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Abstract: Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to sub-
stitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration
and development critically significant. However, due to the low permeability and the development
of nanopores in shale reservoirs, shale oil production is challenging and recovery efficiency is low.
During the imbibition stage, fracturing fluid displaces the oil in the pores primarily under capillary
forces, but the complex pore structure of shale reservoirs makes the imbibition mechanism unclear.
This research studies the imbibition flow mechanism in nanopores based on the capillary force model
and two-phase flow theory, coupled with numerical simulation methods. The results indicated
that within a nanopore diameter range of 10–20 nm, increasing the pore diameter leads to a higher
imbibition displacement volume. Increased pressure can enhance the imbibition displacement, but
the effect diminishes gradually. Under the water-wet conditions, the imbibition displacement volume
increases as the contact angle decreases. When the oil phase viscosity decreases from 10 mPa·s to
1 mPa·s, the imbibition displacement rate can increase by 72%. Moreover, merely increasing the water
phase viscosity results in only a 5% increase in the imbibition displacement rate. The results provide
new insights into the imbibition flow mechanism in nanopores within shale oil reservoirs and offer a
theoretical foundation and technical support for efficient shale oil development.

Keywords: shale oil; single nanopore; capillary force; imbibition displacement; multifactor analysis

1. Introduction

As conventional oil and gas resources diminish and global oil demand increases,
the focus has shifted to developing unconventional hydrocarbon resources. Shale oil,
as one such resource, offers the potential to alleviate oil shortages through intensified
exploration and development efforts. In China, shale oil resources are widely distributed,
with estimated reserves exceeding 100 billion tons, indicating significant exploration and
development potential [1]. However, shale oil reservoirs exhibit strong heterogeneity, with
storage spaces primarily comprising micro- and nanopores, which complicates production
and results in low recovery rates [2]. Imbibition displacement is a key technology for
efficient development of such low-grade oil reservoirs. Moreover, the imbibition mechanism
between fracturing fluid and crude oil remains unclear. Hence, understanding fluid flow in
nanopores is crucial for enhancing shale oil recovery [3–6].

Shale oil reservoirs contain significant organic matter, and most shale pores are
nanopores within this organic matrix. Compared to conventional reservoirs, the micro- and
nanoscale effects in shale oil reservoirs are particularly pronounced. Molecular simulation
methods, especially molecular dynamics (MD), have become essential for studying flow
behavior in nanopores. Molecular simulations can be applied at both macroscopic and
microscopic scales, suitable for gases, liquids, and solids. Their accuracy and simplicity
make them an effective tool for studying nanopore flow.
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Numerous studies have focused on the flow behavior in nanopores under various
conditions. Nagayama et al. (2004) used MD to simulate the effect of interface wetta-
bility on relative flow in nanopores, and found no interface slip on water-wet walls in
8.22 nm pores [7]. Under the pressure-driven conditions, the interfacial resistance in
oil-wet conditions was lower than in water-wet conditions. Coasne B et al. (2006) used
MD to study argon adsorption in nanopores, showing stronger fluid–wall interactions in
graphene nanopores than in porous media [8]. Chen et al. (2008) utilized non-equilibrium
MD to investigate water flow in carbon nanopores, revealing that shear stress between
nanopores and water molecules is decisive for nanopore flow, with viscosity decreasing
as pore radius decreases or flow rate increases [9]. Kucaba et al. (2009) employed MD to
study water flow in nanopores of varying sizes and materials, demonstrating that wall
interactions significantly influence flow slip, with slip length decreasing as pore size in-
creases [10]. Falk et al. (2015) used MD to investigate hydrocarbon adsorption and flow in
nanopores, showing that flow is significantly affected by wall friction, exhibiting non-Darcy
flow characteristics [11]. In sub-nanopores, strong wall adsorption makes intercomponent
and intermolecular friction negligible, with hydrocarbon mobility in nanopores related to
carbon chain length.

There are also many studies that used MD to simulate the fluid behavior characteristics
in nano slits [12–17]. In summary, MD can effectively simulate and analyze nanoscale flow.
While the research has advanced the understanding of nanopore flow, most studies focus on
shale gas and gas–liquid two-phase flow, which is often considered a single factor. Hence,
the mechanism of oil–water two-phase flow in nanopores was investigated. The effects of
single and multiple factors on flow are identified. In addition, the results are visualized by
the numerical simulation method, and the functional relationship between the influencing
factors and the flow is clarified. The research will provide theoretical and technical support
for efficient shale oil development.

2. Nanopore Flow Model Construction

At the nanoscale, the flow behavior of fluids is significantly influenced by surface
effects and geometric constraints. To gain a deeper understanding of the flow characteristics
of fluids at the nanoscale, it is crucial to study the imbibition flow laws in nanopores. In
shale oil reservoirs, due to the nanoscale characteristics of the pore structure, factors such
as pore size, fluid properties, and wettability have a particularly complex impact on fluid
movement. The traditional Hagen–Poiseuille equation is no longer sufficient to accurately
describe fluid motion at this scale.

Therefore, there is a need to construct a nanoscale capillary force model through
simulation results, which combines computational fluid dynamics and phase field methods
(Figure 1). The model aims to describe the flow characteristics of fluids within nanopores
in shale oil reservoirs under the influence of various factors. With this model, we can more
accurately capture and predict the dynamic behavior of fluids at the nanoscale, providing
theoretical support and practical guidance for fluid management in shale reservoirs.
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2.1. Nanopore Capillary Imbibition Model

In the realm of multiphase flow research, the flow characteristics between two phases
are typically defined by their respective pressures and saturations. From a macroscopic
perspective, when considering the flow of two different fluid phases, the pressure difference
between them can be interpreted as capillary pressure. When investigating the permeability
characteristics of porous media, conducting fundamental research on the imbibition flow in
single nanopores is of paramount importance. To construct a model that describes capillary
permeation, we have established the following assumptions:

The capillary pores are considered to be wetted by water, which serves as the wetting
medium within the pore structures.

The impact of the flow inlet and any associated flow losses are disregarded, allowing
for a more focused analysis on the intrinsic flow dynamics within the capillary system.

Inertial forces and the effects of osmotic pressure are omitted from the considerations,
as they are of minor significance at the nanoscale and under the specific conditions of
this study.

The capillary force is assumed to be constant, and a fixed static contact angle is utilized
to characterize the wetting properties of the fluid within the nanopores.

The distribution of water and oil inside the capillary in the model is shown in Figure 2.
Here, L represents the length of the capillary, in m; v denotes the seepage velocity, in m/s; θ
represents the contact angle, in ◦; r denotes the radius of the capillary, in m; and x denotes
the distance of oil–water flow and seepage, in m.

The capillary rise phenomenon can be described using Newton’s law:

Fc − Fv − Fg = ma (1)

In the given equation, Fc represents the capillary force, in N; Fv is the dynamic viscosity,
in N; Fg is the gravity, in N; m denotes the mass of the fluid (oil or water) in the capillary, in
kg; and a is the acceleration, in m/s2.

The capillary pressure pc can be expressed according to the Young–Laplace Equation:

pc =
2σ cos θ

r
(2)

In the equation, σ represents the interfacial tension, in N/m. The capillary force Fc is
represented as follows:

Fc = πr2 pc = 2πrσ cos θ (3)

The shear force τv on the nanotube wall can be determined by Newton’s law of fluid
friction for laminar flow:

τv = −2µv

r
vmax (4)
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In the equation, µv is the dynamic viscosity of the fluid, in Pa·s; vmax is the maximum
imbibition velocity on the nanoscale pore wall, in m/s. The imbibition flow process
involves the slow flow of incompressible Newtonian fluid in nanoscale pores, tending
towards steady Poiseuille flow. Therefore, the flow resistance follows the Hagen–Poiseuille
equation. The relationship between the maximum imbibition velocity vmax and the average
flow velocity can be expressed as follows:

vmax = 2v (5)

The expression for viscous force can be derived as follows:

Fv = Fvw + Fvo = 2πr[xτvw + (L − x)τvo] = 8π[µwx + µo(L − x)]
dx
dt

(6)

Fvw is the dynamic viscosity of the water phase, in N; Fvo is the dynamic viscosity
of the oil phase, in N; τvw is the shear force of the water phase, in N/m2; τvo is the shear
force of the oil phase, in N/m2; µw is the viscosity force of the water phase, in Pa·s; µo is
the viscosity force of the oil phase, in Pa·s; and dx

dt is the imbibition velocity, in m/s. The
imbibition velocity can be expressed as follows:

dx
dt

=
r
4

τvwx + τvo(L − x)
µwx + µo(L − x)

(7)

The total mass of oil and water in nanoscale pores can be expressed as follows:

m = πr2ρwx + πr2ρo(L − x) (8)

where gravity can be expressed as follows:

Fg = mg = πr2ρwgx + πr2ρog(L − x) (9)

In the equation, ρw and ρo represent the fluid density of the water phase and oil phase,
respectively, in kg/m3.

Substituting the above equation into Equation (1), differentiation yields can be ob-
tained as follows:

2πrσ cos θ − 8π[xµw + (L − x)µo]
dx
dt −

[
πr2ρwgx + πr2ρog(L − x)

]
= πr2[ρwx + ρo(L − x)] d2x

dt2

(10)

Flow in nanoscale pores is steady, neglecting inertial forces; the above equation simpli-
fies as follows:

2rσ cos θ − 8[xµw + (L − x)µo]
dx
dt

−
[
r2ρwgx + r2ρog(L − x)

]
= 0 (11)

Integrating the above equation yields the analytical expression for capillary imbibi-
tion flow:

tp =
8Lµo

A
ln
(

Ax
B

+ 1
)
− 8(µo − µw)

A2

(
Ax + B ln

B
Ax + B

)
(12)

where A = (ρo − ρw)r2g; B = 2rσ cos θ − r2ρogL. When dt is sufficiently small, the error
influence can be neglected. After differencing and integrating Equation (11), the numerical
solution for spontaneous imbibition in the capillary tube, xpi, can be expressed as follows:

xpi = Lµo −
{
(Lµo)

2 − 2(µo − µw)

[ 1
2 µwxpi−1

2 + Lµoxpi−1 − 1
2 µoxpi−1

2+
r2

8

(
2σ cos θ

r − g
(
ρwxpi−1 +

(
L − xpi−1

)
ρo
)(

tpi − tpi−1
)) ]}1/2

/(µo − µw) (13)
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The imbibition volume of the i-th nanopore can be expressed as follows:

qpi = πr2xpi (14)
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2.2. Slip Length and Boundary Conditions

The slip length is defined as the virtual distance between the fluid and solid surface
where the fluid velocity hypothetically drops to zero (Figure 3). It serves as an indicator of
slip phenomenon intensity in nanochannels. In conventional sandstone reservoirs, where
pore scales are typically at the micrometer level, the impact of slip is often negligible
relative to pore geometry. However, in shale oil reservoirs, widespread nanometer-scale
pores enable slip effects on fluid molecules at pore walls, significantly enhancing fluid
mobility. Therefore, the slip length in nanometer-scale pores must be considered for shale
oil reservoirs.

In nanochannels, under the influence of pressure differential, the developed flow
characteristics of two-phase fluids exhibit a parabolic velocity distribution. In such cases,
the shear rate of the oil film at the wall is low and uniformly distributed along the wall,
making it suitable to employ the Navier slip model [18]. This model assumes that the
slip velocity is proportional to the viscosity shear rate and the slip coefficient. Other
nanochannel boundary models include nonlinear slip models, non-local slip models, and
hybrid boundary slip models, which describe the sliding behavior of liquids on solid
interfaces. Navier proposed a simple first-order boundary slip model, which indicates
that liquid slip occurs when fluids flow near solid boundaries, and the magnitude of slip
velocity is proportional to the local strain rate. It is written as follows:

us = b(
∂u
∂n

)
W

(15)

where W represents the wall boundary; b is the slip parameter on the wall, reflecting
material property parameters.
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Introducing the nanoscale slip length shifts the velocity profile uniformly down-
wards, replacing the classical no-slip boundary condition with a slip boundary condition in
nanoscale pores as follows:

y = h/2 (16)

us = b
du
dy

(17)

y = 0 (18)

du
dy

= 0 (19)
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3. Single-Factor Nanopore Flow Analysis
3.1. Pore Size Impact on Nanopore Flow

In shale oil reservoirs, there are widespread nano-scale pores, and the dimensions
of these tiny pores significantly affect the reservoir’s permeability. This study aims to
investigate the permeation behavior of shale oil and fracturing fluid by varying pore
diameters (10, 12.5, 15, 17.5, and 20 nm), as shown in Figure 4. Using the graphical methods,
it illustrates changes in residual oil content under different pore sizes, further exploring the
specific impact of pore size on imbibition during well shut-in processes.
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Figure 4. Flow diagram with different apertures at 20 s and 25 s. (a) Flow diagram with different
apertures at 20 s. (b) Flow diagram with different apertures at 25 s.

From Figure 5, it is observed that the displacement efficiency varies with time, increas-
ing with increasing pore diameter. Larger pore diameters lead to faster displacement rates.
Particularly, when the pore diameter reaches 17.5 nm, the displacement efficiency curve
approaches that of 15 nm, indicating that the increasing trend of displacement efficiency
with pore diameter in reservoirs is not strictly linear. There exists a degree of similarity in
changes due to similar pore diameters.

The displacement efficiency varies over time under different pore diameter conditions,
showing distinct trends, as shown in Figure 6. Smaller pore diameters result in longer
imbibition displacement reaction times, whereas larger pore diameters can reduce this time.
Considering pore diameter alone at the same time point, larger diameters exhibit more
significant imbibition displacement effects. The imbibition displacement efficiency in a
20 nm pore is 46% higher than that in a 10 nm pore. In nanoscale pores where dimensions
approach the average free path of fluid molecules, interactions between fluid molecules
and pore walls are significantly enhanced, affecting fluid flow capability. Moreover, as
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pore diameter increases, flow velocity at the interface of the two phases also increases
(Figure 7). The flow velocity variation over time in a 20 nm pore can increase by 1.4 m/s.
In smaller pores, the non-wetting phase (oil phase) experiences increased flow resistance
due to capillary forces, while the increased surface area per unit volume in smaller pores
enhances the adsorption of fluid molecules on pore walls, further affecting flow velocity.
Therefore, pore diameter significantly influences the two-phase flow patterns in single
nanoscale pores.
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3.2. Viscosity Ratio Impact on Nanopore Flow

In single nanoscale pores, the viscosity ratio between oil and water significantly
impacts flow performance. By varying the viscosities of crude oil and water, one can
investigate this influence. Assuming a pore diameter of 15 nm (Figure 8), water-wet wall
conditions, and static pressure, experiments can be conducted to study the flow patterns of
oil and water phases in single nanoscale pores. Adjusting the viscosities of crude oil and
water allows for the modulation of phase composition parameters, further exploring their
effects on the flow behavior in single nanoscale pores (Table 1).

Table 1. Composition relationship between crude oil and water.

Scheme Viscosity of
Water (mPa·s)

Oil Viscosity
(mPa·s)

Oil Viscosity
(mPa·s)

Water Viscosity
(mPa·s)

1

1

10

10

8
2 8 5
3 5 3
4 3 2
5 2 1
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Changing the viscosity of the water phase significantly affects the variation of displace-
ment efficiency over time. As the viscosity ratio decreases, the displacement efficiency also
decreases (Figure 9). For instance, at 30 s, when the viscosity ratio is 10, the displacement
efficiency reaches 62%; when the viscosity ratio decreases to 2, the displacement efficiency
drops to 45%. Therefore, variations in the dynamic viscosity of the water phase have a
significant impact on the flow of oil and water phases in single nanoscale pores. When the
viscosity ratio is 10:3 and 10:2, the displacement efficiency curves are close, indicating that
within these viscosity ratio ranges, the viscosity of the water phase has a relatively minor
effect on imbibition displacement.



Energies 2024, 17, 4677 11 of 22

Energies 2024, 17, x FOR PEER REVIEW 12 of 23 
 

 

Table 1. Composition relationship between crude oil and water. 

Scheme Viscosity of Water 
(mPa·s) 

Oil Viscosity (mPa·s) Oil Viscosity (mPa·s) Water Viscosity (mPa·s) 

1 

1 

10 

10 

8 
2 8 5 
3 5 3 
4 3 2 
5 2 1 

Changing the viscosity of the water phase significantly affects the variation of dis-
placement efficiency over time. As the viscosity ratio decreases, the displacement effi-
ciency also decreases (Figure 9). For instance, at 30 s, when the viscosity ratio is 10, the 
displacement efficiency reaches 62%; when the viscosity ratio decreases to 2, the displace-
ment efficiency drops to 45%. Therefore, variations in the dynamic viscosity of the water 
phase have a significant impact on the flow of oil and water phases in single nanoscale 
pores. When the viscosity ratio is 10:3 and 10:2, the displacement efficiency curves are 
close, indicating that within these viscosity ratio ranges, the viscosity of the water phase 
has a relatively minor effect on imbibition displacement. 

 
Figure 9. Change displacement rate curve of aqueous phase viscosity. 

It can be seen from Figures 10 and 11, when reducing the viscosity of crude oil from 
10 mPa·s to 2 mPa·s, an observation at 15 s shows that the residual volume of crude oil 
decreases from 98% to 27%, indicating a 71% improvement in displacement efficiency. 
This demonstrates that reducing the viscosity of crude oil significantly enhances displace-
ment efficiency. The viscosity ratio between the oil and water phases has a significant im-
pact on flow performance, especially when the viscosity of the oil phase is significantly 
higher than that of the water phase, restricting the flow of the oil phase in nanoscale pores. 
Conversely, increasing the viscosity of water from 1 mPa·s to 8 mPa·s results in only a 5% 
increase in displacement efficiency at 15 s. Therefore, variations in component viscosities 
affect the flow behavior of oil and water phases in nanoscale pores. At the nanoscale, vis-
cosity ratios simultaneously influence the flow characteristics of both phases, with lower 
viscosity fluids exhibiting higher mobility in nanoscale pores. Thus, in wellbore or chem-
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It can be seen from Figures 10 and 11, when reducing the viscosity of crude oil from
10 mPa·s to 2 mPa·s, an observation at 15 s shows that the residual volume of crude oil
decreases from 98% to 27%, indicating a 71% improvement in displacement efficiency. This
demonstrates that reducing the viscosity of crude oil significantly enhances displacement
efficiency. The viscosity ratio between the oil and water phases has a significant impact
on flow performance, especially when the viscosity of the oil phase is significantly higher
than that of the water phase, restricting the flow of the oil phase in nanoscale pores.
Conversely, increasing the viscosity of water from 1 mPa·s to 8 mPa·s results in only a 5%
increase in displacement efficiency at 15 s. Therefore, variations in component viscosities
affect the flow behavior of oil and water phases in nanoscale pores. At the nanoscale,
viscosity ratios simultaneously influence the flow characteristics of both phases, with lower
viscosity fluids exhibiting higher mobility in nanoscale pores. Thus, in wellbore or chemical
flooding processes, reducing the viscosity of crude oil through methods such as injecting
viscosity reducers can enhance oil flowability, contributing to increased recovery rates and
operational efficiency.
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3.3. Wettability Impact on Nanopore Flow

The wettability directly influences the distribution, flow, and interactions of fluids in
nanoscale pores, thereby affecting flow performance and the recovery efficiency of oil and
gas. In investigating the imbibition process in single nanoscale pores, the wettability plays a
crucial role. By altering the contact angle, the imbibition behavior of shale oil and fracturing
fluid under different wetting conditions can be studied. Curves depicting displacement
efficiency over time under various conditions can be plotted to delve deeper into the impact
of wettability on two-phase flow. The model is initially set with a pore diameter of 15 nm,
inlet pressure under static conditions, and water-wet pore walls (Figure 12).
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The displacement efficiency varies significantly over time under different wettability
conditions (Figures 13 and 14). Smaller contact angles correspond to shorter imbibition
displacement reaction times. Under the water-wet conditions, smaller contact angles in
nanoscale pores result in greater pressure gradients and differentials between oil and water
phases, facilitating easier water entry into the nanoscale pores and promoting fluid flow
and slip along the pore walls. However, increasing the static contact angle prolongs the
imbibition time for oil recovery. At 20 s, the displacement efficiency is 55% when the contact
angle is 30◦, whereas it decreases to 23% when the contact angle is 60◦, representing a 32%
reduction in displacement efficiency. Therefore, reducing wettability under the water-wet
conditions enhances the flow rate of crude oil, demonstrating a linear decrease trend in
displacement efficiency.
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3.4. Pressure Impact on Nanopore Flow

In the flow of single nanoscale pores, pressure inevitably affects two-phase flow. It
directly influences the physical properties of fluids, interactions between phases, and flow
patterns. We studied a single nanoscale pore with a diameter of 15 nm and a contact angle
of 60◦. We then investigated the impact of different inlet pressure conditions (2 MPa, 4 MPa,
6 MPa, 8 MPa, and 10 MPa) on the flow patterns of two phases (Figure 15).
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Figure 15. Flow diagram at different pressures at 20 and 25 s. (a) Flow diagram at different pressures
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In the flow of single nanoscale pores under pressure, higher pressures lead to increased
displacement efficiency of crude oil, showing a proportional relationship with pressure
increase and a consistent trend (Figure 16). As pressure increases, the residual volume
of crude oil decreases, demonstrating an exponential relationship with the displacement
efficiency (Figure 17). When pressure increases from 2 MPa to 10 MPa, the displacement
efficiency decreases from 66% to 55%, a reduction of 11%. Pressure variations affect the
interfacial tension between phases within the pore, thereby altering capillary pressures.
Increased pressure enhances both capillary forces influenced by pressure and gravitational
effects. Therefore, the influence of pressure on flow in single nanoscale pores is relatively
more significant compared to other factors.
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4. Multi-Factor Nanopore Flow Analysis
4.1. Pore Size and Contact Angle Synergy

In shale oil reservoirs, the widespread distribution of nanopores endows capillary
forces with a vital role. The contact angle within these nanopores is not static. It undergoes
dynamic adjustments in response to subtle changes in pore structure and precise control
of pressure. Taking into account the interplay of these factors, the research has unveiled
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a precise quantitative relationship between the contact angle and the pore radius at the
nanoscale, which is quantitatively described by the following equation:

θ = θi + 13.115 ln
(

r
ri

)
(20)

where θ is the contact angle at a constant pore radius; ri is the initial pore radius, taken as
15 nm, and θi is the initial contact angle, taken as 45◦ under initial conditions.

According to the quantitative relationship, an increase in pore size leads to an en-
largement of the contact angle in single nanopores (Figure 18). The model results indicate
that as the pore radius increases, the rise in contact angle results in a reduction in the
residual oil volume, which exhibits a logarithmic relationship (Figure 19). In the nanoscale
pore environment, a smaller pore size implies a stronger capillary force on the fluid, and
a smaller contact angle means that the two-phase fluid is more likely to flow under the
influence of capillary forces. When the ratio of the pore radius to the initial pore radius
increases from 2 to 6, the residual oil volume decreases from 57% to 31%, and the flow effi-
ciency is reduced by 26%. The synergistic effect of pore size and contact angle determines
the phase distribution of fluids within nanopores. In an oil–water two-phase systems,
different pore sizes and surface wettability conditions lead to variations in the distribution
of water and oil phases within the pores. Smaller pore sizes and hydrophilic surfaces favor
the distribution of the water phase in the pores, while larger pore sizes and hydrophobic
surfaces may cause the oil phase to preferentially occupy the pores.
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4.2. Pressure and Contact Angle Synergy

The interaction between pressure and contact angle profoundly influences the laws
of fluid motion, which is particularly crucial in practical applications such as oil and gas
production, energy storage, and filtration technology. As the pore size continuously varies,
the interfacial tension between the oil and water also exhibits dynamic characteristics.
Through extensive experimental research, it has been found that the wetting angle and
interfacial tension change with variations in pressure, enabling the derivation of a mathe-
matical correlation equation between the wetting angle under specific pressure conditions
and the initial wetting angle.

θ = θi ·
(

p
pi

)τ

(21)

where τ represents the wetting modulus, a dimensionless constant typically ranging from
0.2 to 0.3, (here taken as 0.25); θi is the initial contact angle, taken as 45◦ under initial
conditions; and pi is the initial inlet pressure, taken as 2 MPa.

The pressure and contact angle synergistic flow behavior at 30 s can be shown in
Figure 20. Increasing pressure can alter the interaction between fluids and solid surfaces,
thereby affecting the contact angle. Under the specific conditions, as pressure increases,
the wettability of the fluid on the solid surface may enhance, leading to an increase in the
contact angle. It can be seen from Figure 21, when the pressure and contact angle jointly
influence flow in single nanometer-sized pores, the residual volume of crude oil shows an
exponential relationship with pressure. As the pressure increases, the contact angle within
a single nanometer-sized pore also increases, thereby influencing the two-phase flow within
the pore. When the pressure increases from 2 MPa to 6 MPa, the flow efficiency decreases
by 21%. Considering the synergistic effect of the pressure and contact angle, this may lead
to a transition in the two-phase flow patterns. Under the high-pressure conditions, the
capillary-driven water flooding process in single nanometer-sized pores may transition to
pressure-driven flow. Hence, the two-phase flow in single nanometer-sized pores exhibits
complex exponential relationship variations under the high-pressure conditions.
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4.3. Pressure, Pore Size, and Contact Angle Synergy

The contact angle and interfacial tension are influenced by pore diameter and pore
pressure, where changes in the pore diameter are a result of variations in the pore pressure.
The interactions between phases within nanoscale pores are typically complex, necessitating
consideration of how pore deformation and pressure changes affect them. To establish
a mathematical model of phase interactions in a dynamic pressure field, it is essential to
integrate the synergistic effects of pressure and pore diameter(Table 2). The mathematical
model for contact angle variation under the synergistic action of pressure and pore diameter
can be expressed as follows:

θ =

{
θi + 13.115 ln

(
1 −

[(1 + ϕ) + (1 − ϕ)υ] · pe f f

E(1 − ϕ)

)}
·
(

p
pi

)τ

(22)
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Table 2. The change of contact angle under the influence of multiple factors.

Inlet Pressure
/MPa Porosity/% Poisson’s Ratio Effective Stress

/MPa
Initial Pressure

/MPa
Young’s Modulus

/MPa
Contact
Angle/◦

2 0.1 0.15 0.5 2 5 41◦

3 0.1 0.15 0.5 2 5 48.38◦

4 0.1 0.15 0.5 2 5 53.71◦

5 0.1 0.15 0.5 2 5 57.81◦

6 0.1 0.15 0.5 2 5 61.5◦

Pressure, pore diameter, and contact angle simultaneously influence flow in nanoscale
pores. As the pressure decreases, the dimensionless contact angle decreases, while interfacial
tension increases, leading to an increase in capillary forces (Figure 22). When considering
the synergistic effects of pore diameter and pressure variations, the contact angle increases,
with the increase in interfacial tension being less significant. Dynamic capillary forces become
prominent, thereby restricting crude oil flow (Figure 23). The residual volume of crude oil
decreases from 42% to 26%, a reduction of 16%. When considering the combined influence of
pressure, pore diameter, and contact angle, the impact of pressure on crude oil flow efficiency
is relatively minor compared to considering only two of these factors.
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5. Conclusions

Firstly, this study focuses on the imbibition flow laws of single nanopores. More-
over, the imbibition flow in single nanopores is a complex phenomenon occurring at the
nanoscale, influenced by the various factors, including pore size, pressure, viscosity ratio,
wettability, and the coupled effects of these factors. In the imbibition process, the size of
the nanopore is a critical factor in determining the efficiency of imbibition. Specifically,
smaller pore sizes can enhance capillary forces, thereby facilitating the adsorption and
flow of liquids within the pores, effectively increasing the rate of imbibition. In contrast,
larger pore sizes will reduce capillary forces, thereby decreasing the rate of imbibition. The
intentional conclusions are as follows:

1. Pressure is a significant factor affecting the flow of liquid in pores, influencing not
only the velocity of liquid flow but also altering the interactive forces within the pores.
Higher pressure levels can enhance capillary forces, propelling the liquid towards the
central region of the pores, thereby facilitating the imbibition process. Conversely, lower
pressure levels weaken capillary forces, restricting the movement of the liquid and leading
to a decrease in the rate of imbibition.

2. The viscosity ratio also significantly impacts the imbibition flow in single nanopores.
A lower viscosity ratio implies that the fluid flows more smoothly through the pores,
leading to higher imbibition rates. Conversely, a higher viscosity ratio can impede fluid
flow, thereby reducing the imbibition rate. Changes in the viscosity ratio between oil and
water phases directly affect the relative permeability. When the viscosity of the oil phase is
significantly higher than that of the water phase, the flow of oil in nanopores is restricted.

3. Wettability is another critical factor influencing the interaction between liquids
and pore walls. When the pore walls exhibit hydrophilicity, liquids are more readily
adsorbed onto the pore walls and more easily propelled into the pores, which facilitates the
imbibition reaction. Conversely, if the pore walls exhibit hydrophobicity, the adsorption and
imbibition rates of the liquid will decrease, leading to a reduction in imbibition efficiency.
This illustrates the significant role that wettability plays in controlling the dynamic behavior
of liquids within the pores.
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