This method is adapted
to control HTE at flight condition with a minimum control error not exceeding 0.4%. The
work also for the first time proposed the use of bell-shaped membership functions of
linguistic variables to describe the HTE thermogas-dynamic parameters (TDP), as well as
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the linguistic expression “about” in a fuzzy knowledge base, which makes it possible to
adjust parameter values under uncertainties with an accuracy of up to 99.6% (the maximum
control error does not exceed 0.4%) in conditions of changing factors, such as errors, flight
conditions, and helicopter operational status.

A key disadvantage [28] that requires improvement is the need for further research
and control method development that would ensure system stability and minimal control
error in a wide range of operating conditions, including various flight modes and variability
in the helicopter operational status.

To eliminate this key drawback, and thus to ensure system stability and minimal
control error in various helicopter operating conditions, it is advisable to use an NFA
ACS [29], in which disturbing influences are compensated, and the control error is con-
trolled. A neuro-fuzzy model based on the Sugeno model has the potential to adapt to
changing conditions and compensate for the disturbance effects. In this case, an emulator
representing an HTE model is used to configure the controller, which further increases the
system efficiency due to more accurate adjustment of control parameters based on real data.
However, to further improve the system, it is necessary to conduct additional research
and develop methods that allow more effective HTE supervision under diverse operating
conditions and with disturbances various types.

1.3. Main Attributes of the Research

The object of the research is the HTE controls systems.
The subject of the research includes the NFA HTE ACS.
The research aims to develop a NFA HTE ACS to ensure stability and minimal control

error under diverse operating conditions based on an adaptive identifier for a neuro-fuzzy
ACS under uncertainty conditions.

To achieve this aim, the following tasks are performed:

1. Development of an HTE control algorithm, which provides an acceptable control error
when fulfilling the restrictions.

2. Development of structural and parametric identification algorithms in real time, com-
bining the linear equation identifying coefficients method and interactive adaptation
theory technique.

3. Development of a hybrid model based on NNs and FL to improve the efficiency of
HTE control solving the task under conditions of uncertainty.

4. Modification of the Sugeno fuzzy model to improve the complex dynamic objects con-
trol efficiency by introducing algorithms for structural and parametric identification
in real time.

5. Improving the training process of a fuzzy network by applying a modified interactive
adaptation method.

6. Conducting a computational experiment consisting of HTE fuel consumption parame-
ter transient process modeling during its stepwise change.

7. Determination of ACS quality indicators (stability, control accuracy, control speed,
resistance to disturbances, minimal overshoot, and time characteristics of transient
processes) in one of HTE’s operating modes (for example, in the nominal mode).

8. Conducting a comparison of the quality indicators obtained for the developed HTE
ACS to demonstrate superiority in control efficiency, stability, and control accuracy in
comparison with alternative methods.

The research results make a significant contribution to the development of neuro-fuzzy
control systems for complex dynamic objects, such as helicopter turboshaft engines (HTEs),
that can operate under changing factors. These findings will interest not only specialists in
neuro-fuzzy systems but also developers of HTE control systems and experts involved in
controlling complex dynamic objects under uncertainty. In summary, the main contribution
of this research is the advancement of adaptive control techniques that enhance system
reliability and performance in dynamic environments.
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1.4. Structure of the Article

The article consists of an introduction, the main part (sections “Materials and Meth-
ods”, “Results”, “Discussion”), conclusions, and references. The section “Materials and
Methods” consists of the following paragraphs: “2.1. Research object model”, “2.2. Com-
pensator model”, “2.3. Emulator model”, “2.4. Controller model”, “2.5. Clarifying the
emulator model taking into account the controller model”, “2.6. Six-layer NFN AFNN
training algorithm”, “2.7. Observer block introduction into an NFA modified closed on-
board TE ACS”. In section “2.1. Research object model”, a mathematical model and a
structural diagram of a neuro-fuzzy adaptive modified closed system of automatic control
of complex dynamic objects are developed. Sections 2.2–2.6 are devoted to the development
of the complex dynamic objects neuro-fuzzy adaptive modified closed automatic control
system component parts mathematical models. Section “2.6. Six-layer NFN AFNN training
algorithm” describes the algorithm for training the neuro-fuzzy network, which is used to
implement the developed system. Section “2.7. Observer block introduction into an NFA
modified closed onboard TE ACS” develops the observer block mathematical model. The
“Results” section describes the results of the HTE thermogas-dynamic parameters modeling
transient processes. The “Discussion” section calculates the obtained results quality metrics
and describes a comparison with the analogues.

2. Materials and Methods
2.1. Research Object Model

The HTE ACS main task is to ensure optimal regulation of engine operation, including
fuel supply regulation depending on the gas-generator rotor r.p.m. nTC achieved at various
stages of engine operation, including idle mode [30,31], provided that the control object
(HTE) dynamics is presented in the modified nonlinear difference equation form:

y(i + 1) = f (y(i), . . . , y(i − r), x(i), . . . , x(i − s), u(i), . . . , u(i − q), d(i)), (1)

in which the variable d(i) is an additional parameter that takes into account dynamic
changes in external conditions or other factors that may influence the ACS; i = 0, 1, 2,. . ., N
is the current discrete time; y(i) is the output signal; x(i) = (x1(i). . .xk(i)) is the disturbing
influences vector; u(i) is the control; and f (•) is some nonlinear function having known
orders r, s, q. The disturbance vector x(i) and control u(i) are limited at any time, that is:

umin ≤ ui ≤ umax,
xmin ≤ xi ≤ xmax,
dmin ≤ xi ≤ dmax.

(2)

The solution to the nonlinear difference Equation (1) is the HTE control algorithm
y(i + 1), which provides an acceptable control error e(i + 1) = ynom − y(i + 1) (ynom is the
nominal output value), taking into account the control u(i) and the object y(i) current state,
as well as disturbances x(i) and d(i), using the following expression:

u(i) = f (y(i), x(i), d(i)). (3)

To solve the HTE controlling task, in [28] a hybrid NFN of the ANFIS type (Figure 1)
use was proposed, which contains 5 layers: the first layer is the nonlinear object inputs
under research (HTE); the second layer is the layer of fuzzy terms, which are used in the
HTE fuzzy knowledge base; the third layer is the fuzzy knowledge base (fuzzy rules)
conjunction lines; the fourth layer is the output variable dj classes, which is associated
with a reference sample known in the fuzzy knowledge base; and the fifth layer is the
defuzzification layer, that is, converting the fuzzy output into a crisp number.



Energies 2024, 17, 4195 5 of 41

Energies 2024, 17, x FOR PEER REVIEW 5 of 42 
 

 

conjunction lines; the fourth layer is the output variable dj classes, which is associated 
with a reference sample known in the fuzzy knowledge base; and the fifth layer is the 
defuzzification layer, that is, converting the fuzzy output into a crisp number. 

 T1

 T2

 T3

nTC

 T1

 T2

 T3

 T1

 T2

 T3

TG

nFT

 11

12

 13

d1

d2

d3

 
T

ym

w11

w22

w33

( )1A xμ

( )2A xμ

( )3A xμ

*

 
Figure 1. Reconfigured modified closed TE ACS model. 

An key disadvantage of the ANFIS is its limited ability to adapt to complex and 
rapidly changing environmental conditions, which can lead to insufficient control accu-
racy in some scenarios. To eliminate these shortcomings, it is advisable to use an NFA 
ACS (Figure 2), proposed in [29], in which the influence of disturbing influences is 
largely eliminated by a compensator, and the control error e(i + 1) is eliminated by a con-
troller, which is an adjusted emulator of an object model under research (HTE). This al-
lows for more precise control in changing environmental conditions and improves the 
control system efficiency, especially in the context of dynamic objects such as HTE. 

In Figure 2, the controller manages input signals for the system based on predefined 
rules and membership functions, ensuring the desired system behavior in changing 
conditions. The emulator simulates the dynamics of the controlled object, allowing the 
system to predict real object behavior and adjust controller actions for optimal perfor-
mance. The compensator adjusts deviations from the desired system state, using feed-
back to minimize errors and stabilize system operation. The observer block evaluates the 
system state in real time, using sensor data and mathematical models to provide accurate 
information to the controller and other system components. 

A neuro-fuzzy control system integrates principles from neural networks and fuzzy 
logic for effective management of complex dynamic objects. The controller makes deci-
sions based on fuzzy rules that adapt to changes in the external environment. The emu-
lator models object behavior, predicting responses to various influences, allowing the 
controller to make more accurate decisions. The compensator corrects deviations from 
the desired state, adjusting system actions to reduce errors. The observer block monitors 
object state in real time, providing up-to-date data for all system elements, enhancing 
their interaction and increasing control accuracy. Together, these components provide 
reliable and adaptive management capable of handling uncertainty and nonlinearity in 
controlled processes. 

To account for the real-time aspect in a neuro-fuzzy control system, it is essential to 
implement efficient algorithms that process inputs and generate control signals within 
strict time constraints, ensuring timely responses to dynamic changes in the environ-
ment. This can be achieved by optimizing computational resources and employing par-

Figure 1. Reconfigured modified closed TE ACS model.

An key disadvantage of the ANFIS is its limited ability to adapt to complex and rapidly
changing environmental conditions, which can lead to insufficient control accuracy in some
scenarios. To eliminate these shortcomings, it is advisable to use an NFA ACS (Figure 2),
proposed in [29], in which the influence of disturbing influences is largely eliminated by a
compensator, and the control error e(i + 1) is eliminated by a controller, which is an adjusted
emulator of an object model under research (HTE). This allows for more precise control in
changing environmental conditions and improves the control system efficiency, especially
in the context of dynamic objects such as HTE.

In Figure 2, the controller manages input signals for the system based on predefined
rules and membership functions, ensuring the desired system behavior in changing condi-
tions. The emulator simulates the dynamics of the controlled object, allowing the system
to predict real object behavior and adjust controller actions for optimal performance. The
compensator adjusts deviations from the desired system state, using feedback to minimize
errors and stabilize system operation. The observer block evaluates the system state in real
time, using sensor data and mathematical models to provide accurate information to the
controller and other system components.

A neuro-fuzzy control system integrates principles from neural networks and fuzzy
logic for effective management of complex dynamic objects. The controller makes decisions
based on fuzzy rules that adapt to changes in the external environment. The emulator
models object behavior, predicting responses to various influences, allowing the controller
to make more accurate decisions. The compensator corrects deviations from the desired
state, adjusting system actions to reduce errors. The observer block monitors object state in
real time, providing up-to-date data for all system elements, enhancing their interaction
and increasing control accuracy. Together, these components provide reliable and adaptive
management capable of handling uncertainty and nonlinearity in controlled processes.

To account for the real-time aspect in a neuro-fuzzy control system, it is essential to
implement efficient algorithms that process inputs and generate control signals within strict
time constraints, ensuring timely responses to dynamic changes in the environment. This
can be achieved by optimizing computational resources and employing parallel processing
techniques to handle the system’s complex calculations without compromising speed or
accuracy [32,33].
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The controller, compensator, and emulator contain delay elements z(τ) = x(t − τ),
τ = 1, 2,. . ., which form the input and output variables with a delay. Similar to (1), the
compensator is described by a nonlinear difference equation form:

uk(i) = fk(uk(i − 1), . . . , uk(i − qk), x(i), x(i − 1), . . . , x(i − sk), ck) + ϵk(i), (4)

having orders qk and sk, differing in the general case from q and s, while uk(i − 1). . .uk(i − qk)
are scalar control actions, x(i) is a dimension v input disturbances vector, and ck is a param-
eters settings vector. The orders qk and sk indicate feedback delay and input signal delay,
respectively. The introduction of a noise term (error) ϵk(i) into the compensator Equation (4)
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is justified by the need to take into account non-idealities and variable environmental
conditions. In real-world conditions, measurements may be subject to noise, interference,
or other external factors that may cause the compensator to operate inaccurately. In ad-
dition, even when using an accurate mathematical model, modeling errors and internal
inaccuracies in compensator components, such as imperfections in design or calibration,
are inevitable. The noise term introduction allows us to take these factors into account
and make the compensator model more realistic, ensuring its better adaptability to real
operating conditions.

According to [29], a replacement is introduced in (4):

uk(i − 1), . . . , uk(i − qk), x(i), x(i − 1), . . . , x(i − sk) = xk(i) = {xk1(i) . . . xkm(i)}, (5)

where m = qk + v · (sk + 1).
Then (4) takes the form:

uk(i) = fk(xk(i), ck) + ϵk(i). (6)

Based on [29], the Sugeno fuzzy model, represented by rules set, is used as the
difference Equation (6) to describe the compensator:

if xk1(i), there is, Xθ
k1

xk2(i) there is Xθ
k2 . . . xkm(i) there is Xθ

km,
then uθ

k(i) = bθ
k0 + bθ

k1·xk1(i) + . . . + bθ
km·xkm(i) + ϵk(i)

(7)

with fuzzy sets Xθ
kl , l = 1 . . . m, θ = 1 . . . n, and a linear dependence connecting inputs

xk(i) = (xk1(i), xk1(i), . . . , xkm(i)), output uk(i), and noise term (error) ϵk(i).
The main characteristic that defines the fuzzy set Xk is its membership function

µ(Xk(xk)), which, according to [28], is a bell-shaped membership function (Figure 3) of
the form:

µ(Xk(xk)) =
1

1 +
(

xk−dk1
dk2

)2 , (8)

where dk1 and dk2 are the bell-shaped membership function parameters.
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According to [28], the fuzzy variable bell-shaped membership function use is justified
in cases where it is necessary to more flexibly control the membership shape and distribu-
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tion around the central value. Unlike the sigmoid function proposed in [29], which has
a more limited range and faster saturation, the bell function allows us to more precisely
tune the curve shape and adapt it to the system-specific requirements. This is especially
useful in cases where there is a need to account for data uncertainty and varying degrees of
fuzziness, or when there are multiple peaks in the distribution.

The choice of the bell-shaped membership function, as opposed to other types such
as sigmoid functions, is primarily due to its superior flexibility in modeling fuzzy vari-
ables. The bell-shaped function, characterized by its smooth, symmetric curve, offers
enhanced control over the shape and distribution around the central value, making it
particularly effective in scenarios where precise tuning is required [34]. This function’s
broader range and gradual saturation provide better adaptation to varying degrees of data
uncertainty and fuzziness compared to sigmoid functions, which have a more constrained
range and quicker saturation [35]. Furthermore, the bell-shaped membership function’s
ability to accommodate multiple peaks in the distribution is crucial when dealing with
complex systems exhibiting diverse operational conditions and varying degrees of uncer-
tainty [36]. This flexibility ensures a more accurate representation of the system’s behavior
and improves the overall performance of the neuro-fuzzy control model, aligning it more
closely with specific system requirements and contributing to more reliable and adaptable
control strategies.

When determining the output uk(i) mechanism according to the fuzzy model (8)
when specifying inputs X0

kl(i) at time i = 1, 2,. . ., N, membership functions µ
(
X0

kl(xkl(i))
)
,

coefficients bθ
k0, bθ

k1, . . . , bθ
km, and equation uθ

k(i) = bθ
k0 + bθ

k1·xk1(i)+ . . .+ bθ
km·xkm(i)+ ϵk(i),

taking into account [28,29], it is advisable to present it in an AFNN-type (adaptive fuzzy
neural network) six-layer NFN form (Figure 4) [37].
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AFNN, based on the Sugeno model, is more appropriate for the neuro-fuzzy HTE
ACS constructing task than ANFIS [28] or TSK models [38], due to its ability to handle
uncertainty and nonlinearity in the system using a combination of FL and NNs. The Sugeno
model provides a more flexible mechanism for describing fuzzy rules, which allows the
system to better adapt to different HTE operating conditions. In addition, an AFNN using
the Sugeno model can better adapt to changing conditions and requirements, thanks to a
more complex network structure and the ability to train not only membership function
parameters, but also neuron weights, which reduces the need to manually tune the system
for each specific situation.
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The Sugeno-based AFNN model offers significant advantages over traditional models
like ANFIS or TSK for HTE neuro-fuzzy control systems. Its ability to handle uncertainty
and nonlinearity through a combination of FL and NNs provides a more flexible mechanism
for describing fuzzy rules, enabling better adaptation to varying operational conditions.
Additionally, the Sugeno-based AFNN can more effectively adjust to changing conditions
and requirements due to its complex network structure and the capability to train both
membership function parameters and neuron weights, reducing the need for manual
system adjustments [39,40].

As mentioned above, AFNN based on the Sugeno model consists of six layers. The
first layer (Input Layer) accepts model input data, which are the HTE TDP numerical
values, recorded on board the helicopter at flight mode: gas-generator rotor r.p.m. nTC, free
turbine rotor speed nFT, and gas temperature in front of the compressor turbine T∗

G.
In the second layer (Fuzzy Layer), the input data are converted into fuzzy values using

membership functions (8) by calculating the membership degrees
Xθ

k1 Xθ
k1

(
xθ

k1(i)
)

. . . Xθ
km
(
xθ

km(i)
)

for θ-th rules.
In the third layer (First neural layer), the truth values of premises wθ

k are calculated by
algebraic multiplication:

wθ
k = Xθ

k1

(
xθ

k1(i)
)
·Xθ

k2

(
xθ

k2(i)
)
· . . . Xθ

km

(
xθ

km(i)
)

. (9)

The premises wθ
k truth values calculation is a critical stage that determines the con-

tribution of each premises to the corresponding rule activation. These values are each
input variable Xθ

k membership degree’s product for a given rule θ, which reflects the model
confidence degree in fulfilling the input data rule given conditions. Thus, high values of
wθ

k indicate a stronger coincidence of the input variables with the rules, which makes it
possible to effectively take into account fuzziness and uncertainty in the data and generate
correct output recommendations or HTE ACS control signals.

In the fourth–second neural layer, relative normalized values are determined as:

βθ
k(i) = α·

wθ
k(i)

w1
k(i) + w2

k(i) + . . . + wn
k (i)

= α·
wθ

k(i)

∑n
j=1 wj

k(i)
, (10)

where α is a coefficient that can be adjusted during the network training process or deter-
mined based on additional expert information. The α coefficient allows more flexibility in
each parcel contribution controlling to the normalized values, which can be useful if some
parcels have greater meaning or significance than others.

In the fifth layer (Combining Layer), the outputs from the neural layer are combined
using fuzzy methods or aggregation to produce the final model output. The βθ

k(i) values
are multiplied by the output values u0

k(i), calculated according to the equation uθ
k(i) =

bθ
k0 + bθ

k1·xk1(i) + . . . + bθ
km·xkm(i) + ϵk(i) when setting the values x0

k1(i), x0
k2(i), . . ., x0

km(i).

βθ
k(i)·u

0
k(i) = α·

wθ
k(i)

∑n
j=1 wj

k(i)
·
(

βθ
k0 +

m

∑
j=1

βθ
kj·x

0
kj(i) + ϵk(i)

)
, (11)

where wθ
k(i) is the k-th rule membership degree for the i-th input data, βθ

k0 is the θ-th rule
bias parameter, βθ

kj is the weighting coefficient for the j-th input in the θ-th rule, x0
kj(i) is the

j-th input neuron for the k-th rule, and ϵk(i) is the additional error (noise).
Expression (11) is the product of the weights βθ

k(i) and outputs u0
k(i) for each θ-th rule

and each k-th input, which allows us to aggregate the contribution of each rule and its
weighted output to the NFN final output.

The noise term (error) ϵk(i) is a random variable that represents the difference between
the actual output value and its predicted or expected value at the i-th time moment.



Energies 2024, 17, 4195 10 of 41

Mathematically, it is described as a random variable with zero mean and some variance,
which characterizes the spread between the actual and predicted values.

In the sixth layer (Output Layer), after multiplying and combining the outputs for all
rules, the final NFN output signal is calculated, which is an aggregated representation of
output values, reflecting the calculated predictive or control recommendations based on
the input data and parameters of the trained network:

y =
n

∑
θ=1

m

∑
k=1

βθ
k(i)·u

0
k(i). (12)

2.2. Compensator Model

Based on [29], in the compensator fuzzy formulation, the vector tuning parameters
ck are formed from the coefficients bθ

kl involved in the equations uθ
k(i) = bθ

k0 + bθ
k1·xk1(i) +

. . . + bθ
km·xkm(i) + ϵk(i), as well as from the parameters dθ

k1,l , dθ
k2,l , related to the bell-shaped

membership function shape. At the initial stage of setting up the compensator, the available
data are used to determine the fuzzy rules number n using the structural identification
algorithm ψn, the equations coefficients b0

kl using the parametric identification algorithm ψb,
as well as the parameters dθ

k1,l , dθ
k2,l using the backpropagation algorithm. In this case, data

x∗k (i) = x∗k1(i) . . . x∗km(i), u*(i) are used, for which the next output variable y(i + 1) value is
close to the nominal ynom, such that it satisfies the condition [29,41]:

J∗ =
1
N
·

N

∑
i=1

∣∣∣∣∣ynom − y
(
x∗k (i), u∗)

ynom

∣∣∣∣∣ ≤ Jnom. (13)

where Jnom is the relative control error nominal value.
Thus, for the compensator model mathematical description, it is advisable to research

the structural identification algorithms [37], parametric identification [38], and the back-
propagation algorithm [39].

The algorithm for identifying the equation coefficients bθ
kl , performed on the data set

x∗k (i) = x∗k1(i) . . . x∗km(i), u*(i), based on (7), (9), (10), (12) is represented in the forms:

uk(i) = b1
k0·β

1
k(i) + . . . + bn

k0·β
n
k (i) + b1

k1·β
1
k(i)·x

∗
k1(i) + . . . + bn

k1·β
n
k (i)·x

∗
k1(i) + b1

km·β
1
k(i)·x

∗
km(i) + . . .+

+bn
km·β

i
k(i)·x

∗
km(i)

(14)

or in vector form
uk(i) = bT

k ·
∼
xk(i), (15)

where
∼
xk(i) = β1

k(i) . . . βn
k (i), β1

k(i)·x
*
k1(i), . . . , β1

k(i)·x
*
km(i) . . . βi

k(i)·x
*
km(i)

T is the extended

input vector, and bk =
(
b1

k0 . . . bn
k0, b1

k1 . . . bn
k1, . . . , b1

km . . . bn
km
)T is the vector of adjustable

coefficients. To determine the initial values of the elements of the vector bk(0) = 0 and the
correction matrix of size ·(m + 1)× n·(m + 1) [29,38,42]:

Hk(0) =

φk · · · 0
...

. . .
...

0 · · · φk

, (16)

where φk is a coefficient that is a fairly large number, which is selected experimentally.
For the data set x∗k (i), u*(i), the correction matrix is calculated:

Hk(i) = Hk(i − 1)− Hk(i − 1)·∼xk(i)·
∼
x

T
k (i)·Hk(i − 1)

1 +
∼
xk(i)·

∼
x

T
k (i)·Hk(i − 1)

(17)
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and coefficient vector

bk(i) = bk(i − 1) + Hk(i)·
∼
xk(i)·

(
u∗(i)− bT

k (i − 1)·∼xk(i)
)
− λ·bk(i − 1), (18)

where λ is the regularization parameter. The desired value of the vector bk is equal
to bk(N).

In the proposed modification, in contrast to [29], a regularization term −λ·bk(i − 1)
is added to the coefficient correction process. This helps reduce overfitting and improve
estimation robustness. The parameter λ must be carefully selected, since large values
of λ can lead to underfitting, and too small ones can lead to insufficient consideration
of regularization. The proposed method with regularization is especially useful when
working with data prone to noise or with high multicollinearity between features.

The conducted research made it possible to formulate a theorem on the convergence
of a modified parametric identification algorithm with regularization.

Theorem 1. If the correction matrix Hk(i) satisfies the condition of positive definiteness at each i-th
step, and there is also a constant µ > 0 such that λ ≤ µ, then the sequence

{
bk(i)

}
converges to the

true values of the coefficients bk, which minimize the model estimate root mean square error.

Proof of Theorem 1. It is assumed that the difference between the current and next iteration
steps is described by expression (18). Using the properties of the adjustment matrix Hk(i)
and the regularization conditions ∥bk(i)− bk(i − 1)∥ ≤ const·

(
u∗(i)− bT

k (i − 1)·∼xk(i)
)

,

the sequence bk(i) converges to the true values of the coefficients bk, since each iteration
step reduces the model estimation error, taking regulation into account. Analyzing the
iteration process dynamics and the adjustment matrix Hk(i) properties, we can establish
that the sequence

{
bk(i)

}
converges to the true values of the coefficients bk, minimizing

the model error. □

Thus, the theorem on the modified parametric identification algorithm convergence
with regularization confirms that when the adjustment and regularization matrix positive
definiteness conditions are met, the sequence of coefficients converges to the true model
parameters, which completes the proof of the theorem.

To start the structural identification algorithm ψn operation, according to [29], a fuzzy
model with the lowest criterion value is selected:

Jk =
1
N
·

N

∑
i=1

(
u∗(i)− uk

(
x∗k (i)

)
u∗(i)

)
. (19)

From the available models, the one with the lowest criterion value is selected. If only
one model is available, for example in the first iteration, this step is skipped. The resulting
fuzzy model is then trained on the current data by systematically correcting the coefficients
bθ

l using a multi-step least squares method (Equations (17) and (18)) and the membership
function parameters dθ

k1,l , dθ
k2,l using the backpropagation algorithm [34], which aims to

minimize the squared error:

Ek(i) =
1
2
·e2

k(i) =
1
2
·
(

u∗(i)− uk

(
dk, x∗k (i)

))2
(20)

using the gradient method according to the expression

dk(λ + 1) = dk(λ)− ∆dk(λ) (21)

with working step ∆dk(λ) = hk· ∂Ek
∂dk

, where hk is the working step parameter.
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The chain rule for determining the partial derivative according to [29] has the form:

∂Ek

∂dθ
kl

=
∂Ek
∂uk

· ∂uk

∂wθ
k
·

∂wθ
k

∂Xθ
kl
·
∂Xθ

kl

∂dθ
kl

, (22)

where ∂dθ
kl =

(
dθ

k1,l , dθ
k2,l

)
is the bell-shaped membership function (Figure 3) parameters’

two-element vector. Each component of the partial derivative (22) is determined according
to (8)–(12). In this case, according to (20), it is defined as:

∂Ek
∂uk

=
∂Ek
∂uk

· ∂uk

∂wθ
k
·

∂wθ
k

∂Xθ
kl
·
∂Xθ

kl

∂dθ
kl

, (23)

the components of which are determined: ∂Ek
∂uk

according to (20), ∂uk
∂wθ

k
according to (7) and

(10), ∂wθ
k

∂Xθ
kl

according to (9), and ∂Xθ
kl

∂dθ
kl

as the bell-shaped membership function derivative with

respect to dθ
k1,l or dθ

k2,l :
∂Ek
∂uk

= (u∗ − uk), (24)

∂uk

∂wθ
k
= α·

uθ
k ·∑

n
j=1 wi

k − wθ ·∑n
j=1 wj

k·u
j
k

∑n
j=1 wj

k

+
∂ϵk

∂wθ
k
= α·

uθ
k − wθ ·uk

∑n
j=1 wj

k

+
∂ϵk

∂wθ
k

, (25)

Since according to (9) wθ
k = Xθ

k1

(
xθ

k1(i)
)
·Xθ

k2

(
xθ

k2(i)
)
· . . . Xθ

km
(
xθ

km(i)
)
, (25) is

rewritten as:
∂uk

∂wθ
k
= α·

uθ
k − wθ ·uk

∑n
j=1 wj

k

+
∂ϵk

∂Xθ
kk
(
xθ

kk
) , (26)

∂wθ
k

∂Xθ
kl(xl)

=
m

∏
j=1,
j ̸=l

Xθ
kj

(
x∗kj

)
, (27)

∂Xθ
kl

∂dθ
k1,l

=
2·
(

x∗kl − dθ
k1,l

)
(

dθ
k2,l

)2
·
(

1 +
(

x∗kl−dθ
k1,l

dθ
k2,l

)2
)2 ,

∂Xθ
kl

∂dθ
k2,l

=
2·
(

x∗kl − dθ
k1,l

)
(

dθ
k2,l

)3
·
(

1 +
(

x∗kl−dθ
k1,l

dθ
k2,l

)2
)2 . (28)

Taking into account (24)–(27), (23) is presented as:

∂Xθ
kl

∂dθ
k1,l

= (u∗ − uk)·

α·
uθ

k − wθ ·uk

∑n
j=1 wj

k

+
∂ϵk

∂Xθ
kk
(
xθ

kk
)
·

 m

∏
j=1,
j ̸=l

Xθ
kj

(
x∗kj

)·


2·
(

x∗kl − dθ
k1,l

)
(

dθ
k2,l

)2
·
(

1 +
(

x∗kl−dθ
k1,l

dθ
k2,l

)2
)2

, (29)

or

∂Xθ
kl

∂dθ
k2,l

= (u∗ − uk)·

α·
uθ

k − wθ ·uk

∑n
j=1 wj

k

+
∂ϵk

∂Xθ
kk
(
xθ

kk
)
·

 m

∏
j=1,
j ̸=l

Xθ
kj

(
x∗kj

)·


2·
(

x∗kl − dθ
k1,l

)
(

dθ
k2,l

)3
·
(

1 +
(

x∗kl−dθ
k1,l

dθ
k2,l

)2
)2

. (30)

The resulting expressions (29) and (30) are modified in comparison with similar
ones [29] by taking into account the noise term (error) ϵk(i) and the network training tuning
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coefficient α, as well as the bell-shaped membership function rather than the use of a
sigmoid one.

The physical meaning of the derivative ∂ϵk
∂Xθ

kk(xθ
kk)

is to measure the sensitivity of the

error ϵk to changes in the variable Xθ
kk
(
xθ

kk
)

in the context of the compensator model. This
derivative shows how changing the Xθ

kk
(

xθ
kk
)

value, which can be a parameter or input
value of the model, affects the error ϵk. If the ∂ϵk

∂Xθ
kk(xθ

kk)
value is large, this indicates that

small changes in Xθ
kk
(
xθ

kk
)

can lead to large changes in the model error ϵk, which may be
important to optimize model parameters or analyze its sensitivity to certain input data.
This can also help in understanding which factors or variables have the greatest impact on
the NFA modified closed HTE ACS compensator model (Figure 2) accuracy and stability.

This modification makes it possible to improve the model accuracy and generalization
ability, taking into account the data characteristics and the noise level in them, provide
more flexible approximation, and allow the model to better adapt to different data types,
which in turn contributes to more efficient training and prediction results.

2.3. Emulator Model

The emulator is an HTE simplified dynamic model, which can be described by a
mathematical equation. This emulator is a real engine abstraction, taking into account the
basic physical and technical characteristics, but not including all the details and complexities
inherent in the real device. It is used to analyze the HTE operation and simulate in various
modes and conditions, allowing researchers and engineers to test and optimize control
systems and engine parameters without involving the large resources and time costs
associated with real tests. Helicopter TE emulators can also be used for training and
ensuring safety in the helicopter operational operation, allowing engine behavior analysis
in various situations and flight conditions. Based on (1), the emulator is described by
the equation:

ŷ(i + 1) = g(ŷ(i), . . . , ŷ(i − r), x(i), . . . , x(i − s), u(i), . . . , u(i − q), d(i), cem), (31)

where ŷ(i + 1) represents the output signal next value prediction at time i + 1 according to
the emulator model, and g(•) is the emulator function that takes into account the current
state ŷ, disturbance vector x(i), control u(i), an additional parameter g(i), and a tuning
parameters cem vector.

A tuning parameters vector in the context of an emulator means averaging by this
vector all components over time or over the entire available data sample. For example, if it
represents an emulator model settings vector (such as weights or coefficients), then cem is a
vector whose every component is the corresponding vector cem component average. Thus,
if cem = (cem1, cem2, . . . , cem n), then

cem =

(
1
N
·

N

∑
i=1

cem1(i),
1
N
·

N

∑
i=1

cem2(i), . . . ,
1
N
·

N

∑
i=1

cem m(i)

)
. (32)

Based on [29], expression (31) has known orders r, s, q, similar to (1). After formalizing the
variable ŷ(i), . . . , ŷ(i − r), x(i), . . . , x(i − s), u(i), . . . , u(i − q) = xem(i) = {xem1(i) . . . xem m(i)},
expression (31) is also represented in the form of a fuzzy Sugeno model:

if xem1(i), there is, Xθ
em1

xem2(i) there is Xθ
em2 . . . xem m(i) there is Xθ

em m,
then ŷθ(i + 1) = bθ

em0 + bθ
em1·xem1(i) + . . . + bθ

em m·xem m(i) + ϵem(i).
(33)
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The analytical expression of a fuzzy emulator, presented in a six-layer AFNN form,
similar to (12), has the form:

ŷ(i + 1) =
n

∑
θ=1

βθ
em·ŷθ(i + 1) or ŷ(i + 1) = bT

em·
∼
xem(i), (34)

in which, similarly to (9) and (10), βθ
em and wθ

em are calculated as:

βθ
em = αem·

wθ
em(i)

∑n
θ=1 wθ

em(i)
, (35)

wθ
em = Xθ

em1

(
xθ

em1(i)
)
·Xθ

em2

(
xθ

em2(i)
)
· . . . Xθ

em m

(
xθ

em m(i)
)

. (36)

The coefficient αem in an emulator model is a tuning parameter or weight that is used to
control the contribution of each parameter or characteristic to the model’s calculations. The
αem parameter allows us to more flexibly take into account the significance of each element
of input data or the influence of model parameters on its output. Thus, the coefficient

αem scales or adjusts the significance of wθ
em(i)

∑n
θ=1 wθ

em(i)
in the controller model. Similar to the α

coefficient in NNs, the αem parameter is tuned or determined based on expert knowledge
or the emulator model training process to achieve optimal model performance or accuracy
in modeling and control tasks.

The algorithm for identifying coefficients bem(i) is identical to (14)–(18), that is:

Hem(i) = Hem(i − 1)− Hem(i − 1)·∼xem(i)·
∼
x

T
em(i)·Hem(i − 1)

1 +
∼
xem(i)·

∼
x

T
em(i)·Hem(i − 1)

, (37)

bem(i) = bem(i − 1) + Hem(i)·
∼
xem(i)·

(
ŷ(i)− bT

em(i − 1)·∼xem(i)
)
− λem·bem(i − 1), (38)

where λem is the regularization parameter,
∼
xem(i) = β1

em(i) . . . βi
em(i), β1

em(i)·xem1(i), . . . ,
β1

k(i)·xemm(i) . . . βi
em(i)·xemm(i)

T is the modified input vector, and bem =
(
b1

em0 . . .

bn
em0, b1

em1 . . . bn
em1, . . . , b1

emm . . . bn
emm

)T is the adjustable coefficients vector.
For structural identification, as in [29], a similar criterion (19) is used, characterizing

the average relative error:

Jem =
1

N + 1
·

N

∑
i=1

(∣∣∣∣y(i + 1)− ŷ(i + 1)
y(i + 1)

∣∣∣∣). (39)

The emulator bell-shaped membership function parameters dθ
em1,l , dθ

em2,l are deter-
mined by the backpropagation method by minimizing the quadratic discrepancy similarly
to (20) as:

Eem(i + 1) =
1
2
·e2

em(i + 1) =
1
2
·
(

y(i + 1)− ŷ
(

dem, xem(i)
))2

(40)

using the gradient method according to the expression

dem(λ + 1) = dem(λ)− ∆dem(λ) (41)

with working step ∆dem(λ) = hem· ∂Eem
∂dem

, where hem is the working step parameter.
The chain rule for determining the partial derivative according to [29], similar to (22),

has the form:
∂Eem

∂dem
=

∂Eem

∂y
· ∂y
∂wθ

em
· ∂wθ

em

∂Xθ
em l

·
∂Xθ

em l

∂dθ
em l

, (42)

which, after mathematical transformations similar to (24)–(28), is represented as:
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∂Eem

∂dem
= (y − ŷ)·

αem·y·
1 − wθ

em

∑n
j=1 wj

em
+

∂ϵem

∂Xθ
em k

(
xθ

em k
)
·

 m

∏
j=1,
j ̸=l

Xθ
em j

(
x∗em j

)·


2·
(

x∗em l − dθ
em1,l

)
(

dθ
em2,l

)2
·
(

1 +
(

x∗em l−dθ
em1,l

dθ
em2,l

)2
)2

, (43)

or

∂Eem

∂dem
= (y − ŷ)·

αem·y·
1 − wθ

em

∑n
j=1 wj

em
+

∂ϵem

∂Xθ
em k

(
xθ

em k
)
·

 m

∏
j=1,
j ̸=l

Xθ
em j

(
x∗em j

)·


2·
(

x∗em l − dθ
em1,l

)
(

dθ
em2,l

)3
·
(

1 +
(

x∗em l−dθ
em1,l

dθ
em2,l

)2
)2

. (44)

Parametric and structural identifications stop when a condition similar to (13) is met:

Jem =
1
N
·

N

∑
i=0

∣∣∣∣y(i + 1)− ŷ(i + 1)
y(i + 1)

∣∣∣∣ ≤ Jem nom, (45)

where Jem is the emulator average relative error with an acceptable nominal value of the
relative error Jem nom.

2.4. Controller Model

In an NFA modified closed onboard HTE ACS (Figure 2) with a regulator, emulator,
and compensator, the regulator is a system part that takes as input the system current state
and issues a control action to correct this state in accordance with the desired requirements
or control aims. The controller uses fuzzy rules and a knowledge base to make control
decisions based on current historical data and input variables.

To construct a controller model according to [29], it is assumed that the HTE described
by (1) is reversible, that is, there is a controller model function fp(•) of the form:

ureg(i) = f
(
ŷ(i), . . . , ŷ(i − r + 1), x(i), . . . , x(i − s + 1), ureg(i), . . . , ureg(i − q + 1), ynom, d(i)

)
, (46)

in which the values i − r + 1, i − s + 1, i − q + 1 indicate specific points in time in the
past (relative to the i-th point in time), which are taken into account when determining the
variables that the controller model ureg(i) influence. These values are used to evaluate the
system state and input variables in the past in order to make a decision on the necessary
control action ureg(i) at the current i-th time. The variable ynom represents the system state
nominal value y, which is likely used in the controller model to compare with the system
current state and calculate the corrective control action.

After formalizing the variable ŷ(i), . . . , ŷ(i − r + 1), x(i), . . . , x(i − s + 1), ureg(i), . . . ,
ureg(i − q + 1) = xreg(i) =

{
xreg1(i) . . . xregm(i)

}
expression (46) is also represented as a

fuzzy Sugeno model of the form:

if xreg1(i), there is, Xθ
reg1

xreg2(i) there is Xθ
reg2 . . . xreg t(i) there is Xθ

reg t,
then ureg(i) = bθ

reg0 + bθ
reg1·xreg1(i) + . . . + bθ

reg t·xreg t(i) + ϵreg(i).
(47)

The fuzzy controller analytical expression is similar to (12), taking into account [29],
and has the form:

ureg(i) =
∑n

θ=1 wθ
reg(i)·uθ

reg(i)

∑n
θ=1 wθ

reg(i)
or ureg(i) = bT

reg·
∼
xreg(i), (48)
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which is a control actions weighted average from all controller components uθ
reg(i) mul-

tiplied by its weight wθ
reg(i) and then divided by the all-weights sum ∑n

θ=1 wθ
reg(i). This

makes it possible to take into account the contribution of each component in the overall
control action formation. The coefficient αreg is multiplied by this weighted average result,
which serves as an adjustment or the controller output control action ureg(i) scaling. In (48),
similarly to (9) and (10), βθ

em and wθ
em are calculated as:

βθ
reg = αreg·

wθ
reg(i)

∑n
θ=1 wθ

reg(i)
, (49)

wθ
reg = Xθ

reg1

(
xθ

reg1(i)
)
·Xθ

reg2

(
xθ

reg2(i)
)
· . . . Xθ

reg t

(
xθ

reg t(i)
)

, (50)

where
∼
xreg(i) = β1

reg(i) . . . βt
reg(i), β1

reg(i)·xreg1(i), . . . , β1
reg(i)·xregt(i) . . . βi

reg(i)·xregt(i)
T is a

modified input vector.
According to [29], inverse controller model structure and parameters identification is

carried out in two stages. At the first stage, we use the emulator model and a
one-dimensional search algorithm at the points u∗(i) = u∗

reg(i) + uk(i) and, accordingly, the
regulatory influences u∗

reg(i), at which the emulator error eem(i + 1) = |y(i + 1)− ŷ(i + 1)|
satisfies the constraints δymin ≤ eem(i + 1) ≤ δymin, i = 0 . . . N − 1.

At the second stage, structural identification and linear equations coefficients identifi-
cation breg and the bell-shaped membership functions dreg parameters are carried out. The
coefficients vector breg is calculated using the recurrent least squares method identical to
(14)–(18), that is:

Hreg(i) = Hreg(i − 1)−
Hreg(i − 1)·∼xreg(i)·

∼
x

T
reg(i)·Hreg(i − 1)

1 +
∼
xreg(i)·

∼
x

T
reg(i)·Hreg(i − 1)

, (51)

breg(i) = breg(i − 1) + Hreg(i)·
∼
xreg(i)·

(
u∗

reg(i)− bT
reg(i − 1)·∼xreg(i)

)
− λreg·breg(i − 1), (52)

whereλreg is the regularization parameter, breg =
(

b1
reg0 . . . bn

reg0, b1
reg1 . . . bn

reg1, . . . , b1
regt . . . bn

regt

)T

is the vector adjustable coefficients, and Hreg(0) = γ · I, γ ≫ 1.
For structural identification, as in [29], a similar criterion (19) is used, characterizing

the average relative error:

Jreg =
1
N
·

N

∑
i=0

(∣∣∣∣∣u∗
reg(i)− ureg(i)

u∗
reg(i)

∣∣∣∣∣
)

. (53)

Structural and parametric identification is completed when a condition similar to (13)
is met:

Jreg =
1
N
·

N

∑
i=0

∣∣∣∣∣u∗
reg(i)− ureg(i)

u∗
reg(i)

∣∣∣∣∣ ≤ Jreg nom, (54)

where Jreg is the emulator average relative error with the permissible nominal value of the
relative error Jreg nom.

The emulator bell-shaped membership function parameters dθ
reg1,l , dθ

reg2,l are deter-
mined by the backpropagation method by minimizing the quadratic discrepancy similarly
to (20) as:

Ereg(i + 1) =
1
2
·e2

reg(i + 1) =
1
2
·
(

ynom − ŷ
(

dreg, xreg(i)
))2

(55)

using the gradient method according to the expression

dreg(λ + 1) = dreg(λ)− ∆dreg(λ) (56)
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with working step ∆dreg(λ) = hreg·
∂Ereg

∂dreg
, where hreg is the working step parameter.

The chain rule for determining the partial derivative according to [29], similar to (22),
has the form:

∂Ereg

∂dreg
=

∂Ereg

∂ureg
·

∂ureg

∂wθ
reg

·
∂wθ

reg

∂Xθ
reg

·
∂Xθ

reg

∂dreg
, (57)

which, after mathematical transformations similar to (24)–(28), is represented as:

∂Ereg

∂dreg
=
(

u∗
reg(i)− ureg(i)

)
·

αreg·
uθ

reg(i)− wθ
reg·ureg(i)

∑n
j=1 wj

reg
+

∂ϵreg

∂Xθ
reg

(
xθ

reg

)
·

 n

∏
j=1,
j ̸=l

Xθ
reg j

(
x∗reg j

)·


2·
(

x∗reg l − dθ
reg1,l

)
(

dθ
reg2,l

)2
·
(

1 +
(

x∗reg l−dθ
reg1,l

dθ
reg2,l

)2
)2

, (58)

or

∂Eem

∂dem
=
(

u∗
reg(i)− ureg(i)

)
·

αreg·
uθ

reg(i)− wθ
reg·ureg(i)

∑n
j=1 wj

reg
+

∂ϵreg

∂Xθ
reg

(
xθ

reg

)
·

 n

∏
j=1,
j ̸=l

Xθ
reg j

(
x∗reg j

)·


2·
(

x∗reg l − dθ
reg1,l

)
(

dθ
reg2,l

)3
·
(

1 +
(

x∗reg l−dθ
reg1,l

dθ
reg2,l

)2
)2

. (59)

2.5. Clarifying the Emulator Model Taking into Account the Controller Model

Taking uk constant, and taking into account that ureg = xem1, i.e., dureg = d(uk + ureg) =

dxem1 according to [29], the object analytical Jacobian expression is defined ∂ŷ(i+1)
∂xem1

, which is
the sum of derivatives of the products of two functions βθ and ŷθ :

∂ŷl
∂xem1

=
n

∑
θ=1

(
yθ · ∂βθ

∂xem1
+ βθ · ∂yθ

∂xem1

)
. (60)

Based on [29] in accordance with the chain rule, the first term total derivative has
the form:

yθ · ∂βθ

∂xem1
= yθ ·

(
∂βθ

em
∂wθ

em
· ∂wθ

em
∂Xθ

em
· ∂Xθ

em
∂xem1

)
, (61)

where

yθ · ∂βθ
em

∂xem1
= yθ−wθ

em ·ŷ
∑n

j=1 wj
em

, ∂wθ
em

∂xem1
=

m
∏
l=2

Xθ
em(xem l),

∂βθ
em

∂wθ
em

= α· βθ
em−wθ ·βem

∑n
j=1 wj

em
+ ∂ϵk

∂Xθ
em(xθ

em)
, ∂Xθ

em(xem1)
∂xem1

=
2·(xem l−dθ

em1,l)(
dθ

em2,l

)2
·

1+

(
xem l−dθ

em1,l
dθ

em2,l

)2
2 , βθ · ∂yθ

∂xem1
= bθ

em l ·β
θ
em. (62)

Taking into account (62), expression (61) takes the form:

∂ŷl
∂xem1

= ∑n
θ=1

yθ ·
(

α· βθ
em−wθ ·βem

∑n
j=1 wj

em
+ ∂ϵk

∂Xθ
em(xθ

em)
·

m
∏
l=2

Xθ
em(xem l)

)
· 2·(xem l−dθ

em1,l)(
dθ

em2,l

)2
·

1+

(
xem l−dθ

em1,l
dθ

em2,l

)2
2 + βθ

·yθ ·

yθ · yθ−wθ
em ·ŷ

∑n
j=1 wj

em
·

m
∏
l=2

Xθ
em(xem l) ·

2·(xem l−dθ
em1,l)(

dθ
em2,l

)2
·

1+

(
xem l−dθ

em1,l
dθ

em2,l

)2
2


.

(63)

The advantage of (63) over [29], where a similar expression is represented as ∂ŷl
∂xem1

= ∑n
θ=1

yθ−wθ
em ·ŷ

∑n
j=1 wj

em
·

m
∏
l=2

Xθ
em(xeml)·dθ

em1,l ·
(
1 − Xθ

em(xeml)
)
+ bθ

em·βθ
em, consists in its ability to
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take into account multidimensional interactions and nonlinear effects between variables
through complex weighting coefficients and derivatives, which makes it possible to more
accurately model dependencies in a multidimensional NFA modified closed HTE ACS
(Figure 2).

2.6. Six-Layer NFN AFNN Training Algorithm

At the training initial stage, a parameter based on a six-layer NFN AFNN, xk(i) is
accepted as the k-th input parameter for the i-th sample in the training set. The fuzzy
transformation in the fuzzy layer uses the membership functions µkj(xk(i)) to transform
xk(i) into the fuzzy value Xθ

kj(i), that is, Xθ
kj(i) = µkj(xk(i)).

For each θ-th rule and each premise k, the premises wθ
k(i) truth degrees are

calculated as:
wθ

k(i) = Xθ
k1(i)× Xθ

k2(i)× . . . × Xθ
km(i). (64)

Next, for each rule of the θ-th rule and each premise k, the relative normalized value is
calculated, taking into account the parameter α, as:

βθ
k(i) = α·

wθ
k(i)

∑n
j=1 wj

k(i)
. (65)

The next training step is to define a loss function L that measures the difference
between the actual output y(i) and the model predicted output ŷ(i):

L =
N

∑
i=1

(y(i)− ŷ(i))2 + ϑ·t·
N

∑
i=1

(y(i)− ŷ(i))2 + λ·
n

∑
k=1

∑
θ

θ2, (66)

where ϑ is the coefficient that regulates the influence of the adaptive multiplier, and t is
the current training epoch number, the introduction of which into (66) allows us to adapt
the loss function during the training process contribution. By adding the term λ·∥θ∥2

to (66), in which λ is the regularization coefficient and ∥θ∥2 is the L2-norm of the model
parameters θ, it is possible to model the complexity control by penalizing large parameter
values. The regularization coefficient λ determines the regularization strength: large values
of λ increase the penalty for large parameters, which can help prevent overfitting.

For each θ-th model parameter, its gradient is calculated using the chain rule and
gradient descent as:

∂L
∂θ

= 2·λ·θ +
N

∑
i=1

∂L
∂ŷ(i)

·∂ŷ(i)
∂θ

. (67)

Using gradients, the model parameters θ are updated using the gradient
descent method:

θt+1 = θt − ηt·
(

∂L
∂θ

+ 2·λ·θt

)
. (68)

where ηt is the current adaptive training rate at the t-th step. The training rate becomes
adaptive by applying algorithms such as Adam or RMSprop [42,43], which automatically
adapt the learning rate based on the gradient history.

Thus, adding adaptive elements to the training algorithm for a six-layer NFN AFNN
will allow the HTE ACS to change its parameters and settings in real time based on
changing conditions or external influences. The proposed algorithm can use feedback data
to automatically adjust system parameters to achieve optimal performance even under
variable conditions.

2.7. Observer Block Introduction into an NFA Modified Closed Onboard TE ACS

For a modified nonlinear difference system (1), where only the output measurements
y(i) are available, and the state x(i) is not available for direct measurement, to estimate the
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system state x(i) based on the available measurements of y(i) and control actions u(i), the
use of an observer block is proposed. It is assumed that the system state x(i) evolves in
accordance with the discrete dynamic equation:

x(i + 1) = g(x(i), u(i), v(i)), (69)

where v(i) is a noise or disturbances vector, and the function g describes the changes dynamics
in the system state based on the current state x(i), control u(i), and disturbance v(i).

The observer block aim is to estimate a state x̂(i) that is approximately equal to the
real state x(i) using available measurements y(i) and control inputs u(i).

One observer method for discrete systems that can have significant advantages over the
Extended Kalman Filter (EKF) is the Matching State Observer algorithm—the Innovation
Matching Observer algorithm [44]. The state-matching observer algorithm advantage over
the extended Kalman filter is its simplicity and the absence of the need to linearize nonlinear
measurement functions, making it more efficient and robust for nonlinear systems.

The basic idea of the Matching State Observer method is to use measurements of
y(i) to directly determine x(i), minimizing estimation error. This method’s advantage
is its simplicity and efficiency, especially in cases where the measurements are directly
dependent on the state of the system.

According to the Matching State Observer method, the system state prediction is
defined as:

x̂(i + 1|i) = A·x̂(i|i) + B·u(i), (70)

where x̂(i|i) is the system state current assessment, and A and B are the system or
control matrices.

Measurement-based state correction (update) is defined as:

y(i) : x̂(i + 1|i + 1) = x̂(i + 1|i) + K(i + 1)·(y(i + 1)− C·x̂(i + 1|i)), (71)

where C is the measurement matrix that the system state relates to measurements y(i), and
K(i + 1) is the observer gain matrix, which is chosen to the estimation error minimize, which
is defined as:

K(i + 1) = P(i + 1)·CT ·
(

C·P(i + 1)·CT + R
)−1

, (72)

where P(i + 1) is the state covariance error estimate, and R is the measurement noise
covariance matrix.

This observer method directly uses measurements of y(i) to adjust the state estimate
x̂(i + 1|i), which can be an effective way to estimate state in discrete systems, especially if
the measurements have a direct and reliable relation with the system state. It also has a sim-
ple implementation and does not require the nonlinear measurement function linearization,
which can be an advantage over the extended Kalman filter in certain scenarios.

3. Results
3.1. Input Data Analysis and Pre-Processing

To test the developed NFA modified closed onboard HTE ACS, including a controller,
compensator, emulator, and observer unit, implemented in the six-layer NFN AFNN form, a
computational experiment was carried out, for which a personal computer with a processor
was used, i.e., AMD Ryzen 5 5600, 32 KB L3 cache, Zen 3 architecture, six cores, 12 threads,
3.5 GHz, RAM—32 GB DDR-4.

The data used to train the neural network include the HTE thermodynamic charac-
teristics collected during flights, such as gas-generator rotor r.p.m. nTC, free turbine rotor
speed nFT, and gas temperature in front of the compressor turbine T∗

G. The developed NFA
modified closed onboard HTE ACS initial data were obtained from experimental research
conducted on the TV3-117 engine (Table 1) [26,27,45–47].
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Table 1. Initial data fragment for the developed NFA modified closed onboard TE ACS.

Number
TE Thermogas-Dynamic Parameter Absolute Value
nTC nFT T*

G

1 0.943 0.929 0.932
2 0.982 0.933 0.964

. . . . . . . . . . . .
22 0.973 0.919 0.970
. . . . . . . . . . . .
38 0.975 0.920 0.971
. . . . . . . . . . . .
54 0.984 0.931 0.979
. . . . . . . . . . . .
112 0.962 0.907 0.953
. . . . . . . . . . . .
188 0.970 0.913 0.966
. . . . . . . . . . . .
256 0.981 0.973 0.953

The input data (the training set) pre-processing is given in [26,27,45–47]. As part of
the input data preliminary processing, it was proven that the training set is homogeneous
according to the Fisher–Pearson [48] and Fisher–Snedecor [49] criteria, whose values were
3.588 and 1.28, respectively. The obtained values of these statistical criteria are less than their
critical values (22.362 and 3.44, respectively), with 13 free powers and a 0.01 significance
level. According to [26,27,45–47], a control sample (67%) and a test sample (33%) were
separated from the training sample (Table 2), and this representativeness was confirmed
by cluster analysis [50,51] using the k-means method, during which the input data values
were divided into eight classes and the metric distance between them was calculated
as Ci = argminj

∥∥xi − µj
∥∥2, in which µj are the initial centroids and

∥∥xi − µj
∥∥2 is the

Euclidean distance between xi and µj (Figure 5). In this case, the µj values are recalculated
as µj =

1
|Cj| · ∑

xi∈Cj

xi, which is the number of objects in the j-th cluster. Calculations of Ci

and µj continued until changes in the cluster distribution became negligible.

Table 2. Results of forming training, control, and test samples (author’s research).

Sample Description Sufficient Sample Size

Training It was used to train a model. 256 elements (100%)
Control It was used to evaluate the model. 172 elements (67% of the training sample)

Test It was used for final model verification. 84 elements (33% of the training sample)

Similar research was conducted, during which the following were separated from the
training sample (Table 2) and identified: a control sample (60%) and a test sample (40%); a
control sample (50%) and a test sample (50%); a control sample (70%) and a test sample
(30%). The obtained metric distance values with such combinations are 1.75. . .3.38 times
greater than with the control sample (67%) and a test sample (33%). This indicates the
optimal choice of control and test sample size.

Thus, the training sample elements’ preprocessing results made it possible to form the
optimal training, control, and test sample sizes (Table 2).

3.2. The Six-Layer NFN AFNN Training Results

In the NFN AFNN training process with the proposed algorithm (64)–(68), the values
of the accuracy (Accuracy) (Figure 6) and loss (Loss) (Figure 7) functions were estimated
for the training and validation samples; the blue curve indicates training results on the
training set, and the orange curve indicates validation results on the control set.
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The accuracy metric reflects the model effectiveness in determining the neuro-fuzzy
HTE ACS parameters, showing the percentage of correctly calculated parameters. In turn,
the loss function demonstrates the degree to which the model’s predictions deviate from the
actual values, which helps optimize the training process by reducing this loss. By analyzing
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the resulting diagrams of the accuracy (Accuracy) (Figure 6) and loss (Loss) (Figure 7)
functions during the training process, conclusions are drawn about how effectively the
model is trained, and measures are taken to improve its performance.

According to Figure 6, almost maximum accuracy has been achieved, and according
to Figure 7, the loss value does not exceed 0.025, which indicates the model’s high training
efficiency on available data and its ability to accurately generalize to new data.

It is worth noting that for a bell-shaped membership function with 60 iterations, the
value of the accuracy metric reaches 0.9998 (99.98%), and the value of the loss function does
not exceed 0.0002 (0.2%), which indicates the high efficiency and accuracy of the AFNN
network when using the bell-shaped function accessories. The results obtained indicate
the successful training of the neuro-fuzzy AFNN network, with good convergence and
minimal error, which emphasizes the importance of correct membership function choice in
the design process of a neuro-fuzzy HTE ACS. At the same time, the loss values in both
samples do not exceed 0.025 (or 2.5%), which indicates a low level of error in determining
the neuro-fuzzy HTE ACS parameters. Such results indicate the successful training of the
AFNN network with the proposed algorithm and its ability to provide the neuro-fuzzy
HTE ACS accurate parameters with a high degree of confidence.

Determining confidence in the context of machine learning and neural network models
typically involves assessing likelihood or the model’s confidence in its predictions. De-
pending on the type of model (e.g., classification or regression), the confidence degree can
be expressed differently [52]. This work uses a method for assessing the AFNN network’s
confidence which consists of using maximum probability. For classification problems, a
softmax function is often used to determine the membership probabilities in each class.
After model training, having received the prediction ŷ for input data x, we can obtain the
probability p(y = k|x) belonging to the k-th class using softmax:

p(y = k|x) = exp(ŷk)

∑K
j=1
(
exp

(
ŷj
)) , (73)

where ŷ is the model outputs vector before applying softmax for input x, ŷk is the vector
ŷ k-th element, and K is the class number.

Figure 8 shows a diagram of the maximum probability (Max Probability Estimation)
for the AFNN network “degree of confidence”, which shows how the AFNN network
confidence in obtaining the neuro-fuzzy HTE ACS parameters is distributed: (a) is the nTC
parameter, (b) is the nFT parameter, and (c) is the T∗

G parameter.
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G parameter.

Table 3 presents the comparative analysis results of the accuracy metric and the loss
function calculations when using various membership functions in the AFNN network
training process using the proposed algorithm (64)–(68).
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Table 3. The different membership functions comparison results.

Membership Function Name Max. Accuracy Max. Loss Training Epochs
Optimal Number

Training Time,
Seconds

Triangular 0.9952 0.0048 100 7.320
Trapezoidal 0.9465 0.0535 220 12.832

Symmetrical Gaussian 0.9779 0.0221 80 5.673
Two-sided Gaussian 0.9786 0.0214 80 5.918

Difference of two sigmoids 0.9501 0.0499 140 9.752
Product of two sigmoid 0.9515 0.0485 140 9.776
Generalized bell-shaped 0.9998 0.0002 60 4.061

In the process of training the NFN AFNN, similarly to [28,29], the bell-shaped member-
ship function (Table 4) parameters were updated using an adaptive training rate according
to the expressions:

dθ
k1,l(i + 1) = dθ

k1,l(i)− ηt·
∂Ek

∂dθ
k1,l

, dθ
k2,l(i + 1) = dθ

k2,l(i)− ηt·
∂Ek

∂dθ
k2,l

, (74)

where ηt is the current adaptive training rate at the t-th step.

Table 4. The bell-shaped membership function parameters values before and after training of AFNN
neural fuzzy network (author’s development, based on [28]).

Step Parameters
Values

ANFIS AFNN ANFIS AFNN ANFIS AFNN

Before training
the NFN

dθ
k1,l 0.100 0.10 0.100 0.100 0.100 0.100

dθ
k2,l 0.250 0.25 0.500 0.500 0.750 0.750

After training
the NFN

dθ
k1,l 0.120 0.117 0.110 0.112 0.130 0.118

dθ
k2,l 0.290 0.263 0.530 0.508 0.760 0.751

The quality of the bell-shaped function parameters calculating dθ
k1,l and dθ

k2,l according
to (74) using the adaptive training rate in comparison with the expressions dθ

k1,l(i + 1) =

dθ
k1,l(i) − η· ∂Ek

∂dθ
k1,l

, dθ
k2,l(i + 1) = dθ

k2,l(i) − η· ∂Ek
∂dθ

k2,l
, applied in [28], was estimated by the

values of RMSE (square root of root mean square error), MAE (mean absolute error), and
MAPE (average absolute percentage error):

RMSEdθ
k1,l

=

√
1
n
·

n

∑
i=1

(
dθ

k1,l i
− d̂θ

k1,li

)2
, RMSEdθ

k2,l
=

√
1
n
·

n

∑
i=1

(
dθ

k2,l i
− d̂θ

k2,li

)2
, (75)

MAEdθ
k1,l

=
1
n
·

n

∑
i=1

∣∣∣dθ
k1,l i − d̂θ

k1,li

∣∣∣, MAEdθ
k2,l

=
1
n
·

n

∑
i=1

∣∣∣dθ
k2,l i − d̂θ

k2,li

∣∣∣, (76)

MAPEdθ
k1,l

=
100
n

·
n

∑
i=1

∣∣∣∣∣d
θ
k1,l i

− d̂θ
k1,li

dθ
k1,l i

∣∣∣∣∣, MAPEdθ
k2,l

=
1
n
·

n

∑
i=1

∣∣∣∣∣d
θ
k2,l i

− d̂θ
k2,li

dθ
k2,l i

∣∣∣∣∣, (77)

where n is the number of obtained values dθ
k1,l and dθ

k2,l , dθ
k1,l i

and dθ
k2,l i

are actual values

of i-th parameters dθ
k1,l and dθ

k2,l , and d̂θ
k1,li

and d̂θ
k2,li

are the calculated NFN (AFNN in this
work, ANFIS in [28])values of i-th parameters dθ

k1,l and dθ
k2,l .

Table 5 shows the calculated RMSE, MAE, and MAPE value results for the bell-shaped
membership function parameters dθ

k1,l and dθ
k2,l . Table 4 shows that for dθ

k1,l the RMSE value
is 0.0524, MAE is 0.0537, and MAPE is 5.0011% when applying (74). At the same time, the
RMSE value is 0.0765, MAE is 0.0816, and MAPE is 7.6516% when applying the expressions
from [28], dθ

k1,l(i + 1) = dθ
k1,l(i) − η· ∂Ek

∂dθ
k1,l

, dθ
k2,l(i + 1) = dθ

k2,l(i) − η· ∂Ek
∂dθ

k2,l
. Similarly, for
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dθ
k2,l RMSE is 0.0521, MAE is 0.0536, and MAPE is 5.0008%, and when using expressions

from [28], RMSE is 0.0761, MAE is 0.0815, and MAPE is 7.6512%. Thus, the results obtained
indicate a decrease in the RMSE, MAE, and MAPE values for the bell-shaped membership
function parameters dθ

k1,l and dθ
k2,l by 1.46, 1.52, and 1.53, respectively, when applying (74),

adaptive speed training, compared with [28].

Table 5. Values of statistical criteria RMSE, MAE, and MAPE.

Parameters

Statistical Criteria Values
RMSE MAE MAPE

Application
(74)

Application
[28]

Application
(74)

Application
[28]

Application
(74)

Application
[28]

dθ
k1,l 0.0524 0.0765 0.0537 0.0816 5.0011 7.6516

dθ
k2,l 0.0521 0.0761 0.0536 0.0815 5.0008 7.6512

Thus, the work experimentally confirmed the feasibility of an adaptive training rate
for introducing the NFN AFNN.

The obtained results of bell-shaped function parameters dθ
k1,l and dθ

k2,l made it possible
to graphically represent the bell-shaped membership function appearance. Figure 9a shows
the bell-shaped membership function appearance before training the AFNN NFN using
the initial parameters dθ

k1,l and dθ
k2,l , and Figure 9b shows the same after training the NFN

AFNN with refined parameters dθ
k1,l and dθ

k2,l . The refinement of parameters dθ
k1,l and dθ

k2,l
of the bell-shaped membership function is justified by “fine-tuning” the fuzzy model of the
research object, an NFA modified closed onboard HTE ACS. After parameter optimization,
the bell-shaped membership function underwent changes, resulting in a more accurate fit
to system data. These changes improved control quality by adapting the function to the
controlled object (HTE) specifics.
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3.3. Computational Experiment Results

During the next phase of the computational test, the neuro-fuzzy HTE ACS parameters,
which are based on a six-layer neuro-fuzzy AFNN network, were directly determined. As
a result of modeling changes in the HTE thermogas-dynamic characteristics according
to the training sample data (Table 1) at various moments of model time (from 0 to 5 s),
the conclusions are shown in Figure 10, where (a) means the change in nTC, (b) means
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the change in T∗
G, and (c) means nFT. The orange curve represents experimental data on

TDP recorded on board a helicopter, while the blue curve shows the model values of these
parameters after correction using a reconfigured helicopter TE ACS [28], and the black
curve shows the model values of these parameters after correction using the proposed
neuro-fuzzy HTE ACS (Figure 2).
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To confirm the obtained curves’ adequacy as a result of modeling, the study used
the determination coefficient R2 as a statistical criterion for comparing the curves. This
criterion evaluates the degree of agreement between model (blue curve and black curve)
and experimental data (orange curve); a value close to 1 indicates a good fit of model data.

The percentage deviation from the experimental curve can be calculated as the ratio
of the difference between the model curve values and the experimental curve to the
experimental curve value, multiplied by 100%, according to the expression:

R2 =
n

∑
i=1

∣∣∣∣ xi − x̂i
x̂i

∣∣∣∣·100%, (78)

where xi is the i-th point on the model curves (blue curve and black curve), and x̂i is the
i-th point on the experimental curve (orange curve).

To calculate the determination coefficient R2, 50 points were taken on the model and
experimental curves with a uniform step of 0.1 s. The determination coefficient for the
blue curve obtained using a reconfigured HTE ACS [28] was 0.916, and for the black curve
obtained using the proposed neuro-fuzzy HTE ACS (Figure 2)—0.982. Thus, the value of
the determination coefficient for the proposed neuro-fuzzy HTE ACS (Figure 2) is 1.07 times
higher than the value of the determination coefficient for the reconfigured HTE ACS [28],
which indicates better adequacy and accuracy of the proposed HTE ACS.

The change in residuals after regulation ε(t) = x1(t) + x2(t) + x3(t) − y(t) remains within
the HTE TDP permissible deviation, not exceeding 0.004. These parameter dynamics,
shown in Figure 11 after regulating ε(t), demonstrate the control stability, where the ε(t)
value tends to zero.

At the computational experiment’s next stage, the fuel consumption parameter GT
was determined (in absolute units) for various control types (Figure 12, where the blue
curve shows the reference value of fuel consumption GT (step action) and the orange curve
shows the fuel consumption GT real value), while, similarly to [28], it was assumed that
the fuel consumption parameter GT reference signal has a rectangular pulse form, that is, a
step change in the required fuel consumption GT.
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From the presented transient control process analysis diagram (Figure 12), it is clear
that the control quality (measured by the duration of the transient process and the maximum
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deviation of the controlled value) when using traditional (Figure 12a), fuzzy (Figure 12b),
and neuro-fuzzy (Figure 12c) control types are approximately the same. At the same time,
when using neuro-fuzzy control using the proposed neuro-fuzzy HTE ACS (Figure 12d),
the transient process duration and the controlled value GT maximum deviation are reduced
by an average of 15. . .20% compared with the above-presented control types. The role
of a compensator in neuro-fuzzy control lies in its ability to effectively compensate for
uncertainties and disturbances in the ACS. The compensator predicts and corrects the
influence of external factors, which allows the system to respond faster and more accurately
to changing conditions, which ultimately led to an improvement in the control quality, with
a reduction in the duration of the transient process and a reduction in the controlled value
GT by 15. . .20% maximum deviation.

At the computational experiment’s next stage, detailed research on the fuel consump-
tion GT parameter transition process section is carried out—from 20 to 100 s (Figure 12),
where the orange curve is the fuel consumption GT real value, the black curve shows the
transition process for precise control (traditional ACS), the blue curve shows the transition
process for fuzzy control, the red curve shows the transition process for neuro-fuzzy con-
trol using a reconfigured ACS [28], and the green curve shows the transition process for
neuro-fuzzy control using the proposed neuro-fuzzy HTE ACS.

To achieve the ACS stable operation, as well as to fulfill the transient processes’
specified quality indicators, according to [28,53–55], the synthesized system parameters’
quantities under consideration of dependence are studied:

q1({k1}, {τ1}, {T1}) = f1({k1}, {τ1}, {T1}),
q2({k2}, {τ2}, {T2}) = f2({k2}, {τ2}, {T2}),

. . .
qi({ki}, {τi}, {Ti}) = fi({ki}, {τi}, {Ti}),

(79)

where q1,. . ., qi are the quality indicators of the transient processes under consideration;
{ki}, {τi}, {Ti} are the variable system parameter (gain factors, time constants, etc.) sets; f 1(•),
. . ., fi(•) are the functions expressing the system quality indicators’ dependence on the
synthesized controllers parameters.

If we take overshoot and subsystem regulation time as the main indicators of system
quality, then the system of Equation (79) takes the form:

treg1 = f1({k1}, {τ1}, {T1}),
σ1 = g1({k1}, {τ1}, {T1})

. . .
treg_i = fi({ki}, {τi}, {Ti}),
σreg_i = gi({ki}, {τi}, {Ti}),

(80)

where σ1,. . ., σi is the overshoot, and treg1,. . ., treg_i is the subsystems transient processes
regulation time.

To determine the subsystems transient processes regulation time according to the
transient process diagram (Figure 13), at the initial stage the establishment moment is de-
termined, which indicates the time moment when the output quantity (controlled quantity)
approximately stabilizes in the vicinity of the steady-state value. Next is the first point
on the diagram (t1), at which the controlled value enters the vicinity of the steady value
and remains in this vicinity further. Next is the last point on the diagram (t2), at which the
controlled value leaves the steady value’s vicinity and no longer returns to this vicinity.
The regulation time treg is defined as the difference between t2 and t1, that is:

treg = t2 − t1. (81)
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Table 6 presents the transient process control time calculation results. As can be seen from
Table 6, use of the proposed neuro-fuzzy helicopter TE ACS (Figure 2) made it possible to reduce
the fuel consumption parameter GT transient process time by 15.0 times compared with the
traditional ACS (precise control) use, by 17.5 times compared with the fuzzy ACS (fuzzy control)
use, and 11.25 times compared with the neuro-fuzzy reconfigured ACS [28] use.

Table 6. The transient process control time calculation results.

Precise Control Fuzzy Control Neuro-Fuzzy Reconfigured
ACS [28]

The Proposed Neuro-Fuzzy
ACS (Figure 2)

t1 t2 treg t1 t2 treg t1 t2 treg t1 t2 treg

20 80 60 23 93 70 37 82 45 56 60 4

The role of the compensator, controller, and emulator in reducing transient control
time is to effectively control the system while compensating for disturbances, adapting
to changing conditions, and accurately emulating the desired behavior. The compensator
in the proposed neuro-fuzzy HTE ACS (Figure 2) allows us to quickly adjust actions
to minimize the external factors’ impact, and the controller is able to adapt to changes,
providing stable and accurate control. The emulator provides modeling of the system-
required behavior, and together these can significantly reduce the time to achieve a transient
process steady state compared to traditional control methods.

At the computational experiment’s next stage, using the transition process diagram
(Figure 13), the following quality indicators for ACS were determined:

1. Overshoot (overload) is the controlled value (fuel consumption parameter GT) maxi-
mum excess relative to its steady value during the transition to a new state, determined
according to the expression:

O =
GTmax − GTst

GTst
·100%, (82)

where GTmax is the controlled variable (fuel consumption parameter GT) maximum
value during the transition process, and GTst is the steady-state value (target value).

2. The steady-state value (stationary deviation) is defined as the difference between the
controlled variable (the target value of the fuel consumption parameter GT) steady-
state value and its value after the transient process completion. This indicator allows
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us to evaluate the system deviation degree from the desired state after stabilization
and is calculated according to the expression:

ϵst = GTst − GT(t), (83)

where GT(t) is the controlled variable (fuel consumption parameter GT) value at some
point in time t after the transition process completion.

3. The transient process time is defined as the time during which the controlled value
(fuel consumption parameter GT) reaches a certain percentage deviation from the
steady-state value after a regime violation. The time of the transient process is
measured from the moment the control action begins to change until the moment
when the controlled value (system output) approaches the steady-state value, and is
calculated as:

ttrans = t2 − t1, (84)

where t1 is the point in time when the controlled variable (fuel consumption parameter
GT) first reaches or enters a given vicinity (p, %) of the steady-state value GTst, and
t2 is the point in time when the controlled variable (fuel consumption parameter
GT) returns to the same neighborhood and is close to the steady-state value after
the transition.

Table 7 presents the calculated values for overregulation (overload), steady-state value
(stationary deviation), and the transition process time for precise control, fuzzy control,
neuro-fuzzy control using a reconfigured ACS [28], and neuro-fuzzy control using the
proposed neuro-fuzzy HTE ACS.

Table 7. Control quality indicator calculations results.

Parameter Precise Control Fuzzy Control Neuro-Fuzzy
Reconfigured ACS [28]

The Proposed Neuro-fuzzy
ACS (Figure 2)

Overshoot (overload) 5% 4.5% 2.8% 1.3%
Steady value 0.0103 0.0076 0.0045 0.0031

Transition time 7.85 6.34 3.18 1.10

Table 7 shows that the use of the proposed neuro-fuzzy helicopter TE ACS (Figure 2)
made it possible to achieve an improvement in the fuel consumption parameter GT con-
trol quality compared with clear control, fuzzy control, and neuro-fuzzy control using
a reconfigured ACS [28], in terms of overshoot indicators (overload), steady-state value
(stationary deviation), and transient process time by 1.45. . .7.77 times. At the same time,
the compensator in the proposed neuro-fuzzy HTE ACS (Figure 2) plays a role in taking
into account and compensating for disturbances and uncertainties, which helps reduce
overshoot and steady-state deviation. The controller provides adaptive control, optimizing
parameters in real time and ensuring fast and accurate response to changes. The emulator
simulates the system desired behavior, which helps improve control efficiency and achieve
better-quality indicators compared to more traditional control methods. These elements to-
gether allow the proposed neuro-fuzzy HTE ACS (Figure 2) to achieve significant improve-
ments in overshoot, steady-state deviation, and transient process time compared to other
control types.

At the computational experiment’s final stage, the proposed neuro-fuzzy HTE ACS
stability is determined (Figure 2) using the transition process diagram (Figure 12, red curve).
The use of a stability criterion, such as the Lyapunov method, allows one to assess the
dynamic system stability and identify the conditions under which the system remains stable
over time. To use the Lyapunov method, according to the transition process (Figure 13)
diagram, the Lyapunov function V(x) is determined, where x is the system state vector,
which must be positive definite and continuous. Next, the derivative of the Lyapunov
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function with respect to time ∂V(x)
∂t for the system is calculated using the system dynamics

equation. That is, for a system with a differential equation ∂x
∂t = f (x),

∂V(x)
∂t

=
∂V
∂t

= f (x)·∂V
∂x

. (85)

The system is considered asymptotically stable if derivative (85) is negative definite
(or not positive definite) in some region x.

According to Figure 13, the approximated curve corresponding to the fuel consump-
tion parameter GT transient process for the proposed neuro-fuzzy HTE ACS (Figure 2) has
the form:

GT(t) = −0.0467·t3 + 0.35·t2 − 0.7233·t + 1.22. (86)

It is known that the Lyapunov function V(t) must be positive definite. Therefore, the
work proposes the use of the Lyapunov function V(t) = t2, which is positive for all t ̸= 0. To
calculate the time derivative of the Lyapunov function ∂V(x)

∂t , we use the system dynamic
equation ∂x

∂t = f (x) (86). The derivative of the Lyapunov function with respect to time is
calculated as:

∂V(x)
∂t

=
∂V
∂x

·∂x
∂t

. (87)

For the chosen Lyapunov function, V(t) = t2 ∂V
∂x = 2·t. Then

∂V(x)
∂t

= 2·t· f (x) = 2·t·
(
−0.0467·t3 + 0.35·t2 − 0.7233·t + 1.22

)
= −0.0934·t4 + 0.7·t3 − 1.4466·t2 + 2.44·t. (88)

The system will be asymptotically stable if ∂V(x)
∂t is negative definite (or not positive

definite). To do this, we investigated the behavior of this expression for different t values:

1. At t = 0 ∂V(x)
∂t = 0.

2. For large positive t (for example, t > 1.22): the leading term –0.0934 · t4 dominates and
∂V(x)

∂t < 0.

3. At t < 0, the leading term –0.0934 · t4 also dominates and ∂V(x)
∂t < 0.

Therefore, when analyzing the Lyapunov function derivative, we see that for all
t values (except t = 0), the polynomial dominates the leading term, which makes ∂V(x)

∂t
negative definite. Thus, we can conclude that the system is asymptotically stable.

Based on the proposed neuro-fuzzy HTE (Figure 2) stability analysis results, using
the Lyapunov method, it was established that the system is asymptotically stable. The
derivative of the Lyapunov function with respect to time ∂V(x)

∂t for a given system is negative
definite, with the exception of the moment of time t = 0. At the moment t = 0, the Lyapunov
function derivative with respect to time ∂V(x)

∂t = 0, which means that the system is in an
equilibrium state. In this state, if the system is not subject to external disturbances or the
initial conditions do not throw it out of equilibrium, then it will remain in this state. It is
important to note that ∂V(x)

∂t = 0 indicates a point where the system does not change its
state, which is a sign of stability. However, to confirm asymptotic stability, it is necessary
that, near this state, ∂V(x)

∂t be negatively defined, which is confirmed in this case for all
values of t except t = 0. Thus, at the slightest deviation from the equilibrium point, the
system will return to it, which ensures its stability over time.

4. Discussion

The work carried out a proposed neuro-fuzzy HTE ACS (Figure 2) comparative
analysis, the basis of which is a six-layer NFN AFNN, with its closest analogue being the
reconfigured neuro-fuzzy HTE ACS, the basis of which is a five-layer neuro-fuzzy ANFIS
network [28]. Table 8 shows the main advantages of the proposed neuro-fuzzy HTE ACS
(Figure 2) over the reconfigured neuro-fuzzy HTE ACS [28] according to the following
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quality metrics: NFN type, NFN training algorithm, fuzzy inference type, accuracy, loss,
precision, recall, F-score, efficiency coefficient, quality coefficient, correlation coefficient,
determination coefficient [38], as well as training speed, resource efficiency use by an NFN,
and and robustness.

Table 8. Comparative analysis results of NFN (AFNN or ANFIS) use in the neuro-fuzzy HTE ACS
(author’s research).

Index Six-Layer NFN ANFF
(NN_1)

Five-Layer NFN ANFIS
(NN_2) [28] Advantages of NN_1 over NN_2

NFN type ANFF ANFIS

The advantage of the six-layer AFNN network over the
five-layer ANFIS network is that the model is more
flexible due to additional layers, which allows it to more
effectively capture and use fuzzy information to control
the system.

NFN training
algorithm

Modified interactive
adaptation method

Traditional training
method

The advantage of the modified interactive adaptation
method in training a six-layer AFNN network over the
classical method of training a five-layer ANFIS network
is the increased efficiency of adaptation to changing
conditions and the fuzzy system thanks to more
accurate control of an additional layer and interactive
parameters optimization.

Fuzzy inference
type Sugeno Model TSK Model

The advantage of Sugeno-type fuzzy inference in a
six-layer AFNN network over TSK-type fuzzy inference
in a five-layer ANFIS network is the ability to more
flexibly and accurately model nonlinear dependencies
between input and output data due to a more complex
network structure and the inference method specifics.

Accuracy 0.9998 (99.98%) 0.9752 (97.52%)

The Accuracy metric for a six-layer AFNN network is
1.03 times higher than for a five-layer ANFIS network.
This means that the six-layer AFNN network has higher
accuracy and the ability to correctly classify or predict
data compared to the five-layer ANFIS network in the
neuro-fuzzy HTE ACS.

Loss 0.0002 (0.2%) 0.0248 (2.48%)

The Loss metric for a six-layer AFNN network is
12.4 times less than for a five-layer ANFIS network. This
means that the six-layer AFNN network demonstrates
significantly lower losses during the training process
compared to the five-layer ANFIS network in a
neuro-fuzzy ACS, which indicates its effectiveness and
accuracy in modeling TE parameters.

Precision 0.9861 (98.61%) 0.9622 (96.22%)

The Precision metric for the six-layer AFNN network is
1.03 times higher than for the five-layer ANFIS network.
This means that the six-layer AFNN network has a
slight improvement in accuracy compared to the
five-layer ANFIS network in the neuro-fuzzy HTE ACS,
which may indicate a slight advantage in correctly
predicting positive classes or relevant results.

Recall 1.0 0.988

The Recall metric for the six-layer AFNN network is
1.012 times higher than for the five-layer ANFIS
network. This means that the six-layer AFNN network
shows a slight improvement in Recall performance
compared to the five-layer ANFIS network in the
neuro-fuzzy helicopter ACS TE, which indicates a small
increase in the model’s ability to detect true positives
among all positives, which may be important for tasks,
HTE fuel consumption parameter control, and
regulation, since it requires high sensitivity to detection.
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Table 8. Cont.

Index Six-Layer NFN ANFF
(NN_1)

Five-Layer NFN ANFIS
(NN_2) [28] Advantages of NN_1 over NN_2

F-score 0.993 0.975

The F-score metric for the six-layer AFNN network is
1.019 times higher than for the five-layer ANFIS
network. This indicates a slight improvement in the
balanced F-score of the six-layer AFNN compared to the
five-layer ANFIS network, highlighting the higher
balance between AFNN model Precision and Recall.

Efficiency
coefficient 0.9902 (99.02%) 0.9728 (97.28%)

The efficiency coefficient of the six-layer AFNN network
is 1.74% higher than that of the five-layer ANFIS
network. This means a slight but noticeable
improvement in the performance or accuracy of the
AFNN model compared to ANFIS, which is important
when choosing the optimal model for the HTE fuel
consumption parameter controlling and regulating task.

Quality
coefficient 0.9901 (99.01%) 0.9709 (97.09%)

The quality coefficient of the six-layer AFNN network is
1.92% higher than that of the five-layer ANFIS network.
This means a slight but noticeable improvement in the
overall efficiency, accuracy or other quality indicators of
the AFNN model compared to ANFIS, which may be
important when choosing the best model for controlling
the HTE fuel consumption parameter and regulating
flight conditions.

Correlation
coefficient 0.9923 0.8841

The correlation coefficient of the six-layer AFNN
network is 1.12 times larger than that of the five-layer
ANFIS network. This means stronger and more
consistent linear relations between the AFNN model
predicted and true output values compared to the
ANFIS model, highlighting the six-layer network’s
predictions’ higher accuracy or reliability.

Determination
coefficient 0.9945 0.8897

The determination coefficient of the six-layer AFNN
network is 1.12 times larger than that of the five-layer
ANFIS network. This means the AFNN model has a
greater ability to explain the target variable variation
compared to the ANFIS model, indicating a more
efficient use of input data to predict outputs and a more
accurate modeling of the HTE fuel consumption
parameter dependence on TDPs.

Training rate 4.061 s 4.026 s

It should be noted that the difference in training time
between the six-layer AFNN network and the five-layer
ANFIS network is only 0.035 s, which is insignificant
and has virtually no effect on the neuro-fuzzy HTE ACS
model’s overall effectiveness or applicability.

Resource
efficiency 0.2462 0.2422

The efficiency metric for using computing resources for
a six-layer AFNN network is 1.02 times higher than for a
five-layer ANFIS network. This represents a small but
noticeable improvement in the computational efficiency
of the AFNN model compared to ANFIS. This may
indicate a more optimal use of computing power or
faster convergence of the AFNN model during training,
which is important for use in resource-dependent
scenarios or on devices with limited computing
capabilities, for example, an onboard neural network
expert system for complex monitoring of HTE,
implemented on an Intel processor Neural Compute
Stick 2.
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Table 8. Cont.

Index Six-Layer NFN ANFF
(NN_1)

Five-Layer NFN ANFIS
(NN_2) [28] Advantages of NN_1 over NN_2

Robustness 0 7.071 · 10−5

The accuracy standard deviation, which determines the
robustness of NFNs as part of the neuro-fuzzy HTE
ACS, for a six-layer AFNN network is equal to zero,
while the robustness of a five-layer ANFIS network is
different from zero. This means that the accuracy of the
AFNN model is stable and does not change under
different conditions, while the accuracy of the ANFIS
model can change and be more susceptible to variations
in the input data of the HTE TDP under flight
operating conditions.

Response time 12.86 ms 25.19 ms

The response time of the six-layer AFNN network is
1.96 times larger than that of the five-layer ANFIS
network, indicating a potential trade-off between the
increased model complexity and the computational
efficiency in real-time applications.

Rate of error
reduction 0.00132 s−1 0.00062 s−1

The rate of error reduction of the six-layer AFNN
network is 2.13 times larger than that of the five-layer
ANFIS network, suggesting that the additional layer in
the AFNN architecture enhances its adaptive capability,
allowing it to correct errors more efficiently in
real-time scenarios.

Conclusion

The AFNN six-layer NFN demonstrates higher model flexibility and efficiency when using fuzzy information
to control the fuel consumption parameter compared to the ANFIS five-layer NFN in the neuro-fuzzy HTE
ACS, which emphasizes its advantage in the context of accuracy and flight operation adaptability to helicopter
conditions, especially in a changing and uncertain environment.

The accuracy of the controlled variable (fuel consumption parameter GT) values
determined by the test data set is a measure of the NFN (AFNN or ANFIS) output values’
correspondence to the expected GT values based on the provided test data [56–58]:

Accuracy =
TP + TN

TP + TN + FP + FN
, (89)

where TP (True Positive) is the true positive results number, TN (True Negative) is the true
negative results number, FP (False Positive) is the false positive results number, and FN
(False Negative) is the false negative results number (Table 9).

Table 9. Error matrix [49].

Classification
Dataset Class Labels

Positive Grade
Label

Negative Grade
Label

Class labels exposed
by the NFN

Positive grade label TP TN
Negative grade label FP FN

Precision is a classification quality metric that measures the proportion of control
variable (fuel consumption GT parameter) values that actually belong to the positive class
among all objects that were predicted to be positive. The higher the precision, the fewer
false positives the model produces, which means that the model is less likely to misclassify
objects of a negative class as positive. High precision is critical, especially when the FP
error (false positive) is high-cost. Precision is defined as:

Precision =
TP

TP + FP
. (90)
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Recall is a metric used to evaluate the classification quality, measuring the proportion
of positive class objects that the NFN (AFNN or ANFIS) correctly identified as positive.
Recall is defined as:

Recall =
TP

TP + FN
. (91)

F-score is a metric used to evaluate test accuracy, which is the harmonic mean between
Precision and Recall. F-score is defined as:

F − score =
2·Precision·Recall
Precision + Recall

. (92)

The efficiency coefficient evaluates the NFN (AFNN or ANFIS) training efficiency and
is defined as the ratio of the change in the loss function at the current iteration to the change
in the network parameters at the same iteration:

Ke f f =
|E(θk)− E(θk−1)|

∥θk − θk−1∥
, (93)

where E(θk) is the loss function value at the current iteration, E(θk–1) is the loss function
value at the previous iteration, and ∥θk − θk−1∥ is the rate of change in the NFN (AFNN or
ANFIS) parameters at the current iteration.

The quality factor evaluates the NFN (AFNN or ANFIS) parameters’ approximation
accuracy and is defined as the ratio of the reduction in the loss function at the current
iteration to the total loss function at previous iterations:

Kquality =
E(θk−1)− E(θk)

E(θ0)− E(θk−1)
, (94)

where E(θ0) is the loss function initial value.
The correlation coefficient is a statistical measure used to assess the degree of lin-

ear relations between actual and calculated using NFN (AFNN or ANFIS) values of the
controlled variable (fuel consumption parameter GT):

R = 1 −
∑n

i=1
(
GTi − GT

)
·
(

ĜTi − ĜT

)
∑n

i=1
(
GTi − GT

)
·∑n

i=1

(
ĜTi − ĜTi

) , (95)

where GTi is the controlled variable (fuel consumption parameter GT) actual value, ĜTi
is the controlled variable (fuel consumption parameter GT) approximated value for the
i-th example, GT is the controlled variable (parameter fuel consumption GT) actual val-
ues’ average value, and ĜTi is the controlled variable (fuel consumption parameter GT)
approximated values’ average value.

The determination coefficient is a statistical measure that estimates the control variable
(fuel consumption parameter GT) variance proportion explained or accounted for by a
NFN (AFNN or ANFIS) and indicates how well the independent variables nTC, T∗

G, and
nFT model GT. The determination coefficient is calculated as:

R2 = 1 − ∑n
i=1
(
GTi − ĜTi

)2

∑n
i=1
(
GTi − GT

)2 . (96)

To assess the resource efficiency of NFN (AFNN or ANFIS) use, the work uses the
Efficiency metric, which takes into account the prediction accuracy and the amount of
resources spent on training and/or prediction. One such metric is the relationship between
accuracy and resource utilization. Taking into account that Acc1 and Acc2 are the accuracies
of the two compared NFNs (AFNN and ANFIS), and that Res1 and Res2 are the resources
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used (in this work, the network training time parameter is taken with the same memory
amount of 32 GB DDR-4), resource efficiency is defined as:

E f f 1 =
Acc1

Res1
, E f f 2 =

Acc2

Res2
. (97)

Assessing NFN (AFNN or ANFIS) robustness can be achieved by analyzing its per-
formance on different datasets or under different conditions. One of the approaches to
determining robustness in relation to the task being solved is to research the change in the
accuracy of the controlled variable (fuel consumption parameter GT) values when varying
the input data or parameters. This study uses the traditional method of assessing robust-
ness, which is based on determining the standard deviation of the determination accuracy
values of the controlled variable (fuel consumption parameter GT) on various subsamples
or data sets. Moreover, the smaller the standard deviation, the more resistant the NFN
(AFNN or ANFIS) is to changes in data or conditions. The accuracy of controlled variable
(fuel consumption parameter GT) values determining standard deviation is defined as:

σ =

√
∑N

i=1
(

Acci − Acc
)2

n
, (98)

where Acci is the NFN (AFNN or ANFIS) accuracy on the i-th data set or with the i-th
parameter variation, Acc is the average accuracy value for all observations, and n is the
subsample number.

In this work, for each NFN (AFNN or ANFIS), the accuracy is determined on eight dif-
ferent subsamples of 32 values in each training sample with a total size of 256 values. It
is assumed that Acc1i and Acc2i are the accuracy values of the first (AFNN) and second
(ANFIS) NFN on the i-th subsample, respectively (Table 10). Thus the average accuracy
for each neural network is, respectively, Acc1 = 0.988 and Acc2 = 0.901, and the average
deviation, respectively, is 0.00524 and 0.01148.

Table 10. Calculating accuracy results indicators when dividing a training sample of 256 elements
into eight subsamples of 32 elements each (author’s research).

Subsample
Number 1 2 3 4 5 6 7 8

NN_1 0.9997 0.9998 0.9999 0.9999 0.9997 0.9998 0.9998 0.9998
NN_2 0.9738 0.9758 0.9742 0.9762 0.9761 0.9754 0.9744 0.9757

Response time is the time interval between the arrival of a new input signal GTi and
the moment when the neuro-fuzzy network updates its output values ĜTi and adapts its
parameters θ(t) in response to this signal. The response time for the neuro-fuzzy network is
calculated as follows:

Tresponse = Tinput + Tfuzzification + Tinference + Tdefuzzification + Tupdate, (99)

where Tinput represents the time required for receiving and preprocessing input data;
Tfuzzification denotes the time needed to perform fuzzification of the input data; Tinference
indicates the time spent on logical inference based on fuzzy rules; Tdefuzzification is the time
for defuzzification to obtain a crisp output value; and Tupdate refers to the time for network
parameter adaptation, including weight and membership function updates.

The error reduction rate L(t) during real-time network parameter adaptation is deter-
mined by the error function time derivative and is calculated as:

Rate o f Error Reduction = −dL(t)
dt

, (100)
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where L(t) is the error function at time t, and dL(t)
dt represents the time derivative of the error

function, indicating how quickly the error changes over time. The negative sign before
the derivative indicates a decrease in error. A larger magnitude of − dL(t)

dt signifies that the
network adapts more quickly and the error decreases more quickly in real time.

Thus, based on the results of a comparative analysis (Table 8), the effectiveness of
using the proposed neuro-fuzzy HTE ACS, the basis of which is the six-layer NFN AFNN,
has been confirmed, in comparison with the reconfigured HTE ACS, the basis of which is
the five-layer NFN ANFIS.

Future research prospects in evaluating the effectiveness of the proposed method in
real-time applications lie in enhancing the accuracy of performance metrics and refining
adaptation algorithms. This involves investigating advanced techniques for reducing
response time, improving error reduction rates, and optimizing computational efficiency.
Further studies should also explore the integration of adaptive learning mechanisms to
address dynamic conditions and the impact of varying operational environments on system
performance. Additionally, examining the scalability of the method for larger and more
complex networks could provide insights into its broader applicability and robustness.

Table 11 comparing results for the proposed approach with clear, fuzzy, and neuro-
fuzzy control according to the quality metrics used in the article. As can be seen from
Table 11, the use of the proposed approach is advisable according to the studied quality
metrics (accuracy, loss, precision, recall, F-score) in comparison with precise control, fuzzy
control, and neuro-fuzzy reconfigured ACS [28].

Table 11. Comparative analysis results (author’s research).

Metric Precise Control Fuzzy Control Neuro-Fuzzy
Reconfigured ACS [28]

The Proposed Neuro-Fuzzy
ACS (Figure 2)

Accuracy 0.8835 (88.35%) 0.9246 (92.46%) 0.9752 (97.52%) 0.9998 (99.98%)
Loss 0.1165 (11.65%) 0.0754 (7.54%) 0.0248 (2.48%) 0.0002 (0.2%)

Precision 0.8692 (86.92%) 0.9117 (91.17%) 0.9622 (96.22%) 0.9861 (98.61%)
Recall 0.909 0.954 0.988 1.0
F-score 0.889 0.931 0.975 0.993

The proposed neuro-fuzzy HTE ACS in the form of a six-layer NFN AFNN is imple-
mented in software in the Borland Delphi 7 environment and tested using the example of
GT fuel consumption control according to the following input variables: nTC, T∗

G, nFT. The
output variable was the fuel consumption value GT, which was calculated as:

GT =

√
∑N

i=1
(

Acci − Acc
)2

n
. (101)

Figure 14 shows the AFNN NFN training diagram for testing the GT fuel consumption
control model. Analysis of the simulation results allows us to conclude that the model
has a sufficient accuracy degree: at epoch 93, the fuel consumption GT output value error
became less than acceptable.

At the final stage of discussing the obtained results, assessment and analysis of the
errors of types I and II, which are important in statistics when making statistical decisions,
are carried out. The errors of type I occur when we reject a true null hypothesis. This
means that a false assumption is made about the difference between the actual and model
values of the controlled variable (fuel consumption parameter GT), when in fact there is no
difference. The error of type I is associated with the significance level α, which defines the
critical region for the test and represents the maximum acceptable probability of rejecting a
true null hypothesis. The errors I type is calculated as:

α = P(reject H0|H0 true). (102)
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When determining the controlled variable (fuel consumption parameter GT) values,
the test results must show with high confidence a statistically significant difference between
the actual and model values of the controlled variable (fuel consumption parameter GT); the
significance level α = 0.01 was adopted in this work. This means that if the null hypothesis
is true, then the probability of rejecting it (committing the error of type I) is only 1%.

Null hypothesis H0: there is no difference between the actual and the fuel consumption
parameter GT model values, that is, the GT actual value is equal to the GT model value.

The error of type II occurs when we do not reject a false null hypothesis. This means
that we do not detect the presence of an effect or difference when it actually exists. Type II
error is related to the power of the test (1 − β), where the power of the test is the probability
of correctly rejecting a false null hypothesis (or detecting an effect if one exists). Equation
for the error of type II:

β = P(do not reject H0|H0 false) = 1 − β. (103)

where the test “power” concept is defined as the probability of rejecting the null hypothesis
when it is in fact false.

Table 12 shows the errors of types I and II in determining the controlled quantity (fuel
consumption parameter GT) values using the proposed neuro-fuzzy HTE ACS, the basis of
which is a six-layer NFN AFNN, as well as a reconfigured HTE ACS, the basis of which is a
five-layer NFN ANFIS [28].

Table 12. The type I and II calculation errors.

Neuro Fuzzy ACS Probability of Error in Determining the Optimal Parameters GT, %
The Errors of Type I The Errors of Type II

Six-layer NFN ANFF 0.17 0.11
Five-layer NFN ANFIS [28] 0.35 0.15
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Thus, the use of the ANFF six-layer NFN made it possible to reduce the errors of type
I by 2.06 times and the errors of type II by 1.36 times compared with the ANFIS five-layer
NFN [28] as part of the neuro-fuzzy HTE ACS.

5. Conclusions

The scientific novelty of the obtained results lies in the development of the helicopter
TE modified onboard neuro-fuzzy adaptive ACS, featuring a framework consisting of the
research object, regulator, emulator, compensator, and observer block. Each component
of this framework utilizes the proposed six-layer hybrid neuro-fuzzy network of the
AFNN type, with Sugeno fuzzy inference and bell-shaped membership functions for
fuzzy variables.

The NFA closed onboard TE ACS has been improved, which, by introducing an
observer unit, taking into account dynamic changes in external conditions, and additional
errors (noise), allows us to fulfill the task of controlling the TE fuel consumption.

In contrast to the well-known neuro-fuzzy TE ACS, which is based on an ANFIS
five-layer hybrid NFN, it is proposed to use an AFNN six-layer hybrid NFN with Sugeno
fuzzy inference and a fuzzy-variables bell-shaped membership function, which made it
possible to reduce the HTE fuel consumption parameter transient process regulation time
by 15.0 times compared with the use of a traditional ACS (precise control), by 17.5 times
compared with the use of a fuzzy ACS (fuzzy control), and by 11.25 times compared with
the use of neural fuzzy reconfigured ACS based on an ANFIS five-layer hybrid NFN.

The AFNN six-layer hybrid NFN training algorithm has been further developed,
which, due to adaptive elements, allows us to change its parameters and settings in real
time based on changing conditions or external influences and, as a result, achieve an
accuracy of up to 99.98% in the TE fuel consumption controlling task and reduce losses
to 0.2%.

It has been experimentally proven that the use of adaptive elements in the AFNN
six-layer hybrid NFN proposed training algorithm has made it possible to reduce the mean
square error square root values, the mean absolute error values, and the mean absolute per-
centage error values in determining the fuzzy-variables bell-shaped membership function
parameters by 1.46. . .1.53 times compared with the use of an ANFIS five-layer hybrid NFN.

It has been experimentally proven that the use of the developed neuro-fuzzy TE
ACS has made it possible to achieve an improvement in the fuel consumption parameter
control quality in comparison with the precise control, fuzzy control, neuro-fuzzy control
using a reconfigured ACS based on an ANFIS five-layer hybrid NFN, in terms of over-
shoot (overload), steady-state value (stationary deviation), and transition process time by
1.45. . .7.77 times.

The use of the ANFF six-layer NFN made it possible to reduce the I and II types of
error in the TE fuel consumption controlling task by 1.36. . .2.06 times compared with the
ANFIS five-layer NFN.
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Nomenclature

d(i) is the additional parameter
y(i) is the output signal
u(i) is the control
f (•) is some nonlinear function having known orders r, s, q
e(i) is the control error
Xk is the the fuzzy set
µ is the membership function
θ is the rules number
α is the coefficient adjustable during network training or determined by expert input
J is the relative control error value
Jnom is the relative control error nominal value
φk is the coefficient that is a fairly large number
λ is the regularization parameter
g(•) is the emulator function
Jreg is the emulator average relative error
ϑ is the coefficient that regulates the influence of the adaptive multiplier
ηt is the current adaptive training rate
v(i) is a noise or disturbances vector
x̂(i|i) is the system state current assessment
A and B are the system or control matrices
C is the measurement matrix
K(i) is the observer gain matrix
P(i) is the state covariance error estimate
R is the measurement noise covariance matrix
µj are the initial centroids
ŷ is the model outputs vector before applying softmax for input x
ŷk is the vector ŷ k-th element
K is the classes number
q1,. . ., qi are the transient processes under consideration quality indicators
{ki}, {τi}, {Ti} are the variable system parameters (gain factors, time constants, etc.) sets
f 1(•), . . ., fi(•) are the functions expressing the system quality indicators dependence on the
synthesized controllers parameters
σ1,. . ., σi is the overshoot
treg1,. . ., treg_i is the subsystems transient processes regulation time
GT is the fuel consumption parameter
E(θk) is the loss function value at the current iteration
E(θ0) is the loss function initial value
Acci is the NFN (AFNN or ANFIS) accuracy on the i-th data set or with the i-th parameters variation
Acc is the average accuracy value for all observations
n is the subsamples number.
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