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Abstract: In cold climates, ice formation on wind turbines causes power reduction produced by
a wind farm. This paper introduces a framework to predict icing at the farm level based on our
recently developed Temporal Convolutional Network prediction model for a single turbine using
SCADA data.First, a cross-validation study is carried out to evaluate the extent predictors trained
on a single turbine of a wind farm can be used to predict icing on the other turbines of a wind farm.
This fusion approach combines multiple turbines, thereby providing predictions at the wind farm
level. This study shows that such a fusion approach improves prediction accuracy and decreases
fluctuations across different prediction horizons when compared with single-turbine prediction. Two
approaches are considered to conduct farm-level icing prediction: decision fusion and feature fusion.
In decision fusion, icing prediction decisions from individual turbines are combined in a majority
voting manner. In feature fusion, features of individual turbines are averaged first before conducting
prediction. The results obtained indicate that both the decision fusion and feature fusion approaches
generate farm-level icing prediction accuracies that are 7% higher with lower standard deviations or
fluctuations across different prediction horizons when compared with predictions for a single turbine.

Keywords: farm-level icing prediction; decision fusion for wind farm icing prediction; feature fusion
for wind farm icing prediction

1. Introduction

The prediction of icing is critical to the normal operation of wind farms in cold
climates. Ice formation on the blades of wind turbines would cause load imbalance and
structural damage, bringing safety risks to the surrounding area [1]. Prediction of icing
would allow operators to put in place remedies before power losses occur due to icing
events [2]. Developing a prediction framework for an entire wind farm enables anticipating
the amount of power loss to the grid and taking appropriate actions.

A review of machine learning approaches for the prediction of icing on wind turbines
based on Supervisory Control and Data Acquisition (SCADA) data has been conducted
by our research team, which is reported in [3]. This review discusses existing machine
learning methods for the prediction of icing on wind turbines in detail. A brief summary
of the articles reviewed is as follows. In [4], a data-driven neural network approach was
used to predict icing on wind turbines based on SCADA data and historical weather data
reporting an accuracy of 83% for the dataset examined. In [5], Federated Learning (FL) was
used to predict icing on wind turbine blades. Each turbine was trained as a local model
and then a global model was aggregated using all the local models reporting a prediction
accuracy of 70% for the dataset examined. In [6], Random Forest (RF) was used to predict
icing events on wind turbine blades reporting an accuracy of 74% for the dataset examined.
In [7], a Recurrent Neural Network (RNN) was used to predict icing reporting an accuracy
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of 72% for the dataset examined. In [8], a data-driven Graph Neural Network (GNN)
was used to predict icing on wind turbine blades reporting an accuracy of 75% for the
dataset examined.

In our previous work [9], we developed a framework to predict icing on a wind
turbine. A Temporal Convolutional Network (TCN) prediction model was used, which
generated an average prediction accuracy of 77.6% for future times up to 48 h or 2 days
ahead. Only SCADA data and meteorological data were used as input to the prediction
model. The prediction model did not rely on the installation of any additional sensors on
the turbine.

In this follow-up work, two questions are addressed:

• Can the predictors trained on one turbine of a wind farm be used to conduct icing
predictions for the other turbines in the wind farm?

• How to extend the turbine-level prediction framework to an entire wind farm?

The first question is addressed by carrying out cross-validation or by examining
the generalization ability of TCN predictors trained on a single turbine. In other words,
predictors trained on one turbine are tested on the other turbines in the same wind farm.
The common performance measures of accuracy and F1-score are used to evaluate the
generalization ability. Accuracy is a measure that represents the number of times prediction
is performed correctly across all the predictions performed. The F1-score is a measure that
provides a combined representation inversely proportional to the number of false positive
and false negative predictions across all the predictions performed. A higher F1-score
indicates fewer incorrect predictions; see [9] for formulas for accuracy and F1-score. The
second question is addressed by carrying out two types of fusion approaches: decision
fusion and feature fusion. Fusion combines results from multiple turbines, and then
give final predictions for the wind farm. In decision fusion, prediction is performed for
each turbine independently or individually. Then, all individual prediction decisions are
combined by majority voting to obtain a farm-level icing prediction. In feature fusion,
features of all individual turbines are combined via averaging. Then, farm-level icing
prediction is achieved by one predictor per prediction horizon. Fusion approaches have
been previously used in other engineering applications, e.g., [10–12]. However, it is worth
mentioning that this is the first time fusion approaches are used to achieve farm-level icing
prediction. More specifically, the contributions of this work are two fold: (i) examination of
the generalization ability of predictors trained on a single turbine for the other turbines in a
wind farm, (ii) the development of a farm-level icing prediction framework based on two
fusion approaches.

The remainder of this paper is organized as follows. Section 2 describes the cross-
validation study conducted to answer the first question. Section 3 describes the fusion
approaches to conduct icing prediction for an entire wind farm answering the second
question. The icing prediction results for an entire farm are reported and discussed in
Section 4. Finally, the paper is concluded in Section 5.

2. Cross Validation: Generalization Ability of a Single Turbine Predictor

In [9], we developed a prediction framework to forecast icing on wind turbines up
to 2 days ahead using only SCADA data and meteorological data, if available. This
approach is based on TCN predictors for different times in the future (prediction horizons).
This prediction framework includes the modules of data preprocessing, prediction model
training and testing, and prediction model evaluation. Based on the SCADA data from
a single turbine, our TCN predictors produced an average prediction accuracy of 77.6%
across different prediction horizons from 10 min ahead to 2 days ahead.

The SCADA dataset used in this paper is from a wind farm located in the northern
part of the US. This dataset includes 11 features or variables of all the turbines in the
wind farm measured every 10 min from January 2023 through July 2023. These features or
variables are listed in Table 1. In addition to the SCADA dataset, weather data features or
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variables listed in Table 2 for the same location and time period were acquired from the
VisualCrossing weather database [13].

Table 1. Features in the SCADA dataset.

Variable or Feature Unit Description

Power_Avg kW Generated power
Wind Speed m/s Wind speed
Gen_RPM RPM Generator speed

Wind Direction degree (◦) Wind direction
Nacel_Direct degree (◦) Nacelle direction
Blade_Pitch degree (◦) Blade pitch angle
Yaw_Error degree (◦) Yaw error

Temper_Nac Celsius (◦C) Nacelle temperature
Temper_Amb Celsius (◦C) Ambient temperature

Temper_Gen Celsius (◦C) Generator
bearing temperature

Temper_Gear Celsius (◦C) Gear bearing temperature

Oper_State - Flagged for normal
operating condition

Table 2. Features in the weather database.

Variables or Features Unit Description

Temperature Celsius (◦C) Air temperature from the weather database
Relative Humidity % Relative humidity from the weather database

For the utilization of these predictors at the farm level, it is necessary to examine their
performance on SCADA data from other turbines. The wind farm layout considered is
shown in Figure 1. The rated power of each wind turbine in the farm is 2 MW with a cut-in
wind speed of 4 m/s, a rated wind speed of 12 m/s, and a cut-out wind speed of 25 m/s.
The prevailing wind direction is shown in the figure.

Cross-validation is often used to evaluate the performance of a model on unseen
data [14]. An illustration of the cross-validation conducted here is shown in Figure 2. For
each turbine, its predictors are trained using its own SCADA data, which are then tested
on the SCADA data of all the other turbines in the wind farm. An assessment metric Pi,j
consisting of accuracy and F1-score is used to evaluate the generalization ability, where
i denotes the turbine index a predictor is trained for and j denotes the turbine index the
predictor is tested on. The metric Pi,j is defined as follows:

Pi,j =

(
accuracyi,j
F1–scorei,j

)
where accuracy is a reflection of the number of correct predictions whereas F1-score is a
reflection of incorrect predictions. The equations for accuracy and F1-score appear in [9].
Note that each accuracyi,j value and F1-scorei,j value are the average over the prediction
horizons. The average assessment metric Pk is obtained by averaging Pi,j along j or all the
testing turbines. The average assessment metric Pk can be used to assess the prediction
performance of the predictors that are trained on turbine k and tested on all other turbines.
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Figure 1. Wind farm layout. The numbers indicate the location of each turbine.

Figure 2. Cross-validation: Predictors trained on single turbine (red) and tested on other turbines
(blue) but itself (white). Evaluation of accuracy and F1-score for each tested turbine (green). For ex-
ample, first row tests the predictors trained with turbine 1 data on turbines 2 through 75.

The outcome of the cross-validation is provided in Figure 3. For the predictors trained
on each turbine, the average accuracy and F1-score (average assessment metric) for the
testing data from the other turbines are plotted. This figure provides the generalization
ability of trained predictors of a single across all the other turbines. The turbine numbers
T1, T13, T15, and T24 were not fully operational and thus were not used in our analysis,
which explains the missing accuracy and F1-scores on Figure 3 for these turbines.

The predictor trained on the turbine T55 exhibited the highest accuracy and F1-score
(dash vertical line in Figure 3). The accuracy and F1-score of the predictors trained on T55
and tested on all the other turbines are shown in Figure 4. The average metric P55 (defined
in Figure 2) consists of an average accuracy of 86.10% and an average F1-score of 0.50,
indicating that the predictors trained on the turbine T55 have the best performance when
predicting icing on the other turbines in the same wind farm.
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Figure 3. Accuracy and F1-score (components of assessment metric Pk) of the predictors trained on
turbine k, k = 1, . . . , 75, and tested on all the other turbines in the wind farm.

For each tested turbine, accuracy and F1-score are drawn as a box plot. This box plot
indicates the accuracy and F1-score range across all the prediction horizons, from 10 min
ahead to 2 days ahead. Each box plot contains the statistical information including the
minimum, maximum, median, first quartile (Q1), and third quartile (Q3) values. It is
seen from box plots that the accuracy and F1-score values vary between tested turbines,
indicating that the predictors trained on T55 can perform well on some turbines but not on
other turbines.

The predictor trained on the turbine T56 exhibited the lowest accuracy and F1-score.
The accuracy and F1-score of the predictors trained on T56 and tested on all the other
turbines are shown in Figure 5. The average metric P56 (defined in Figure 2) consists of an
average accuracy of 63.88% and an average F1-score of 0.39, indicating that the predictors
trained on the turbine T56 have the worst performance when predicting icing on the other
turbines in the same wind farm. By comparing Figures 4 and 5, it can be observed that the
box plots in Figure 5 have lower mean values and higher variances than the box plots in
Figure 4, indicating that the predictors trained on the turbine T55 outperform the predictors
trained on the turbine T56.

The above analysis suggests that when individual turbine predictors, trained based on
the data associated with a specific turbine, are tested on the data associated with another
turbine, can perform well when the distributions of the SCADA features of the testing and
training data are close and may not perform well when the distributions of the features
are not close. As an example, Table 3 shows the Fisher distance [9,15], a measure of
closeness of two distributions, of the features from three turbines, where the predictors are
trained on T55 and tested on T54 and T56, respectively. By inspecting features in Table 3,
the Fisher distance discrepancies between testing turbine T56 and training turbine T55
is more significant than the feature discrepancies between testing turbine T54 and T55.
Therefore, the testing accuracy on T56 is lower than the testing accuracy on T54, which is
illustrated in Figure 6. This figure shows the distribution across all 288 prediction horizons
(10 min to 2 days) of the prediction accuracy when T54 and T56 use the predictors from
T55. While the histogram for T55 and T54 almost overlap, the histogram for T56 is skewed
to the left clearly showing reduced accuracy.
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Figure 4. Accuracy and F1-score of predictors (trained on T55) tested on all the other turbines.
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Figure 5. Accuracy and F1-score of predictors (trained on T56) tested on all the other turbines.
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Table 3. Fisher distances for the features for training turbine (T55) and testing turbines (T54 and T56).

Fisher Distance Training
Turbine (T55)

Testing Turbine
(T54)

Training
Turbine (T55)

Testing Turbine
(T56)

Temp_Gear 1.37 × 100 1.94 × 100 1.37 × 100 3.47 × 10−1

Power_Avg 1.14 × 100 1.67 × 100 1.14 × 100 5.53 × 10−1

Gen_RPM 1.00 × 100 1.30 × 100 1.00 × 100 4.17 × 10−1

Temp_Gen 9.14 × 10−1 1.66 × 100 9.14 × 10−1 3.96 × 10−1

Relative
Humidity

(weather station)
7.66 × 10−1 7.41 × 10−1 7.66 × 10−1 6.37 × 10−1

Wind Speed 3.41 × 10−1 9.60 × 10−1 3.41 × 10−1 2.07 × 10−1

Blade_Pitch 2.62 × 10−1 2.26 × 10−1 2.62 × 10−1 1.28 × 10−1

Temper_Nac 4.34 × 10−2 5.21 × 10−3 4.34 × 10−2 1.53 × 10−1

Temperature
(weather station) 1.72 × 10−2 1.53 × 10−2 1.72 × 10−2 2.88 × 10−1

Yaw_Error 1.26 × 10−2 1.46 × 10−2 1.26 × 10−2 8.68 × 10−4

Temper_Amb 2.77 × 10−3 4.58 × 10−3 2.77 × 10−3 6.12 × 10−4

Nacel_Direct 2.62 × 10−3 2.07 × 10−4 2.62 × 10−3 2.90 × 10−4

Wind Direction 9.10 × 10−4 1.85 × 10−4 9.10 × 10−4 1.11 × 10−5

Figure 6. The distribution across 288 prediction horizons (10min to 2 days) of the prediction accuracy
when T54 (green) and T56 (red) use the predictors from T55 (blue).

Hence, the answer to the question posed earlier “Can the predictors trained on one
turbine in a wind farm be used to conduct icing predictions for all the other turbines
in the same wind farm?” is that the predictors trained on one turbine can be used to
conduct predictions on the other turbines only if the distributions of the SCADA data
features used for training are close to the distributions of the features for the other turbines.
However, since there are variations of SCADA data among the turbines in a wind farm,
the distributions of the features may not be close between different turbines, and thus one
cannot generalize the predictors of one turbine to other turbines in a wind farm.

3. Farm-Level Prediction by Fusion

In this section, first, an overview of the framework reported in [9] using a single
turbine SCADA data is provided to set the stage for conducting prediction at the farm level.
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Next, the second question stated earlier is addressed. That is, “How to extend the icing
prediction framework of a single turbine to an entire wind farm?” .

The prediction model of TCN was used in our single-turbine prediction framework.
The architecture of TCN is shown in Figure 7. This deep learning model consists of convo-
lution layers, ReLU (Rectified Linear Unit) layers, and dropout layers [16]. The convolution
layer takes in SCADA feature data as an input tensor with the size ws by F, where ws
denotes the input window size and F denotes the number of features, see Figure 7. For each
turbine, the best input window size and the number of features are determined by carry-
ing out grid search experiments. The output of the network is a binary value, indicating
the prediction outcome (1 if the prediction corresponds to “ice” state and 0 if the predic-
tion corresponds to “normal” operation state). The parameters of the TCN model are in
Table 4. Interested readers are referred to [9] for the experimentations conducted to reach
these parameters.

Figure 7. TCN architecture used for a single turbine icing prediction.

Table 4. TCN model parameters used.

Parameters Value or Setting

Optimizer Adam
Loss Function Binary Cross-Entropy

Epoch 10
Learning rate 0.001

Batch size 8
Kernel size 3

Dropout Probability 0.2

Figure 8 indicates a specific time in the future for which the prediction is performed.
For example, if at time t0 the user desires to predict icing one hour into the future (or 6
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samples ahead noting that samples are taken every 10 min), the features in the red (past)
and green (present) boxes are used to predict the icing condition in the blue stem. This
process is repeated every 10 min.

Figure 8. Illustration of the input to the prediction model, together with the prediction horizon. The in-
put to the prediction model contains features in the past (red) and present (green). The prediction
horizon defines a specific future time (blue stem) when the prediction is made.

3.1. Qualified Turbines

There are 75 turbines in the wind farm. The wind rose of the turbines is first checked
to exclude the turbines with narrowly defined wind rose with respect to the other turbines
for conducting farm-level icing prediction. For the wind farm examined with 75 turbines,
the turbines T1, T13, T15, and T24 were excluded.

3.2. Rules Used for Labeling Ice Condition

For each turbine, the ice condition is labeled using the three rules in Table 5 since
the SCADA datasets normally do not provide ice condition labels. Three rules reflect
temperature, relative humidity, and actual power as described in [17,18]. If all the three
rules are met for a data sample, that data sample is labeled as an “ice” state (“1”). Otherwise,
it is labeled as a “normal” state (“0”).

Table 5. Rules for labeling ice state of data samples (turbine level).

Region 2 of Power Curve Region 3 of Power Curve

Temperature < 0 ◦C Temperature < 0 ◦C
Relative Humidity > 85% Relative Humidity > 85%

Actual Power < 85% × Power Curve Actual Power < 85% × Rated Power

For an entire wind farm, ice labels need to be generated. This is necessary in order to
test the farm-level predictors for accuracy and F1-score. Ice labels were generated based
on all the turbines using a majority voting scheme as illustrated in Figure 9. At each time
step, each turbine generates “ice” or “normal” labels independently. Then, a farm-level ice
condition is generated using all the turbine labels via majority voting.
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Figure 9. Ice condition labeling scheme using majority voting (farm level).

3.3. Fusion Approaches

Two fusion approaches are proposed in this work: decision fusion and feature fusion.
In decision fusion, individual predictors for each turbine make independent decisions,
and then their decisions are combined to generate the farm-level decision. Majority voting
is often used for this purpose where each decision is attached to the same importance or
weight and the overall decision is considered to be the decision with the highest vote [19,20].
The decision fusion approach is illustrated in Figure 10.

Figure 10. Decision fusion: Each turbine makes icing predictions individually. Then, all the prediction
decisions are combined via majority voting for farm-level icing prediction.

In feature fusion, for each feature, out of the thirteen features listed in Tables 1 and 2,
all the data samples of the wind turbines are combined by averaging before carrying out
predictions. A method to combine features is by averaging them. Then, the average is used
to train one single predictor per prediction horizon. In this work, the predictor architecture
used is from [9]. The feature fusion approach is illustrated in Figure 11.

Figure 11. Feature fusion: For each feature, the data samples from all the wind turbines are combined
via averaging. Then, farm-level icing prediction is achieved by one predictor per prediction horizon.
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For farm-level ice labeling of data samples as well as for decision fusion of predictions,
the majority voting scheme is used which involves counting outcomes. A simple illustration
of the majority voting scheme is shown in Figure 12. In example 1, the count of ones is
greater than the count of zeros leading to an output or outcome of “1”. In example 2,
the count of zeros is greater than the count of ones leading to an output or outcome of “0”.

Figure 12. Illustration of the majority voting scheme.

4. Farm-Level Prediction Results

In this section, the results of the prediction of icing using decision fusion and feature
fusion are presented. Comparisons are made between fusion and single-turbine approaches.

Icing prediction accuracy across 288 prediction horizons covering from 10 min ahead
to 2 days ahead are shown in Figure 13. For each prediction horizon, our predictor made
icing predictions for the time-series testing samples with the duration covering the winter
season from January to April. The green curve represents the outcome of the decision fusion.
The blue curve represents the outcome of the feature fusion with red curve representing a
single turbine. As compared with the prediction accuracy using a single turbine, decision
fusion demonstrates higher prediction accuracy and fewer fluctuations across different
prediction horizons. In decision fusion, prediction is performed independently for each
turbine. This lowers the chance of the overlap among the prediction errors of different
turbines. The predictions from all the turbines are then combined by using majority voting.
In other words, even if some of the turbines may provide incorrect predictions, the final
decision is determined by the majority of predictions. This makes the decision fusion
approach more robust to prediction errors as compared to the feature fusion approach.
Feature fusion also exhibits an improvement of the prediction accuracy with fewer fluctua-
tions over that of a single turbine, but more fluctuations than the decision fusion approach.
In feature fusion, each data feature is averaged across all turbines in the farm. Since there is
only one predictor per prediction horizon, the chance of making a prediction error is higher
than in the decision fusion approach because in this latter case, there are many predictors
per prediction horizon.
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Figure 13. Prediction accuracy across prediction horizons. Green: decision fusion, blue: feature
fusion, red: single turbine (T55).

The distributions of accuracy across different prediction horizons are shown in Figure 14.
The average accuracy and standard deviation are shown in Table 6. As can be seen from
this figure and table, both decision fusion and feature fusion can increase the prediction
accuracy and decrease the standard deviation with respect to the single turbine case for all
288 prediction horizons. Decision fusion has the advantage of having the least standard
deviation, or fewer fluctuations, due to the smoothing resulting from combining many
decisions. Feature fusion has the advantage of needing the training of only one predictor
per prediction horizon, translating into less training time compared with decision fusion.
Note that the latter requires training all turbines in the wind farm for each prediction
horizon; in this case, this results in approximately 75× increase in the number of predictors.

Figure 14. Histogram of prediction accuracies across prediction horizons using decision fusion,
feature fusion, and single turbine approaches.
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Table 6. Prediction accuracy mean and standard deviation using decision fusion, feature fusion,
and single turbine approaches.

Prediction Average Accuracy across All
Prediction Horizons (%) Standard Deviation (%)

Decision fusion 88.5 1.1
Feature fusion 89.1 3.3
Single turbine 81.2 4.4

An example prediction time series (simulating the way prediction is actually conducted
in real-time) for the decision fusion approach is shown in Figure 15 for the prediction
horizon of ten minutes ahead. The predicted icing time-series is plotted in green for the
decision fusion, while the actual farm-level icing time-series is plotted in blue. Recall
that “icing” is labeled as “one” and “no icing” is labeled as “zero”. As illustrated in
these time-series plots, most of the icing events are correctly predicted by the decision
fusion approach.

Figure 15. Time-series of icing prediction using decision fusion when using one-step-ahead predictor.

5. Conclusions

A framework has been introduced in this paper to predict icing at the farm level based
on our recently developed Temporal Convolutional Network model based on SCADA data.
This is the first time icing prediction is performed at the farm level beyond an individual
turbine. A cross-validation study has been conducted to evaluate if predictors trained on a
single turbine can be used to predict icing on other turbines in the wind farm. Then, two
fusion approaches, using SCADA data from each individual turbine, have been carried
out to provide icing predictions at the farm level. The key contributions of this work are
listed below:

(i) Cross-validation experiments demonstrated that the predictors trained using the
SCADA data from a single turbine can be used to predict icing using the SCADA
data from another turbine in the wind farm provided that the distributions of the
SCADA features for the two turbines are similar. However, when the distributions of
the SCADA features are not similar, the predictors of one turbine cannot be used to
predict icing on another turbine.

(ii) Two fusion approaches are introduced to predict icing for an entire farm. Testing
results indicate that both of the fusion approaches generate farm-level icing prediction
accuracies that are approximately 7% higher than prediction accuracies associated
with a single turbine.
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(iii) The prediction accuracies of the decision and feature fusion approaches are compa-
rable. However, for decision fusion, the predictors from all the turbines need to be
trained for each prediction horizon, whereas for feature fusion, only one predictor
needs to be trained per prediction horizon. If the training time is of concern, then the
feature fusion approach is recommended to be used. Otherwise, the decision fusion
approach is recommended to be used as it provides a smaller standard deviation of
prediction accuracy compared to the feature-level approach.

(iv) When performing icing prediction for an entire farm, it is required to have the SCADA
data for all the turbines in the farm to be able to conduct the fusion approaches. This
may pose a challenge as the data from key turbines could be missing or corrupted.
Also, due to the unavailability of icing labels in typical SCADA data, the ice labeling
of the data samples is conducted by three rules in this study which can generate errors
in the ice labels of the data samples. A possible future work that would improve the
prediction accuracy involves more accurate ice labeling of data samples by using ice
detection sensors on the turbines.
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