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Abstract: The paper describes an axisymmetric Finite-Difference Time-Domain computer model
of a coaxial Switched Wave Oscillator integrated with a dipole antenna. The model analyzes the
operation of a realistic circuit model of a multistage Marx generator that charges the oscillator to
a high voltage. The initial field distribution is calculated with an electrostatic finite-difference method
solver to speed up the time-domain analysis. The work presents the results of our circuit model of
a Marx generator’s simulations of the charging phase, followed by the results from the discharge
phase, using our axisymmetric Finite-Difference Time-Domain model. Our work describes new and
fast numerical solvers that can observe the operation of Switched Wave Oscillator systems (also
considering the connected antenna). The codes could be used in the process of designing such a
system. Advanced boundary conditions modeling the spark gap and oscillator’s excitation set our
work apart from the other attempts in the literature.

Keywords: FDTD; PML; switched wave oscillators

1. Introduction

Systems that generate strong pulses of electromagnetic fields have extremely wide ap-
plications, from Nuclear Electromagnetic Pulse (NEMP) simulators for the electromagnetic
compatibility testing of military equipment, to radiating systems for disrupting electronic
devices, to systems for disinfection, or research on the electroporation of cell membranes.
Such systems consist most often of a high-voltage DC power supply, a generator that
produces an electromagnetic pulse, and an element responsible for its effective radiation.
All these components are non-trivial to develop due to the need to ensure very high break-
down strength and simultaneously maintain small insulation gaps to increase capacitance.
Moreover, the power supply (as an electronic device) is sometimes easily disturbed by the
close, strong electromagnetic field generated by the pulsed system.

Switched Wave Oscillators (SWOs) have been studied for more than 20 years as
elements that form a high-voltage pulse and enable its efficient radiation [1]. In its simplest
form, an SWO is a coaxial long line with low characteristic impedance that is charged to
a high voltage (e.g., by a voltage multiplier). One end is connected to the antenna, while
the other end is short-circuited by a spark gap, which causes propagation and multiple
reflections of the pulse inside the coaxial line. A review paper [2] presents other variants
of the oscillator, while a currently interesting circuit is a variant with a long line attached,
open at one end, presented in [3]. A similar variant is presented in [4], where a prototype
system with a horn antenna excited by a transverse-electromagnetic wave is described.
In [5], a helical antenna is connected to the output of an oscillator as an example of a
directional antenna.

Among the mentioned works, the design process of the oscillator is mainly supported
by circuit simulations [3,5]. Simulations based on electromagnetic wave propagation
models are used in [6,7], while simulations of the electrostatic field before the spark gap
was shorted are used in [4]. Some recent works on coaxial SWOs employ 3D simulations
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in CST Microwave Studio, where the spark-gap switch is modeled often as a voltage
source [8,9]. While there are papers covering simulations of coaxial SWOs with an antenna
in the frequency domain [10], we have not found a time-domain analysis with a realistic
switch model. The authors of [11] describe a 3D computer simulation in CST Microwave
Studio of a parallel-plate transmission line SWO, where the spark gap is modeled as a
low-impedance port. To the best of our knowledge, no model integrating a realistic circuit
model of a Marx generator, a time-domain model of a coaxial Switched Wave Oscillator,
and an antenna has been presented.

The main contribution of our research work is a numerical solver for the time-domain
simulation of a Switched Wave Oscillator with a realistic dipole antenna and a time-varying
impedance acting as a spark-gap switch. The solver is able to analyze the transient effects
of the charging and discharging of the electromagnetic pulse generation system.

2. Axisymmetric Electromagnetic Field Solver

Solving Maxwell’s equations in the time domain is a demanding task. One of the
most efficient methods in computational electromagnetics is Finite-Difference Time Domain
(FDTD), which is a widely known and popular method due to its versatility, ease of
implementation, and potential for parallelization. The main strength of FDTD is its explicit
update scheme that enables calculating electric and magnetic fields without the need to
solve large systems of linear equations. Tied to this advantage is also a drawback: the
constraint for the time step for stable simulations is rather strict [12].

To partially alleviate that, we have built our solver in such a manner that each time step
is calculated fast, without additional memory allocations or unnecessary branching. This
way, although the number of time steps is large, the computational cost is low. By default,
we use the maximum allowed time step:

∆t = min(∆z, ∆r)/c
√

2,

where c is the speed of light in the vacuum, and min(∆z, ∆r) selects the smaller spatial step:
either along z- or r-direction. When the maximum propagation speed is smaller than the
speed of light (i.e., we consider only waves propagating in some dielectric), the default
time step would be too fine, and we can make it larger.

Our FDTD solver has been compared to two commercial packages in terms of accuracy
and computational cost in [13], and it outperformed them in a number of unknowns
updated in a unit of time. In this paper, we will describe its inner workings in greater detail,
with a focus on how it enables simulating SWOs. Part of the achieved performance is due
to the static generation of the code of each simulation. The function for computing a single
time step is generated based on the boundary conditions that are prescribed. It enables
precomputing the indices for which boundary conditions are applied.

One of the most widely used schemes for FDTD is the Yee scheme, where we solve
for both electric and magnetic field components located at different locations of a regular
computational grid (see Figure 1). In our simulator, we distinguish axial electric field
component Ez from radial electric field Er. The two fields are located in the middle of either
edge parallel to the axis of symmetry (r = 0) or perpendicular to the axis. For each edge,
we can define a separate boundary condition that is applied to it. By default, the fields
at all boundary edges are assigned a zero value, which corresponds to a Perfect Electric
Conductor (PEC). We can override it by applying additional boundary conditions, i.e., Per-
fect Magnetic Conductor (PMC) or Surface Impedance Boundary Condition (SIBC). Axial
edges on the axis of symmetry are automatically applied via Perfect Magnetic Conductor
to maintain the symmetry of the solution [14]. For edges that have no prescribed boundary
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condition, their values are updated according to the discretized Maxwell equations using
adjacent field locations:

Hθ |n+1/2
i,j = Hθ |n−1/2

i,j +
∆t
µ0

Ez|ni,j+1 − Ez|ni,j
∆r

− ∆t
µ0

Er|ni+1,j − Er|ni,j
∆z

, (1)

Ez|n+1
i,j =

1 − γ

1 + γ
Ez|ni,j +

∆t
ε

Hθ |n+1/2
i,j − Hθ |n+1/2

i,j−1

2r|i,j
+

∆t
ε

Hθ |n+1/2
i,j − Hθ |n+1/2

i,j−1

∆r
, (2)

Er|n+1
i,j =

1 − γ

1 + γ
Er|ni,j −

∆t
ε

Hθ |n+1/2
i,j − Hθ |n+1/2

i−1,j

∆z
, (3)

where Hθ|n+1/2
i,j is the out-of-plane oriented magnetic field component, defined for t = (n +

1/2)∆t, in the center of the cell i, j, Ez|ni,j is the axial electric field component associated with
edge i, j at time t = n∆t, Er|ni,j is the radial electric field component defined at edge i, j at time

t = n∆t, and γ = σ ∆t
2ε is the loss coefficient. The uniform grid with N, M grid nodes defines

(N − 1), (M − 1) rectangular cells (with width of ∆z and height of ∆r). Each node has its axial
and radial coordinates (zi,j, ri,j). A cell i, j has four edges: two axial, (i, j) and (i + 1, j), and two
radial, (i, j) and (i, j + 1). Equations (1)–(3) assume that the edges and cells are defined for the
same material with permittivity ε, permeability µ = µ0, and conductivity σ.

Figure 1. (Color version online) Yee grid for an axisymmetric domain ZR. Triangles mark locations at
which the electric field is stored. Square marks are the locations of out-of-plane magnetic field. Red
triangles mean PEC, orange triangles mean PMC, while purple ones mean SIBC. Blue triangles mean
edges without a prescribed boundary condition.

To support multiple dielectric materials, there is also a dielectric interface condition
that is automatically marked at edges shared by different materials. According to [15],
the material interface might be placed at arbitrary distance between nodes of Yee grid.
In our solution, we assume that the boundary interfaces are located directly at edges of the
computational grid. It effectively means that, if the real boundary is not resolved by the
grid, the dielectric interface will be shifted no more than half the grid step.

Truncating the computational domain requires special handling of boundaries that
should absorb electromagnetic waves simulating an open boundary and prevent artificial
reflections from the domain’s boundary. Our solver supports both a special boundary,
called Surface Impedance Boundary Condition (implemented according to [16]), and a spe-
cial material called Perfectly Matched Layer (PML, implemented according to [17]). Sur-
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face Impedance Boundary Condition is a boundary with a prescribed wave impedance
η = Et/Ht where Et and Ht are electric or magnetic components, tangential to the bound-
ary with SIBC. In our code, we made the wave impedance time-dependent to model closing
of a spark-gap switch, similar to the time-varying resistor in [18].

As the FDTD model is axisymmetric, the number of unknown field values is much
lower than in the 3D case. On the other hand, only electromagnetic field modes and geome-
tries that exhibit the rotational symmetry can be represented by Ez, Er, and Hθ . The model
assumes that Eθ = 0 V/m and Hz = Hr = 0 A/m. The presented implementation of FDTD
has been kept simple, so it does not implement any conformal grid elements. This means
that all curved surfaces have to be discretized using a staircase approximation. The main
technical challenge of the presented numerical solver was to avoid the cost of solving
the steady-state electric field distribution after charging of an SWO. We have resolved
this by writing an FDTD-compatible finite-difference electrostatic solver that is presented
in Section 4.

3. Realistic Circuit Model of a Marx Generator

In order to work properly, Switched Wave Oscillators have to be charged with a high
voltage. One of the popular choices of such a high voltage source is a Marx generator as it
is relatively inexpensive and simple to build. However, Marx generators do not provide
a DC voltage but a pulse similar to one described by a double-exponential function:

U(t) = A exp(−αt)− A exp(−βt)),

where U(t) is the voltage at time t, and α and β are coefficients with units of Hz defining the
rise time and the fall time of the pulse. A is the maximum amplitude of the voltage pulse.

The shape of the pulse plays a crucial role as it can affect the proper operation of an
SWO. A pulse that is too fast can cause SWO to breakdown too early, when the oscillator
is still not fully charged. However, the accurate approximation of the Marx generation
pulse shape is not a trivial task, mainly because of the fact that multistage Marx gener-
ator utilizes many spark gaps, which are strongly nonlinear. Moreover, the spark-gap
breakdown characteristic depends on multiple other measures, such as the type of gas in
which it is immersed, the gas density, electrodes’ distance, electrodes’ material, a transient
characteristic of a voltage applied between electrodes, or the presence of some ionizing
radiation (e.g., due to a discharge flare in an adjacent spark gap). Even when all these are
known, the spark-gap breakdown is still a stochastic process, which is very challenging to
simulate accurately.

Currently one of the most advanced circuit models of a spark gap is the one described
in [19] by Pouncey and Lehr. Based on their work, developed in LTSpice, we have created
our own solution, which utilizes an open-source nonlinear circuit solver ACME.jl [20].
In this approach, the spark gap is represented by a nonlinear RL circuit element with
parallel capacitor representing capacitance between electrodes. The main parameters
of the circuit are gas pressure, electrode distance, and capacitance between electrodes.
The model utilizes multiple experimentally determined formulas for static breakdown
voltage, breakdown delay, channel resistance, channel radius, and channel inductance
(derived from channel radius). These formulas can be adjusted or replaced to better fit the
model to the problem being solved. The flowchartof the model’s algorithm is presented in
Figure 2. The algorithm is executed in every time step of a circuit simulation.

To predict the voltage applied to an SWO, we utilized the described spark-gap model
coupled with a circuit model of a three-stage Marx generator (described later in Section 5.1).
Because of the fact that Marx generator circuit rapidly becomes very complex with increas-
ing number of stages, we created a tool to accurately generate such circuits. Our paper
covering the topic of a realistic spark gap and Marx generator in ACME.jl is currently
under review (pending publication). The resulting circuit simulation incorporates multiple
spark-gap models to calculate realistic output voltage pulses applied to a capacitive load
(see Figure 3).
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Figure 2. Flowchart of the spark-gap model algorithm (u, i—spark-gap voltage and current;
r—channel radius; ϵ—machine precision; Vbr—breakdown voltage; iQ value of an integral used
to calculate channel resistance; tdelay—time required for channel to develop; tover—time of spark-gap
overvoltage; ∆t—time step).

Figure 3. Circuit model of a three-stage Marx generator connected to a transmission line in the form
of a single π-stage.

4. Electrostatic Initial Conditions

Simulation of charging a Switched Wave Oscillator is interesting in the context of some
transient effects, but, when the capacitance of the oscillator is large and the grid resolution
fine enough, it might take many time steps to reach a steady state. A natural solution
for this problem is solving an electrostatic problem and transferring its solution as some
initial values to the transient simulation. Finite-Difference Method (FDM) is an effective
method to solve Laplace’s equation for electric potential ϕ. Conveniently, FDM might share
the grid with FDTD for transferring just the electric fields between the electrostatic and
electromagnetic solvers.

In our electrostatic simulation, all PMLs are neglected and substituted with their
base materials, and SIBC and PMC are replaced with Neumann Boundary Conditions (for
which ∂ϕ/∂n̂ = 0). A prescribed electric potential can be assigned to nodes of a Yee grid,
representing the situation when the inner conductor of an SWO is charged. Currently, we
solve the electrostatic problem by assembling a system of linear equations, taking into
account different material properties of dielectrics, as presented in [21].

When the electric potential ϕ is found in the nodes of the grid, electric field can be
computed with finite differences at the centers of each edge. This scheme is of course
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compatible with our FDTD solver. If we assume that, after the SWO is fully charged, there
should be no currents flowing, the magnetic field is, therefore, approximately zero.

5. Computer Simulations

Our test case will be a coaxial Switched Wave Oscillator. The inner conductor is elon-
gated in the form of a dipole antenna matched approximately to the frequency generated
by the SWO. The computer simulations cover both a charging phase and a discharging
phase, where we observe an electromagnetic pulse radiated by an antenna.

The outer radius of the oscillator’s dielectric is Ro = 10.4 mm, the inner radius is
Ri = 9 mm, and the relative permittivity of the dielectric is ϵr = 4.0 (material is FR4).
The parameters result in the characteristic impedance of Z = 4.33 Ω. The transmission
line is L = 248 mm long, which, according to [3], corresponds to the transit time of
τ = 1.65 ns and the base frequency of oscillations f = 151.1 MHz. The antenna is a dipole
antenna, with a single arm of La = 415 mm, which is tuned to a slightly larger frequency
fc = 172 MHz. We simulate a computational domain that extends to 1.2 m in z-direction
and 0.2 m in r-direction. The grid is discretized with 601 nodes in z-direction (∆z = 2 mm)
and 401 nodes in r-direction (∆r = 0.5 mm).

5.1. Charging Simulation

Simulations of transient effects during charging of the oscillator-antenna system are
presented in two phases. In the first one, a circuit model of a three-stage Marx generator is
carried out, with SWO represented as a single π-section of a transmission line. The single
section consists of an inductor Lswo = 7.23 nH and two capacitances in parallel that sum to
the total capacitance of the SWO Cswo = 192 pF + 192 pF = 384 pF.

The Marx generator is charged with a DC voltage V0 = 5 kV, connected with a 2 MΩ
resistor. Each stage consists of two charging resistors (1 MΩ each), capacitor C = 2 nF, and a
spark gap. The three spark gaps differ in their inter-electrode distances (1.2 mm, 1.4 mm, and
1.65 mm) to accommodate higher voltages at each stage of the generator. The last spark gap
has the distance between its electrodes d = 1.9 mm. In the circuit simulation, we start with
initially charged capacitors and all spark gaps in non-conductive states. The first spark gap is
then triggered at the start of the transient state simulation. We monitor voltages at all spark
gaps and also at the load. We run the circuit simulation for 200,000 time steps with the time
resolution ∆t = 0.2 ps. The output waveform can be seen in Figure 4.

Figure 4. Voltage waveforms at the spark gaps (SG1, SG2, SG3, and SG4) and at the load of the
generator (OUT).

What can be seen in Figure 4 is that the output voltage pulse has a long tail, which
corresponds to relatively low values of β ∼ 103. In the second phase of the charging
simulation, the input signal is fed to the SWO as a soft-source of a current density [13].
The current density is in the form of a double-exponential function with the following
parameters: A = 12 kV, α = 1 GHz, and β = 1 kHz. The time step for FDTD simulation
of SWO charging is ∆t = 1.179 ps; we simulate the charging until t = 30 ns. Two probes
registered electric field values at different parts of the computational domain: one (Er) at
the base of the dipole antenna, and another (Ez) approximately 20 cm in the radial direction
from the first probe. The plot of the signals registered by the two probes can be seen in
Figure 5. It is noticeable that the oscillator-antenna system is charged almost monotonously
to the maximum voltage after 6.5 ns. It takes at least 5500 time steps to converge to the



Energies 2024, 17, 4644 7 of 12

electrostatic solution. The second interesting effect is a pulse registered 20 cm from the axis
of the dipole. Its amplitude is normalized (its actual amplitude is 1700× smaller than the
input signal), but we can clearly see the propagation time of the electromagnetic wave.

Figure 5. Electric fields registered by two probes placed near the base of the dipole antenna and at
z = 24.8 cm, r = 20 cm.

5.2. Discharge Simulation

The discharge simulation requires a fine time step to capture the details of the col-
lapsing voltage wave. On the other hand, we would like to simulate the charging phase
with the largest time step possible. The results in Figure 5 indicate that the system in fact
reaches a steady state. In the discharge simulation, we will use our FDM solver to find the
electrostatic solution and apply it as initial conditions to the FDTD simulation.

Figure 6a presents the electrostatic solution of the electric potential ϕ defined in the
nodes of Yee grid. The electric potential is always solved for 1 V voltage difference, so it
can be easily scaled as the initial conditions for the electromagnetic simulation. The large
gray box represents a metal reference plane. This way, we simulate the dipole antenna
by analyzing its single arm over an approximately infinite ground plane (the nodes of
the metal have prescribed ϕ = 0). The time step of the simulation is the same as for the
charging phase. This time, we simulate it until t = 140 ns.

(a) (b)

Figure 6. (Color version online) Electric potential found with the FDM solver (a) and the overview of
materials used in FDTD simulation (b).
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To make the computational domain smaller, its outer side and the top layer are filled
with a Perfectly Matched Layer with σmax = 0.00446 S/m and the other parameters of air.
The PML is 10 mm thick, and its boundaries are backed with Surface Impedance Boundary
Conditions acting as an additional absorbing boundary condition. Different materials
defined for nodes of Yee grid are presented in Figure 6b (the figure is only a part of the
computational domain, so there are no visible nodes marked FR4).

Another Scattering Impedance Boundary Condition has been defined at the input
coaxial port of the oscillator. The impedance at this port is time-varying as an S-shaped
curve (i.e., generalized logistic function) that smoothly transitions from a high surface
impedance (η = 1 TΩ, approximating Perfect Magnetic Conductor) to a low impedance of
about 200 mΩ, representing spark’s resistance.

Figure 7 shows both the signal of propagating inside the oscillator (measured at the
base of the dipole antenna) and the radiated signal measured at approximately 20 cm from
the axis of the antenna. At first, the electric field at the base of the dipole is constant, which
confirms that the solution from FDM is compatible with FDTD solver. The high-impedance
SIBC acts as an open boundary and “holds” the oscillator charged. Then, at t = 27 ns,
the impedance is switched according to the S-shaped curve (A = 1012 Ω, K = 0.2 Ω, C = 1,
Q = 1, B = 3 GHz, and ν = 1).

Figure 7. Normalized electric field waveforms measured at the dipole’s base and at z = 24.8 cm,
r = 20 cm (top part of the figure), and the time-varying surface impedance (presented in logarithmic
scale) representing a closing spark gap (bottom part of the figure).

6. Parametric Analysis

Equipped with a model capable of analyzing the SWO-antenna system, one could
determine how some selected design parameters influence the signal radiated by the
antenna. We have considered four main parameters, i.e., the antenna length, the spark
gap’s wave impedance, the length of the transmission line, and the radius at the tip
of the antenna. All the parameters affect the waveform registered 20 cm from the an-
tenna base. In the case of the transmission line analysis, the base does move in the
z-direction, along with the probe. The reference model presented in the previous ex-
periments has an antenna length of 415 mm, and the wave impedance at the spark gap
0.001η = 0.001η0

√
µr/εr = 0.001η0

√
1/4 ≈ 188 mΩ; assuming that relative permittivity of

FR4 is εr = 4, its relative permeability is µr = 1, and the intrinsic impedance of free space
η0 ≈ 377 Ω. The transmission line of the reference model is 248 mm long, and the radius at
the tip of the antenna is the same as the radius of the inner conductor of the transmission
line (9 mm). In each analysis, only the tested parameter changes, and the rest have the
default values of the reference model.
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The influence of the length of the arm of the dipole antenna is two-fold. Firstly,
the oscillating signal views antennas of different lengths as different loads, so the output
signal decays faster or slower than for the reference model (see the top part of Figure 8).
Secondly, the tuning of the SWO and the antenna’s resonance frequency affect the amplitude
of the registered signal (see the bottom part of Figure 8).

Figure 8. (Color version online) Parametric sweep results for different lengths of the dipole antenna
are presented in the time domain (top) and the frequency domain (bottom) for the radiated field.
The vertical dashed lines mark the first, third, and fifth fundamental frequencies of the SWO.

The spark gap at the end of the SWO’s transmission line is modeled as a time-variant
Surface Impedance Boundary Condition, which changes its wave impedance to some final
small value that represents a shorted connection. The smaller the final value, the more
slowly the signal in the transmission line decays as less power is dissipated in the spark.
The decay can be observed both in the time domain and frequency domain in Figure 9.

The length and propagation speed of the transmission line determine the fundamental
frequencies of the generated oscillations. The propagation speed is related to the mate-
rial properties of a given transmission line dielectric. The longer the transmission line,
the longer the signal travels in the SWO, leading to lower oscillation frequency. Figure 10
presents the effect of different transmission line lengths in our model. We can clearly see a
shift in the fundamental frequencies of the oscillations.

The last parameter being tested is the shape of the antenna. In this test, the radius of
the antenna tip is increased (see the left part of Figure 11). Making the end of the arm wider
should result in a slight increase in the antenna’s bandwidth [22]. The base of the antenna
has the same radius as the inner conductor of the transmission line. The radius is then
linearly increased to the radius of the antenna’s tip. The tip of the antenna is a sphere of the
same radius. The time-domain plots (see the right part of Figure 11) suggest an increase in
the amplitude as the antenna becomes more conical. We can also observe that the radiated
signal decays faster.
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Figure 9. (Color version online) Time-domain (top) and frequency-domain (bottom) plots of the
output signal measured by the field probe at z = 24.8 cm, r = 20 cm for different impedance values
at the spark gap. The vertical dashed lines mark the first, third, and fifth fundamental frequencies of
the SWO.

Figure 10. (Color version online) The changes in the oscillator’s fundamental frequency for different
lengths of the transmission line.



Energies 2024, 17, 4644 11 of 12

Figure 11. (Color version online) The schematic view of the conical antenna shape (left), and the
results of the parametric sweep for different antenna tip radii (right).

This paper covers only the parameters of the electromagnetic part of the model.
The analysis of the circuit model will be presented in a separate paper.

7. Results

This work describes a computer model of a Switched Wave Oscillator integrated with
a dipole antenna. The toolset for modeling the device consists of a few other custom tools:
a circuit simulator of a Marx generator (with an advanced spark-gap model), an electro-
static field solver based on the FDM, and an electromagnetic field solver based on the
FDTD method.

The tools are tested against an exemplary coaxial Switched Wave Oscillator, simulated
through the charging phase, until the discharge and radiation of the generated oscillations.

It has been confirmed that, in most cases, calculating an electrostatic field distribution
is a viable alternative to simulating the charging phase with an electromagnetic field solver.

8. Future Work

Despite its computational efficiency, the axisymmetric model is quite limiting in
terms of the geometries that can be analyzed. We plan to extend the software to make it
even more versatile and capable of simulating real designs of Switched Wave Oscillators.
Although fast, the FDTD method might have difficulty in correctly representing a geometry
with fine details due to its structured grid. In the future, we plan to pursue building an
FEM-based SWO simulator that would be fully coupled with the circuit model of spark
gaps and Marx generators. Another goal is to build the Marx generator and the coaxial
SWO presented in the computer simulations to verify their results with the measurements
of the radiated electromagnetic field by the dipole antenna.
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