Discrete-Time Sliding Mode Control Strategies—State of the Art
Abstract
:1. Introduction
2. The Idea of Sliding Mode Control
- The reaching phase, when the representative point of the system moves towards the sliding surface.
- The sliding phase, when the representative point of the system moves along the sliding plane . The choice of the sliding plane must ensure the global asymptotic stability of the closed-loop system.
- Definition and achievability of the quasi-sliding mode
- Switching-type reaching-law approach
- Nonswitching type reaching-law approach
- Higher relative degree sliding mode
- Multirate output feedback approach
- Event-triggered sliding mode control
- Model reference sliding mode control
3. Early Stages of Quasi-Sliding Mode Control
4. Reaching-Law Approach
4.1. Switching Type
- The representative point of the system moves monotonically from any initial point towards the sliding plane and crosses it in finite time.
- After the first intersection of the sliding plane, the representative point moves along it in a characteristic zigzagging motion, crossing it again at each step.
- After the sign of the sliding variable changes for the first time, it will change again in each subsequent step, and its absolute value will not exceed an a priori known value.
- The Bd decrement band is the area where the value of the sliding variable is monotonically reduced. For any |s(kT)| > Bd, its absolute value in the next instant satisfies: |s[(k + 1)T]| < |s(kT)|.
- The limit to cross band Bc has been defined as the value that cannot be exceeded after the sliding variable changes sign for the first time starting from the decrement band, which can be described by the relationships: if sgn[s(kT)] = −sgn[s[(k + 1)T]] and |s(kT)| > Bd then |s[(k + 1)T]| < Bc.
- The maximum crossing band Bs is the value that cannot be exceeded by the value of the sliding variable after the representative point of the system intersects the sliding plane, regardless of the starting point.
- The ultimate band δ is a value such that if |s(kT)| ≤ δ then |s[(k + 1)T]| ≤ δ.
4.2. Nonswitching Type
5. Recent Trends
5.1. Higher Relative Degree Sliding Mode
5.2. Multirate Output Feedback
5.3. Event-Triggered Sliding Mode Control
5.4. Model Reference Sliding Mode Control
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Emelyanov, S.V. A method to obtain complex regulation laws using only the error signal or the regulated coordinate and its first derivatives. Avtomat. Telemekh. 1957, 18, 873–885. [Google Scholar]
- Emelyanov, S.V. Variable Structure Control Systems; Nauka: Moscow, Russia, 1967. [Google Scholar]
- Utkin, V.I. Variable structure systems with sliding modes. IEEE Trans. Autom. Control 1977, 22, 212–222. [Google Scholar] [CrossRef]
- Utkin, V.I. Variable structure systems: Present and future. Autom. Remote Control 1984, 44, 1105–1220. [Google Scholar]
- Utkin, V.I. Sliding Modes in Control and Optimization; Springer: Berlin, Germany, 1992. [Google Scholar]
- Utkin, V.I. Sliding mode control. Spec. Issue Int. J. Control 1993, 57, 1003–10259. [Google Scholar] [CrossRef]
- Draženović, B. The invariance conditions in variable structure systems. Automatica 1969, 5, 287–295. [Google Scholar] [CrossRef]
- Itkis, U. Control Systems of Variable Structures; Wiley: New York, NY, USA, 1976. [Google Scholar]
- DeCarlo, R.A.; Żak, S.; Matthews, G. Variable structure control of nonlinear multivariable systems: A tutorial. Proc. IEEE 1988, 76, 212–232. [Google Scholar] [CrossRef]
- Zinober, A. Variable Structure and Lyapunov Control; Springer: London, UK, 1992. [Google Scholar]
- Edwards, C.; Spurgeon, S. Sliding Mode Control: Theory and Applications; Taylor & Francis: London, UK, 1998. [Google Scholar]
- Sabanovic, A.; Fridman, L.; Spurgeon, S. Variable Structure Systems: From Principles to Implementation; The Institute of Electrical Engineers: London, UK, 2004. [Google Scholar]
- Edwards, C.; Fossas, C.E.; Fridman, L. Advances in Variable Structure and Sliding Mode Control; Springer: Berlin, Germany, 2006. [Google Scholar]
- Bartolini, G.; Fridman, L.; Pisano, A.; Usai, E. Modern Sliding Mode Control Theory-New Perspectives and Applications; Springer: Berlin, Germany, 2008. [Google Scholar]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer Science+Business Media: New York, NY, USA, 2014. [Google Scholar]
- Mehta, A.; Bandyopadhyay, B. Emerging Trends in Sliding Mode Control: Theory and Application; Springer: Singapore, 2021. [Google Scholar]
- Drakunov, S.V.; Utkin, V.I. Sliding mode control in dynamic systems. Int. J. Control 1992, 55, 1029–1037. [Google Scholar] [CrossRef]
- Levant, A. Sliding order and sliding accuracy in sliding mode control. Int. J. Control 1993, 58, 1247–1263. [Google Scholar] [CrossRef]
- Hung, J.Y.; Gao, W.B.; Hung, J.C. Variable structure control: A survey. IEEE Trans. Ind. Electron. 1993, 40, 2–22. [Google Scholar] [CrossRef]
- Gao, W.B.; Hung, J.C. Variable structure control of nonlinear systems: A new approach. IEEE Trans. Ind. Electron. 1993, 40, 45–55. [Google Scholar]
- Bartolini, G.; Ferrara, A.; Spurgeon, S. New trends in sliding mode control. Spec. Issue Int. J. Robust Nonlinear Control 1997, 7, 297–427. [Google Scholar] [CrossRef]
- Yu, X.H. Adaptive learning and control using sliding modes. Spec. Issue AMCS 1998, 8, 5–197. [Google Scholar]
- Spurgeon, S. Hyperplane design techniques for discrete-time variable structure control systems. Int. J. Control 1992, 55, 445–456. [Google Scholar] [CrossRef]
- Zinober, A.; Woodham, C.A. Sliding mode control design techniques. IFAC Proc. Vol. 1993, 26, 203–206. [Google Scholar] [CrossRef]
- Drakunov, S.V.; Barbieri, E. Sliding surfaces design for distributed parameter systems. In Proceedings of the AMERICAN Control Conference, Albuquerque, NM, USA, 4–6 June 1997; pp. 3023–3027. [Google Scholar]
- Wang, J.; Zhang, L.; Wang, L.; Chen, M.Z.Q. Hyperplane design for sliding mode control of sampled systems based on the discrete-time Riccati equation. In Proceedings of the Chinese Control and Decision Conference, Nanchang, China, 3–5 June 2019; pp. 3168–3173. [Google Scholar]
- Bartolini, G.; Pisano, A.; Punta, E. Chattering-free sliding-mode tracking control for robot manipulators. In Proceedings of the European Control Conference, Porto, Portugal, 4–7 September 2001; pp. 991–995. [Google Scholar]
- Chang, F.J.; Twu, S.H.; Chang, S. Adaptive chattering alleviation of variable structure systems. IEE Proc. D–Control Theory Appl. 1990, 137, 31–39. [Google Scholar] [CrossRef]
- Young, K.D.; Drakunov, S.V. Sliding mode control with chattering reduction. In Proceedings of the American Control Conference, Chicago, IL, USA, 24–26 June 1992; pp. 1291–1292. [Google Scholar]
- Shtessel, Y.; Lee, Y.J. New approach to chattering analysis in systems with sliding modes. In Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, 11–13 December 1996; pp. 4014–4019. [Google Scholar]
- Boiko, I.; Fridman, L. Analysis of chattering in continuous sliding mode controllers. IEEE Trans. Autom. Control 2005, 50, 1442–1446. [Google Scholar] [CrossRef]
- Milosavljević, Č. General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems. Autom. Remote Control 1985, 46, 307–314. [Google Scholar]
- Sarpturk, S.Z.; Istefanopulos, Y.; Kaynak, O. On the stability of discrete-time sliding mode control systems. IEEE Trans. Autom. Control 1987, 22, 930–932. [Google Scholar] [CrossRef]
- Kotta, U.; Sarpturk, S.Z.; Istefanopulos, Y. Comments on ‘On the stability of discrete-time sliding mode control systems’ [with reply]. IEEE Trans. Autom. Control 1989, 34, 1021–1022. [Google Scholar] [CrossRef]
- Yu, X.H.; Potts, R. Analysis of discrete variable structure systems with pseudo-sliding modes. Int. J. Syst. Sci. 1992, 23, 503–516. [Google Scholar] [CrossRef]
- Wang, W.J.; Wu, G.H.; Yang, D.C. Variable structure control design for uncertain discrete-time systems. IEEE Trans. Autom. Control 1994, 39, 99–102. [Google Scholar] [CrossRef]
- Furuta, K. Sliding mode control of a discrete system. Syst. Control Lett. 1990, 14, 145–152. [Google Scholar] [CrossRef]
- Chan, C.Y. Servo-systems with discrete-variable structure control. Syst. Control Lett. 1991, 17, 321–325. [Google Scholar] [CrossRef]
- Furuta, K.; Pan, Y. Variable structure control with sliding sector. Automatica 2000, 36, 211–228. [Google Scholar] [CrossRef]
- Pan, Y.; Furuta, K. Variable structure control with sliding sector based on hybrid switching law. Int. J. Adapt. Control Signal Process. 2007, 21, 764–778. [Google Scholar]
- Utkin, V.I.; Drakunov, S.V. On discrete-time sliding modes. IFAC Proc. Vol. 1989, 22, 273–278. [Google Scholar]
- Bartolini, G.; Ferrara, A.; Utkin, V.I. Adaptive sliding mode control in discrete-time systems. Automatica 1995, 31, 769–773. [Google Scholar] [CrossRef]
- Kaynak, O.; Denker, A. Discrete time sliding mode control in the presence of system uncertainty. Int. J. Control 1993, 57, 1177–1189. [Google Scholar] [CrossRef]
- Chan, C.Y. Discrete-time adaptive sliding mode control of a linear system in state-space form. Int. J. Control 1997, 67, 859–868. [Google Scholar] [CrossRef]
- Chan, C.Y. Discrete adaptive sliding mode control of a state-space system with bounded disturbance. Automatica 1998, 34, 1631–1635. [Google Scholar] [CrossRef]
- Barbot, J.P.; Boukhobza, T. Discretization Issues. Sliding Mode Control in Engineering; Marcel Dekker: New York, NY, USA, 2002; pp. 217–232. [Google Scholar]
- Qu, S.C.; Xia, X.H.; Zhang, J.F. Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator. IEEE Trans. Ind. Electron. 2014, 61, 3502–3510. [Google Scholar] [CrossRef]
- Eun, Y.S.; Kim, J.H.; Kim, K.S.; Cho, D. Discrete-time variable structure controller with a decoupled disturbance compensator and it application to a CNC servomechanism. IEEE Trans. Control Syst. Technol. 1999, 7, 414–423. [Google Scholar]
- Su, W.C.; Drakunov, S.; Özgüner, U. An O(T2) boundary layer in sliding mode for sampled-data systems. IEEE Trans. Autom. Control 2000, 45, 482–485. [Google Scholar]
- Abidi, K.; Xu, J.X.; Yu, X. On the discrete-time integral sliding-mode control. IEEE Trans. Autom. Control 2007, 52, 709–715. [Google Scholar] [CrossRef]
- Abidi, K.; Xu, J.X.; She, J.H. A discrete-time terminal sliding-mode control approach applied to a motion control problem. IEEE Trans. Ind. Electron. 2009, 56, 3619–3627. [Google Scholar] [CrossRef]
- Ma, H.; Wu, J.; Xiong, Z. Discrete-time sliding-mode control with improved quasi-sliding-mode domain. IEEE Trans. Ind. Electron. 2016, 63, 6292–6304. [Google Scholar] [CrossRef]
- Ma, H.; Wu, J.; Xiong, Z. A novel exponential reaching law of discrete-time sliding-mode control. IEEE Trans. Ind. Electron. 2017, 64, 3840–3850. [Google Scholar] [CrossRef]
- Ma, H.; Li, Y.; Xiong, Z. Discrete-time sliding-mode control with enhanced power reaching law. IEEE Trans. Ind. Electron. 2019, 66, 4629–4638. [Google Scholar] [CrossRef]
- Ma, H.; Li, Y. Multi-power reaching law based discrete-time sliding-mode control. IEEE Access 2019, 7, 49822–49829. [Google Scholar] [CrossRef]
- Ma, H.; Li, Y. A novel dead zone reaching law of discrete-time sliding mode control with disturbance compensation. IEEE Trans. Ind. Electron. 2020, 67, 4815–4825. [Google Scholar] [CrossRef]
- Ma, H.; Xiong, Z.; Li, Y.; Liu, Z. Design of discrete-time sliding mode control with disturbance compensator-based switching function. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1268–1272. [Google Scholar] [CrossRef]
- Ma, H.; Xiong, Z.; Li, Y.; Liu, Z. Disturbance estimator-based switching function for discrete-time sliding mode control systems with control saturation. Trans. Inst. Meas. Control 2021, 43, 2715–2723. [Google Scholar] [CrossRef]
- Peng LChen, D.H.; Qin, H.; Qiu, Y.T.; Zheng, J.Z.; Cui, L.N.; Zhu, Y.-F.; Ding, W. Adaptive sliding mode control for converters in smart grid system with disturbances. In Proceedings of the Asia Power and Electrical Technology Conference, Shanghai, China, 11–13 November 2022; pp. 179–184. [Google Scholar]
- Kurniawan, E.; Wang, H.; Septanto, H.; Adinanta, H.; Suryadi, S.; Pratomo, H.; Hanto, D. Design and analysis of higher-order repetitive sliding mode controller for uncertain linear systems with time-varying periodic disturbances. Trans. Inst. Meas. Control 2023, 45, 2219–2234. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, Y.; Huang, W.; Huang, N.; Zhang, L.; Zhu, L.M. A generalized reaching-law-based discrete-time integral sliding-mode controller with matched/mismatched disturbance attenuation. Asian J. Control 2023, 25, 3497–3512. [Google Scholar] [CrossRef]
- Utkin, V.I.; Yang, K.D. Methods of constructing discontinuous planes in multidimensional variable structure systems. Autom. Remote Control 1979, 39, 1466–1470. [Google Scholar]
- Li, D.; Slotine, J.J.E. On sliding control for multi-input multi-output nonlinear systems. In Proceedings of the American Control Conference, New York, NY, USA, 10–12 June 1987; pp. 874–879. [Google Scholar]
- Devika, K.B.; Susy, T. Sliding mode controller design for MIMO nonlinear systems: A novel power rate reaching law approach for improved performance. J. Frankl. Inst. 2018, 355, 5082–5098. [Google Scholar]
- Gao, W.B.; Wang, Y.; Homaifa, A. Discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 1995, 42, 117–122. [Google Scholar]
- Bartoszewicz, A. Remarks on ‘Discrete-time variable structure control systems’. IEEE Trans. Ind. Electron. 1996, 43, 235–238. [Google Scholar]
- Chakrabarty, S.; Bandyopadhyay, B. Quasi-sliding mode control with quantization in state measurement. In Proceedings of the Annual Conference on IEEE Industrial Electronic Society, Melbourne, Australia, 7–10 November 2011; pp. 3971–3976. [Google Scholar]
- Ren, Y.; Liu, Z.; Liu, X.; Zhang, Y. A chattering free discrete-time global sliding mode controller for optoelectronic tracking system. Math. Probl. Eng. 2013, 2013, 951492. [Google Scholar] [CrossRef]
- Veselić, B.; Peruničić-Draženović, B.; Milosavljević, Č. Discrete-time sliding mode controlled positional system with two-scale reaching law and integral action. In Proceedings of the IEEE 10th International Workshop on Variable Structure, Antalya, Turkey, 8–10 June 2008; pp. 73–78. [Google Scholar]
- Veselić, B.; Peruničić-Draženović, B.; Milosavljević, Č. High-performance position control of induction motor using discrete-time sliding-mode control. IEEE Trans. Ind. Electron. 2008, 55, 3809–3817. [Google Scholar] [CrossRef]
- Veselić, B.; Peruničić-Draženović, B.; Milosavljević, Č. Improved discrete-time sliding-mode position control using Euler velocity estimation. IEEE Trans. Ind. Electron. 2010, 57, 3840–3847. [Google Scholar] [CrossRef]
- Pournami, P.; Susy, T. A new discrete reaching law for discrete-time sliding mode control. In Proceedings of the 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 5–6 July 2019; pp. 816–820. [Google Scholar]
- Du, H.; Yu, X.; Chen, M.Z.Q.; Li, S. Chattering-free discrete-time sliding mode control. Automatica 2016, 68, 87–91. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Wu, T.; Ma, Y. A double power reaching law of sliding mode control based on neural network. Math. Probl. Eng. 2013, 2013, 408272. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.; Xiao, F.; Wang, H. A novel reaching law approach of quasi-sliding-mode control for uncertain discrete-time systems. J. Cent. South Univ. 2012, 19, 2514–2519. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, T.; Jiang, M.; Wang, Y. A new design scheme for discrete-time variable structure control systems. In Proceedings of the International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 3475–3479. [Google Scholar]
- Leśniewski, P.; Bartoszewicz, A. A general switching type reaching law for discrete time sliding mode control systems. In Proceedings of the 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 24–27 August 2015; pp. 211–216. [Google Scholar]
- Leśniewski, P.; Bartoszewicz, A. Inverse tangent based switching type reaching law for discrete time sliding mode control systems. In Proceedings of the European Control Conference, Strasbourg, France, 15–17 July 2015; pp. 2390–2395. [Google Scholar]
- Latosiński, P. Reaching law based discrete time switching quasi-sliding mode controller. In Proceedings of the 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 28–31 August 2017; pp. 414–418. [Google Scholar]
- Bartoszewicz, A.; Latosiński, P. Discrete time sliding mode control with reduced switching-a new reaching law approach. Int. J. Robust Nonlinear Control 2016, 26, 47–68. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Leśniewski, P. New switching and nonswitching type reaching laws for SMC of discrete time systems. IEEE Trans. Control Syst. Technol. 2016, 24, 670–677. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Bandyopadhyay, B. Discrete time sliding mode control with minimal quasi-sliding mode band. In Proceedings of the 12th International Workshop on Variable Structure Systems, Mumbai, India, 12–14 January 2012; pp. 404–409. [Google Scholar]
- Chakrabarty, S.; Bandyopadhyay, B. On digital implementation of continuous time sliding mode control. In Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 3638–3642. [Google Scholar]
- Chakrabarty, S.; Bandyopadhyay, B. A generalized reaching law for discrete time sliding mode control. Automatica 2015, 52, 83–86. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Bandyopadhyay, B. A generalized reaching law with different convergence rates. Automatica 2016, 63, 34–37. [Google Scholar] [CrossRef]
- Bartoszewicz, A. A new reaching law for discrete-time variable structure systems. In Proceedings of the 36th Conference on Decision & Control, San Diego, CA, USA, 12 December 1997; pp. 4044–4045. [Google Scholar]
- Bartoszewicz, A. Discrete-time quasi-sliding mode control strategies. IEEE Trans. Ind. Electron. 1998, 45, 633–637. [Google Scholar] [CrossRef]
- Golo, G.; Milosavljević, Č. Two-phase triangular wave oscillator based on discrete-time sliding mode control. Electron. Lett. 1997, 33, 1838–1839. [Google Scholar] [CrossRef]
- Golo, G.; Milosavljević, Č. Robust discrete-time chattering free sliding mode control. Syst. Control Lett. 2000, 41, 19–28. [Google Scholar] [CrossRef]
- Niu, Y.; Ho, D.W.C.; Wang, Z. Improved sliding mode control for discrete-time systems via reaching law. IET Control Theory Appl. 2010, 4, 2245–2251. [Google Scholar] [CrossRef]
- Yu, X.; Wang, B.; Li, X. Computer-controlled variable structure systems: The state-of-the-art. IEEE Trans. Ind. Inf. 2012, 8, 197–205. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Leśniewski, P. Reaching law-based sliding mode congestion control for communication networks. IET Control Theory Appl. 2014, 8, 1914–1920. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Leśniewski, P. Reaching law approach to the sliding mode control of periodic review inventory systems. IEEE Trans. Autom. Sci. Eng. 2014, 11, 810–817. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Leśniewski, P. Inverse tangent reaching law for discrete sliding mode control with application to inventory management. In Proceedings of the 53rd IEEE Conference on Decision & Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 5548–5553. [Google Scholar]
- Leśniewski, P.; Bartoszewicz, A. Hyperbolic tangent based switching reaching law for discrete time sliding mode control of dynamical systems. In Proceedings of the International Workshop on Recent Advances in Sliding Modes (RASM), Istanbul, Turkey, 9–11 April 2015. [Google Scholar]
- Bartoszewicz, A.; Latosiński, P. A new reaching law for DSMC systems with constraints. In Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 29 August–1 September 2016. [Google Scholar]
- Prasun, P.; Kamal, S.; Bartoszewicz, A.; Ghosh, S. Difference equation with minima based discrete-time sliding mode control. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 4404–4408. [Google Scholar] [CrossRef]
- Prasun, P.; Kamal, S.; Bartoszewicz, A.; Ghosh, S. A difference equation with minima-based reaching law for discrete variable structure systems. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 1236–1240. [Google Scholar] [CrossRef]
- Latosiński, P.; Bartoszewicz, A. Constraining the output of discrete time systems using sliding mode control with a novel sliding hyperplane. Int. J. Robust Nonlinear Control 2024, 34, 810–828. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Bandyopadhyay, B.; Moreno, J.; Fridman, L. Discrete sliding mode control for systems with arbitrary relative degree output. In Proceedings of the 14th International Workshop on Variable Structure Systems, Nanjing, China, 1–4 June 2016; pp. 160–165. [Google Scholar]
- Chakrabarty, S.; Bartoszewicz, A. Improved robustness and performance of discrete time sliding mode control systems. ISA Trans. 2016, 65, 143–149. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Latosiński, P. Generalization of Gao’s reaching law for higher relative degree sliding variables. IEEE Trans. Autom. Control 2018, 63, 3173–3179. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Latosiński, P. Reaching law for DSMC systems with relative degree 2 switching variable. Int. J. Control 2017, 90, 1626–1638. [Google Scholar] [CrossRef]
- Latosiński, P.; Bartoszewicz, A. Discrete time sliding mode controllers with relative degree one and two switching variables. J. Frankl. Inst. 2018, 355, 6889–6903. [Google Scholar] [CrossRef]
- Latosiński, P.; Bartoszewicz, A. Relative degree one and two sliding variables for multi-input discrete-time systems. In Proceedings of the 24th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 26–29 August 2019; pp. 325–330. [Google Scholar]
- Saaj, M.C.; Bandyopadhyay, B.; Unbehauen, H. A new algorithm for discrete-time sliding-mode control using fast output sampling feedback. IEEE Trans. Ind. Electron. 2002, 49, 518–523. [Google Scholar] [CrossRef]
- Janardhanan, S.; Bandyopadhyay, B. Discrete sliding mode control of systems with unmatched uncertainty using multirate output feedback. IEEE Trans. Autom. Control 2006, 51, 1030–1035. [Google Scholar] [CrossRef]
- Janardhanan, S.; Bandyopadhyay, B. Multirate output feedback based robust quasi-sliding mode control of discrete-time systems. IEEE Trans. Autom. Control 2007, 52, 499–503. [Google Scholar] [CrossRef]
- Reddy, G.; Bandyopadhyay, B.; Tiwari, A.P. Multirate output feedback based sliding mode spatial control for large PHWR, of Discrete-Time Systems. IEEE Trans. Nucl. Sci. 2007, 54, 2677–2686. [Google Scholar] [CrossRef]
- Kumari, K.; Bandyopadhyay, B.; Kim, K.S.; Shim, H. Output feedback based event-triggered sliding mode control for delta operator systems. Automatica 2019, 103, 1–10. [Google Scholar] [CrossRef]
- Samantaray, J.; Chakrabarty, S.; Bartoszewicz, A. Advanced discrete-time sliding mode control with fast output sampling and its application to buck converter. Automatica 2023, 149, 110802. [Google Scholar] [CrossRef]
- Bandyopadhyay, B.; Janardhanan, S. Discrete-Time Sliding Mode Control: A Multirate Output Feedback Approach; Springer: Berlin, Germany, 2006. [Google Scholar]
- Behera, A.K.; Bandyopadhyay, B.; Reger, J. Discrete event-triggered sliding mode control with fast output sampling feedback. In Proceedings of the 14th International Workshop on Variable Structure Systems, Nanjing, China, 1–4 June 2016; pp. 148–153. [Google Scholar]
- Bandyopadhyay, B.; Behera, A.K. Event-triggered sliding mode control. In Studies in Systems, Decision and Control 139; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kumari, K.; Behera, A.K.; Bandyopadhyay, B. Event-triggered sliding mode-based tracking control for uncertain Euler–Lagrange systems. IET Control Theory Appl. 2018, 12, 1228–1235. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, Q.; Ren, J. Event-triggered sliding mode control for discrete-time singular system. IET Control Theory Appl. 2018, 12, 2390–2398. [Google Scholar] [CrossRef]
- Kumari, K.; Bandyopadhyay, B.; Reger, J.; Behera, A.K. Event-triggered discrete-time sliding mode control for high-order systems via reduced-order model approach. IFAC-PapersOnLine 2020, 53, 6207–6212. [Google Scholar] [CrossRef]
- Shah, D.; Mehta, A.; Patel, K.; Bartoszewicz, A. Event-triggered discrete higher-order SMC for networked control systems having network irregularities. IEEE Trans. Ind. Inf. 2020, 16, 6837–6847. [Google Scholar] [CrossRef]
- Shah, D.; Santos, M.M.D.; Chaoui, H.; Justo, J.F. Event-triggered non-switching networked sliding mode control for active suspension system with random actuation network delay. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7521–7534. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Adamiak, K. Model reference discrete-time variable structure control. Int. J. Adapt. Control Signal Process. 2018, 32, 1440–1452. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Adamiak, K. Discrete time sliding mode control with a desired switching variable generator. IEEE Trans. Autom. Control 2020, 65, 1807–1814. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Adamiak, K. Reference trajectory based discrete time sliding mode control strategy. Int. J. Appl. Math. Comput. Sci. 2019, 29, 517–525. [Google Scholar] [CrossRef]
- Adamiak, K.; Bartoszewicz, A. New time-varying sliding surface for switching type quasi-sliding mode control. Energies 2021, 14, 3811. [Google Scholar] [CrossRef]
- Adamiak, K.; Bartoszewicz, A. Model following quasi-sliding mode control strategy. IFAC-PapersOnLine 2020, 53, 6316–6321. [Google Scholar] [CrossRef]
- Adamiak, K. Reference sliding variable based chattering-free quasi-sliding mode control. IEEE Access 2020, 8, 133086–133094. [Google Scholar] [CrossRef]
- Adamiak, K.; Bartoszewicz, A. Reference trajectory based quasi-sliding mode with event-triggered control. Energies 2021, 14, 7236. [Google Scholar] [CrossRef]
- Adamiak, K.; Bartoszewicz, A. Novel power-rate reaching law for quasi-sliding mode control. Energies 2022, 15, 5446. [Google Scholar] [CrossRef]
- Adamiak, K. Chattering-free reference sliding variable-based SMC. Math. Probl. Eng. 2020, 2020, 3454090. [Google Scholar] [CrossRef]
- Latosiński, P.; Bartoszewicz, A. Model reference strategy for mismatched disturbance attenuation in relative degree one and two DSMC. Mech. Syst. Signal Process. 2021, 149, 107188. [Google Scholar] [CrossRef]
- Latosiński, P.; Bartoszewicz, A. Model reference DSMC with a relative degree two switching variable. IEEE Trans. Autom. Control 2021, 66, 1749–1755. [Google Scholar] [CrossRef]
- Leśniewski, P.; Bartoszewicz, A. Optimal model reference sliding mode control of perishable inventory systems. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1647–1656. [Google Scholar] [CrossRef]
- Leśniewski, P. Reference model based SMC of an inventory system. In Proceedings of the 24th International Conference on System Theory, Control and Computing, Sinaia, Romania, 8–10 October 2020; pp. 310–315. [Google Scholar]
- Leśniewski, P. Reference trajectory based SMC of DCDC buck converter. In Advanced, Contemporary Control. Advances in Intelligent Systems and Computing; Bartoszewicz, A., Kabziński, J., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2020; Volume 1196. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latosiński, P.; Adamiak, K. Discrete-Time Sliding Mode Control Strategies—State of the Art. Energies 2024, 17, 4564. https://doi.org/10.3390/en17184564
Latosiński P, Adamiak K. Discrete-Time Sliding Mode Control Strategies—State of the Art. Energies. 2024; 17(18):4564. https://doi.org/10.3390/en17184564
Chicago/Turabian StyleLatosiński, Paweł, and Katarzyna Adamiak. 2024. "Discrete-Time Sliding Mode Control Strategies—State of the Art" Energies 17, no. 18: 4564. https://doi.org/10.3390/en17184564
APA StyleLatosiński, P., & Adamiak, K. (2024). Discrete-Time Sliding Mode Control Strategies—State of the Art. Energies, 17(18), 4564. https://doi.org/10.3390/en17184564