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Abstract: Climate change, primarily driven by human activities such as burning fossil fuels, is causing
significant long-term changes in temperature and weather patterns. To mitigate these impacts, there is
an increased focus on renewable energy sources. However, optimizing power consumption through
effective usage control and waste recycling also offers substantial potential for reducing energy
demands. This study explores non-intrusive load monitoring (NILM) to estimate disaggregated
energy consumption from a single household meter, leveraging advancements in deep learning such
as convolutional neural networks. The study uses the UK-DALE dataset to extract and plot power
consumption data from the main meter and identify five household appliances. Convolutional neural
networks (CNNs) are trained with transfer learning using VGG16 and MobileNet. The models are
validated, tested on split datasets, and combined using ensemble methods for improved performance.
A new voting scheme for ensembles is proposed, named weighted average confidence voting (WeCV),
and it is used to create combinations of the best 3 and 5 models and applied to NILM. The base
models achieve up to 97% accuracy. The ensemble methods applying WeCV show an increased
accuracy of 98%, surpassing previous state-of-the-art results. This study shows that CNNs with
transfer learning effectively disaggregate household energy use, achieving high accuracy. Ensemble
methods further improve performance, offering a promising approach for optimizing energy use and
mitigating climate change.

Keywords: NILM; convolutional neural networks; climate change; energy consumption optimization

1. Introduction

Climate change is one of the most pressing concerns worldwide. It involves long-term
changes in temperature and weather patterns. Since the 19th century, human activity has
been the main driver of climate change, mainly due to burning fossil fuels such as coal,
petroleum, and gas. This generates greenhouse gas emissions that act like a blanket around
the Earth, capturing the heat of the sun and raising temperatures. The consequences of
climate change include intense droughts, water shortages, serious fires, sea level rise, floods,
melting of polar ice, catastrophic storms, and diminished biodiversity [1].

Due to the urgent need to reduce the negative impact of fossil fuels, research has
been directed toward energy production, with many resources being invested in renewable
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energy sources such as wind, solar, and water-based generation. However, less attention
has been directed towards the optimization of power consumption, where controlling usage
and recycling waste can have a major impact on the electrical requirements of the globe [2].
To optimize energy consumption, measuring the power used by different appliances and
devices in homes is necessary. However, in most locations, there is only the report of a single
meter that measures total power usage. Recent research has focused on the estimation of
disaggregated energy consumption in non-invasive ways from a single meter. This task is
known as non-intrusive load monitoring (NILM).

This concept was proposed by Hart [3], and his study is considered the pioneer of this
domain. Solutions proposed previously to this work had a strong hardware component.
Intrusive monitoring points were installed in every home appliance and connected to
a central data collector. Hart proposed an approach that used simple hardware and
sophisticated software for data analysis, thus eliminating permanent intrusion in homes.

In more recent works, NILM has been addressed as a machine learning problem.
Supervised and unsupervised methods have been applied to solve it. Supervised methods
are based on datasets with the consumption data of every device and the aggregated signal.
This approach seeks to generate models that learn how to disaggregate the appliance
signals from the aggregated signal. Common techniques include Bayesian learning and
neural networks. Unsupervised methods seek to find signatures of possible devices in the
aggregated signal without prior knowledge of the devices in the circuit. The more com-
monly used unsupervised techniques are hidden Markov models (HMMs), which define
several hidden states that the model can transition to, thus representing the operational
condition of the device (on, off, and intermediate states). They then relate these states to
observable results based on the analyzed consumption data [4].

In the last five years, there has been ongoing research to solve NILM, with varying
methods being applied to handle this problem. For example, in the work presented by
Lazzaretti et al. [5], a multi-agent architecture for an NILM solution was presented and
evaluated. Five load event detection agents, feature extraction agents, and classification
agents were studied to implement the best combinations of agents in LMMs. To evaluate
the proposed system, the COOLL dataset and the LIT-Dataset were used. Performance
improvements were detected in all scenarios, with power-ON and power-OFF detection
improving by up to 13%, while classification accuracy improved by up to 9.4%.

Another approach is the one proposed by Biansoongnern and Plangklang [6], who
presented an alternative low-cost embedded NILM system for household energy conserva-
tion with a low sampling rate. Four symmetry pattern features were extracted, containing
information on the value of active power change, the value of reactive power change,
and the number of intersection points between the active power data and the reference
line as well as an estimation of an equation for the starting characteristics of the electrical
equipment. The validity of the tests was checked for 1 month in three houses to analyze
the results. The proposed method was able to detect 91.3% of total events, and the average
accuracy of the system in disaggregating devices was 0.897.

Other authors have addressed the problem of large numbers of loads running simulta-
neously. In the work presented by Li et al. [7], the authors proposed a new NILM method
based on dynamic time warping (DTW) optimization and event detection. Firstly, a feature
extraction algorithm, STFT-SSAE, was constructed by using short-time Fourier transform
(STFT) to extract time–frequency features from the load and then using a sparse stack au-
toencoder (SSAE) to extract important features from time–frequency information. Secondly,
the above features were input into Bi-LSTM and DTW models, respectively, and a new
probabilistic model was established. A Bi-LSTM-DTW load recognition architecture was
built by combining the two models. Finally, the load identification model of SSAE-Bi-LSTM
based on DTW optimization (DOSL) was trained by the preset combined data, which
ensured the high confidence of the DOSL model in various complex operating scenarios.
This method achieved an accuracy of 0.9412 in the PLAID dataset and an accuracy of 0.9306
in the UK-DALE dataset.
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Another more recent work is the one presented by Pan et al. [8], which introduces the
MUSENILM model, a non-intrusive load decomposition model incorporating a parallel
multi-scale attention mechanism to enhance energy monitoring and management in smart
grids. The core innovation of the proposed model is its ability to extract multi-scale
features, enhancing the model’s understanding of time series data and achieving significant
performance improvements on the UK-DALE and REDD public datasets. Specifically, when
MUSENILM identified the fridge electricity consumption pattern on the UK-DALE public
dataset, compared to previous models, the accuracy improved from 88% to 91% and the F1
score increased from 87% to 90%. This model had an overall accuracy on the UK-DALE
dataset of 0.98.

Other authors have focused their research on the management of the uncertainty
inherent in energy consumption data. In the work presented by Li et al. [9], a promising
approach to address this uncertainty is proposed by applying stochastic optimization. This
approach considers stochastic programming based on scenarios to integrate the variability
of photovoltaic (PV) energy production into active distribution network (ADN) optimiza-
tion, applying methods such as the alternating direction method of multipliers (ADMM)
to solve the optimization model in a distributed manner and protect data privacy. The
incorporation of this approach improved the accuracy and robustness of NILM, enabling
better load management and greater integration of renewable energy sources.

Another work that applied stochastic optimization techniques in the management
of multi-agent energy systems is the one presented by Ding et al. [10]. These authors
presented a promising direction for addressing uncertainty in the integration of renewable
energy sources and the operation of smart buildings. In their paper, the authors highlighted
the application of constrained random programming (CCP) to handle uncertainties related
to wind and solar power generation as well as outdoor temperature using an adaptive
alternating direction method of multipliers (ADMM) to solve income and payment sub-
problems in a cooperative and distributed context. The challenges for future research
include the adaptation and improvement of these methods in non-intrusive load monitor-
ing (NILM), specifically to optimize energy management and data privacy in scenarios
with high penetration of renewable energy and smart buildings.

While the previous works used traditional machine learning algorithms, other au-
thors have tried to apply deep learning techniques, such as convolutional neural networks
(CNNs). In the work presented by Edmonds and Abdallah [2], instead of using the tradi-
tional approach of dealing with electricity data as time series, the IMG-NILM approach was
used to transform time series into heatmaps, with higher electricity readings represented
by ‘hotter’ colors. The image representation was then used in a CNN to detect the signature
of an appliance from aggregated data. The proposed approach attained a test accuracy of
up to 93% on the UK-DALE dataset within a single house, and in more challenging settings
where electricity data were collected from different houses, IMG-NILM attained an average
accuracy of 85%.

Another study that applied CNNs is the one presented by Nolasco et al. [11]. In
this work, an integrated method for the detection, feature extraction, and classification
of high-frequency NILM signals for the publicly available LIT-Dataset was presented. In
terms of detection, the results were above 90% for most cases. For classification, the final
accuracies were around 97%. These authors also included a multi-label procedure to avoid
the disaggregation stage, indicating the loads connected at a given time and increasing the
recognition of multiple loads.

A different approach was proposed by Machlev et al. [12]. These authors proposed
solving NILM as a multi-objective optimization problem instead of a classic single-objective
function. The main idea was to model each NILM feature as an objective function and to
mutually minimize these objectives based on the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II). The presented algorithms can operate in real time using low sampling
rates (0.25 Hz and lower) without training the system, just using information on the average
power signatures of each appliance. MO-NILM version 1 achieved an average accuracy
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of 0.9626 on the REDD dataset with six appliances, and version 2 achieved an average
F-measure of 0.938 on the AMPds dataset.

Another approach is the one proposed by Ma et al. [13]. This article proposed a multi-
chain disaggregation method for NILM (MC-NILM). MC-NILM integrates the models
generated by existing algorithms and considers the relation among these models to improve
the performance of energy disaggregation. Given the high time complexity of searching
for the optimal MC-NILM structure, this article proposed two methods to reduce the time
complexity: the k-length chain method and the graph-based chain generation method.
Finally, the authors used the Dataport and UK-DALE datasets to evaluate the feasibility,
effectiveness, and generality of the MC-NILM approach. Different versions of this algorithm
achieved F1-scores of 0.581, 0.633, and 0.620 in the UK-DALE dataset.

Another work that applied deep learning techniques is the study performed by
Xu et al. [14]. In this study, a model was proposed that integrates the power and on/off
states to simultaneously disaggregate the power and device on/off states. The model
comprises two main modules: a power encoding module for power disaggregation and a
convolutional state module (CSM) for on/off state disaggregation. The power encoding
module utilizes BERT-LSTM and long short-term memory networks for initial energy dis-
aggregation. In contrast, the CSM employs convolutional neural networks for device state
disaggregation. The output of the power encoding module is multiplied by the probability
of on/off states to obtain the final power. The proposed model was evaluated using the
REDD and UK-DALE datasets. Compared to the baseline models, the results showed an
improvement in the average accuracy of device state classification from 0.948 to 0.957 and
a decrease in the average error between the real power and disaggregated power from
26.356 W to 25.108 W.

Other authors have applied deep learning to solve the issue of privacy in NILM
architectures. In the work presented by Wang et al. [15], an NILM approach based on a
pyramid network with a two-dimensional convolutional neural network (2D-CNN) was
designed, and privacy was protected using homomorphic encryption and secure multiparty
computation technology. Privacy-preserving protocols were designed for operators of
pyramid networks, such as convolution, full connection, batch normalization, average
pooling, ReLU, and upsampling, and were combined to construct a privacy-preserving
2D-CNN pyramid network. The entire process does not restore the original information
contained in the data or the intermediate results, thereby protecting the privacy of both
parties. The experimental results on the UK-DALE dataset showed that the pyramid
network based on a 2D-CNN could perform well, with an accuracy of 95.81%, and that the
privacy-preserving 2D-CNN pyramid network could maintain the inference performance
of the 2D-CNN pyramid network while protecting the privacy of the client data and server
model parameters with consistent accuracy and recall. Table 1 summarizes the previous
works on NILM mentioned in this paper.

These and other works applied machine learning and deep learning techniques to
solve NILM, but there has been no attempt yet to combine different models through
ensembles. An ensemble model is created by generating multiple models and combining
them to produce an output classification. To combine the different models, a voting process
is performed among them to determine the result. There are different types of voting; the
most common is average voting, in which the average of the probabilities for each class of
all the models is computed, and then a classification is performed based on the average
probability [16].

In this paper, images are generated from intervals of the total power signals with
single appliance labels obtained from the UK-DALE dataset and used to train different
deep learning models. Two pre-trained networks, VGG16 and MobileNet, are fine-tuned
with additional CNN layers, applying transfer learning to classify the signal images into
five different appliances. Then, several models are combined in an ensemble to improve
the performance. Two voting algorithms are applied for the ensembles: average voting
and a new method proposed in this paper, weighted average confidence voting (WeCV).
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Standards metrics such as the overall accuracy and true positive rate of each appliance
are computed and compared, showing that the use of ensembles can improve the base
performance and outperform the state of the art.

Table 1. Previous work summary.

Authors Dataset Techniques Performance

Lazzaretti et al. [5] COOLL, LIT Multi-agent machine
learning architecture 0.998 accuracy

Biansoongnern and
Plangklang [6] Custom dataset Symmetry features

and classification 0.897 accuracy

Li et al. [7] PLAID, UK-DALE
Dynamic time

warping (DTW)
optimization

0.9412 accuracy in
PLAID, 0.9306

accuracy in
UK-DALE

Pan et al. [8] UK-DALE, REDD

multi-scale features,
1-D Convolutional
Neural Networks

(CNNs)

0.91 on fridge, 0.98
overall accuracy

Edmonds and
Abdallah [2] UK-DALE

Heatmaps and
convolutional neural

networks (CNNs)
0.93 accuracy

Nolasco et al. [11] LIT
1-D convolutional
neural networks

(CNNs)
0.97 accuracy

Machlev et al. [12] REDD, AMPds Multi-objective
optimization

0.962 accuracy in
REDD, 0.938

F-measure in AMPds

Ma et al. [13] UK-DALE Multi-chain
disaggregation 0.633 F1-score

Xu et al. [14] REDD, UK-DALE LSTM and CNNs 0.957 accuracy

Wang et al. [15] UK-DALE 2D-CNN pyramid
network 0.9581 accuracy

2. Materials and Methods

To predict the disaggregated loads of different home appliances from a single whole-
house power meter, the UK-DALE dataset was used [17]. This dataset records the power
demand from five houses. In each house, the whole-house mains power demand is
recorded every six seconds as well as the power demand from individual appliances every
six seconds. To load and manipulate the time series data, the Python library NILMTK was
used [18]. This is an open-source specialized toolkit for non-intrusive load monitoring.
Using NILMTK, the power time series from a single house was loaded. This series has
information on the power consumption during the whole year of 2013. The dataset was
split into training and test sets by creating a time window from January to the beginning
of October for the training dataset, and data from the rest of the year comprised the test
dataset. Then, the first household appliance’s information from the training dataset was
considered (fridge). The power time series of the fridge was selected, and a filter was
applied to select the indexes of the observations where the fridge’s active power was
greater than zero. Afterwards, these indexes were used to select observations of the active
power of the mains series in the time intervals where the fridge was on. Then, this time
series was divided into a hundred intervals and plotted. These images were saved to be
used as the input for a convolutional neural network (CNN).
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This same process to generate appliance images was repeated for five appliances:
fridge, washer/dryer, kettle, dishwasher, and HTPC. For all images, the same plotting
parameters were applied, especially the scales of the axes. The images had a resolution of
300 × 300 pixels and three channels (RGB). Then, the same process was applied to the test
dataset, but in this case, the mains time series was divided into twenty intervals.

After the training and test images were generated, they were used for a convolutional
neural network scheme. The Python library Keras was utilized with a TensorFlow backend
to generate, train, and evaluate the CNN. We used Keras version 2.9.0 and TensorFlow
version 2.9.1. Then, transfer learning was applied for this study. First, two pre-trained
neural networks, MobileNet V2 [19] and VGG16 [20], with weights from training with
ImageNet were used as the initial layers of the CNN and frozen. Then, a few more layers
were added according to two different architectures, as presented in Figures 1 and 2, and a
process of fine-tuning was applied.
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The CNNs were trained with the images of the five appliances mentioned before,
making this a multiclass problem with five classes. Several combinations of parameters
were used. Different optimizers (Adam and SGD) and different numbers of epochs were
tested with this architecture. First, the models were trained with the training dataset. This
dataset was divided into training (90%) and validation (10%) sets for this process. After the
models were trained and saved, they were applied to the test dataset, where the accuracy
of the models was assessed.

The CNNs were trained in a Lenovo PC acquired in Barranquilla, Colombia with
an AMD Ryzen 7 5800H processor with Radeon Graphics 3.20 GHz and 16 GB of RAM.
The average training time for 100 epochs was approximately 31.13 min, and the average
execution time of the prediction on the test dataset with the saved model was 11.138 s.

After these base models were trained and tested, an approach with ensembles was
applied. Two voting schemes were employed: average voting and a new voting scheme
proposed in this paper, weighted average confidence voting (WeCV). In the average voting
scheme, the pseudo-probabilities for each class from the different models are summed and
divided by the number of models:

Pc =
∑N

i=1 pc,i

N
(1)

where P is the probability for class c (there are five classes in this case), N is the number
of models in the ensemble, and pc,i is the probability for class c in the model number i.
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After computing the final probability for each class with the ensemble, the class with the
highest probability is selected. In our new proposed scheme, WeCV, a weighted average
among the different models is calculated. The weight for each model varies according
to the confidence level of the prediction of the model. The confidence level depends on
the pseudo-probability for a certain class for each model. The weight for each model is
determined in the following way:

Di f f erencec,i =

∣∣∣∣ 1
N

− pc,i

∣∣∣∣ (2)

Weightc,i =
Di f f erencec,i

∑N
i Di f f erencec,i

(3)

where c is the class (five classes or appliances in this case), pc,i is the pseudo-probability for
class c on model i, and N is the number of models in the ensemble. After the weights for
each model are calculated, the final probability for class c on the ensemble is calculated in
the following way:

Pc =
N

∑
i
(weight c,i × pc,i

)
After the probability for each class is computed, the class with the highest probability

is selected. During the second stage of the experiment, ensembles of the best 3 and
5 models based on their performance in the training dataset were selected, and average
voting and WeCV were applied to combine the probabilities of the models and find the
final classification.

3. Results

In the first stage of the experiment, the base models of pre-trained networks combined
with complementary architectures with a process of fine-tuning were tested. The best
results in terms of overall accuracy and true positive rate (TPR) for each appliance are
presented in Tables 2 and 3.

In this first experiment, we observed that five models achieved an accuracy higher
than 95%, and two models had an overall accuracy of 97%. The best results were obtained
with the combination of MobileNet, Model 2, and Adam, and with two models with VGG16,
Model 2, and Adam but with different numbers of epochs. Considering the performance of
each appliance, we can see that for two of the appliances, the kettle and washer/dryer, we
obtained a perfect classification with a 1.0 TPR. Other appliances such as the fridge and
the HTPC achieved a poorer performance but were always above 90%, which indicates
an adequate sensitivity. The appliance with the lowest performance was the dishwasher,
with a TPR that varied between 0.700 and 0.950, but in the best models, it achieved a
decent performance.

Table 2. Base models best results, overall accuracy.

Code Base Network Fine-Tuning
Model LR Epochs Optimizer Test Accuracy

1 MobileNet Model 2 0.0005 50 Adam 0.93
2 MobileNet Model 2 0.0005 100 Adam 0.95
3 MobileNet Model 1 0.0005 50 Adam 0.91
4 MobileNet Model 1 0.0005 100 Adam 0.92
5 MobileNet Model 2 0.0005 50 SGD 0.91
6 VGG16 Model 2 0.0005 50 Adam 0.95
7 VGG16 Model 2 0.0005 100 Adam 0.95
8 MobileNet Model 2 0.0005 5 Adam 0.97
9 MobileNet Model 2 0.0005 100 Adam 0.97
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Table 3. Base models’ best results for appliance performance.

Code Overall
Accuracy

Dishwasher
TPR

Fridge
TPR

HTPC
TPR Kettle TPR Washer/Dryer

TPR

1 0.93 0.700 1.000 0.950 1.000 1.000
2 0.95 0.850 0.950 0.950 1.000 1.000
3 0.91 0.650 0.950 0.950 1.000 1.000
4 0.92 0.700 0.950 0.950 1.000 1.000
5 0.91 0.700 0.950 0.900 1.000 1.000
6 0.95 0.850 1.000 0.900 1.000 1.000
7 0.95 0.900 0.900 0.950 1.000 1.000
8 0.97 0.950 0.950 0.950 1.000 1.000
9 0.97 0.950 0.950 0.950 1.000 1.000

Next, ensembles of the best three and five models were tested with two voting schemes:
average voting and WeCV. The best results in terms of the overall accuracy and true positive
rates of each appliance are shown in Table 4.

Table 4. Ensembles’ best results.

Ensemble Scheme Overall
Accuracy

Dishwasher
TPR

Fridge
TPR

HTPC
TPR

Kettle
TPR

Washer/Dryer
TPR

Ensemble average
(1, 2, 3, 4, 6) 0.92 0.700 0.950 0.950 1.000 1.000

Ensemble average
(1, 2, 6) 0.92 0.800 0.850 0.950 1.000 1.000

Ensemble average
(2, 6, 7) 0.96 1.000 0.850 0.950 1.000 1.000

Ensemble WeCV
(6, 8, 9) 0.97 1.000 0.900 0.950 1.000 1.000

Ensemble WeCV
(6, 8, 9, 2, 7) 0.98 1.000 0.950 0.950 1.000 1.000

In this experiment with ensembles, we observed that by combining the five best
models mixing MobileNet and VGG16-based architectures and applying our proposed
voting scheme, WeCV, we achieved the best result with an accuracy of 0.98. With this voting
scheme, we also achieved a perfect classification for the dishwasher, which was the class
with the lowest performance in the base model tests. The kettle and the washer/dryer also
maintained a perfect performance, and the dishwasher and the fridge had a TPR of 0.95,
which is a very good result. These results indicate that WeCV significantly improves the
performance of the base models. In Table 5, we can see a comparison of the performances
of several recent models with the UK-DALE dataset.

Table 5. Performance of several models with the UK-DALE dataset.

Authors Accuracy

Li et al. [7] 0.9306
Pan et al. [8] 0.98

Edmonds and Abdallah [2] 0.93
Wang et al. [15] 0.9581

Xu et al. [14] 0.957
Our model 0.98
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In this table, we can see that the highest accuracy obtained with the UK-DALE dataset
is 0.98 and was achieved by the model proposed by Pan et al. [8] and our model. How-
ever, in their paper, Pan et al. stated that they achieved an accuracy of 0.91 on the fridge
prediction, and in our model, we achieved an accuracy of 0.95 for the fridge and a per-
fect performance for three appliances. The performance for all appliances was always
above 95%, which indicates that our model has a balanced and adequate sensitivity for
all appliances.

4. Discussion

The results of this study indicate that the approach of transfer learning with pre-
trained CNNs works quite well for NILM, since all the best models achieved a high
performance over 90%. In almost every best result, Adam was used as the optimizer,
which indicates that this algorithm may work better for NILM with pre-trained CNNs.
Additionally, better results were obtained with Model 2 as a complementary architecture,
especially combined with VGG16, whereas no results over 90% were obtained with Model 1.
Between VGG16 and MobileNet, better results were obtained with the latter. Regarding
individual appliance performance, a perfect classification was obtained with the kettle and
the washer/dryer, which probably indicates that the images of these time series are simpler.
From the appliances, the dishwasher seemed to have the poorest performance of all the
appliances, but in the best models, its performance was above 90%, which is still adequate.

In the experiment with ensembles, the best performance was achieved with the five
best models and WeCV as the voting scheme. The best model achieved an overall accuracy
of 0.98. As for the performance for each appliance, it was observed that three of the
appliances (dishwasher, kettle, and washer/dryer) achieved a perfect classification, which
is remarkable especially for the dishwasher, which had the lowest performance with the
base models. For the fridge and the HTPC, although their performance was not perfect,
they still had a TPR of 0.95, which is a very good result. Particularly for the fridge, this
performance is better than that obtained by Pan et al. [8]. Although the improvement
compared to the best base models was modest, it was still significant, and the ensemble
matched or outperformed the state of the art with the UK-DALE dataset, where the best
result is 98% [8].

5. Conclusions

This work explored non-intrusive load monitoring (NILM) with the well-known UK-
DALE dataset. A new approach was applied, where images of the main meter series
were generated, and pre-trained convolutional neural networks (CNNs) were applied
after a process of fine-tuning to classify between five appliances. Then, ensembles of
the best models were applied, and a new voting scheme proposed in this paper, WeCV,
was implemented. With the base models, a high accuracy of 0.97 was achieved by two
of the trained models, thus already outperforming other state-of-the-art works, such as
that of Edmonds and Abdallah [2] which achieved an accuracy of 93% with the same
dataset. We observed that the best results in the base models were always obtained with the
complementary architecture number 2 (Model 2) and using Adam as an optimizer, which
suggests that these parameters are better suited for this problem.

In the second stage, we tested ensembles of the best models, and with the five best
models and WeCV, we achieved an even higher accuracy of 0.98. This result matches
the best in the state of the art and surpasses the performance of the model for the fridge
appliance. These results show that there is a promising future for performing NILM by
applying CNNs with images of the main meter, and that better results can be achieved
by using ensemble schemes. For future work, other pre-trained CNNs such as ResNet
or Inception may be tested, as well as other less traditional ensemble voting schemes.
Furthermore, this same approach may be applied to other public datasets for NILM.
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