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Sierpiński and Marcin Kłos

Received: 16 May 2024

Revised: 10 July 2024

Accepted: 24 July 2024

Published: 20 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Reliable Energy Optimization Strategy for Fuel Cell Hybrid
Electric Vehicles Considering Fuel Cell and Battery Health
Cong Ji 1, Elkhatib Kamal 2,3,* and Reza Ghorbani 4

1 School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu Province, China;
230149312@seu.edu.cn

2 Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia
University, Menouf 32952, Egypt

3 Ecole Centrale de Nantes, LS2N CNRS, 44300 Nantes, France
4 Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA; rezag@hawaii.edu
* Correspondence: elkateb.kamal@gmail.com or elkhatib.ibrahim@ec-nantes.fr

Abstract: To enhance the fuel efficiency of fuel cell hybrid electric vehicles (FCHEVs), we propose a
hierarchical energy management strategy (HEMS) to efficiently allocate power to a hybrid system
comprising a fuel cell and a battery. Firstly, the upper-layer supervisor employs a fuzzy fault-
tolerant control and prediction strategy for the battery and fuel cell management system, ensuring
vehicle stability and maintaining a healthy state of charge for both the battery and fuel cell, even
during faults. Secondly, in the lower layer, dynamic programming and Pontryagin’s minimum
principle are utilized to distribute the necessary power between the fuel cell system and the battery.
This layer also incorporates an optimized proportional-integral controller for precise tracking of
vehicle subsystem set-points. Finally, we compare the economic and dynamic performance of the
vehicle using HEMS with other strategies, such as the equivalent consumption minimization strategy
and fuzzy logic control strategy. Simulation results demonstrate that HEMS reduces hydrogen
consumption and enhances overall vehicle energy efficiency across all operating conditions, indicating
superior economic performance. Additionally, the dynamic performance of the vehicle shows
significant improvement.

Keywords: hybrid electric vehicle; battery; fuel cell; energy management algorithms; optimal control;
fault-tolerant control

1. Introduction
1.1. Background and Literature Survey

The high cost of oil, the limited quantity of this resource on the planet and the pollution
generated by its use encourage populations, industries and governments to opt for other
sources of energy for the transportation of goods and people. Therefore, the use of “hybrid
electric vehicles (HEVs)” has become an urgent necessity today. On the one hand, the
number of vehicles based on internal combustion engines (ICEs) is increasing; therefore,
the consumption of fossil fuels is becoming more and more massive, and the concentration
of greenhouse gases in the atmosphere is reaching worrying levels. Considerable research
effort and considerable investment have been made in advanced battery technologies for
electric vehicles. However, the major challenge remains the development of technologies
and systems that ensure good performance and long range at a competitive cost. Today,
one of the promising solutions is based on the design of a multi-source system, also known
as a hybrid electric energy system. A hybrid energy source system is an important solution
to extend the distances covered (vehicle autonomy) and to meet the power requirements of
electric vehicles (EVs), especially for transient regimes (high acceleration, high deceleration
and braking) [1].
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Proton exchange membrane fuel cells (PEMFCs) in transportation applications are
a promising solution to the energy crisis and environmental pollution because they are
clean energy devices with high efficiency and low operating temperatures [2,3]. The
advantages of fuel cell electric vehicles (FCEVs) are fast charging time, high driving range,
noiseless operation and zero local emissions [3,4]. The disadvantages of FCEVs are a slow
dynamic response and inability to recover braking power. On the other hand, lithium-ion
batteries are an energy storage system with a fast dynamic response, low self-discharge,
long lifetime and high energy density. Thus, the battery is usually used to compensate for
the disadvantages of the pure FCEV. Thus, the fuel cell hybrid electric vehicle (FCHEV) is
developed, which is powered by the PEMFC and the battery. This type of system is based
on the combination of two or more energy sources. Thus, the disadvantages of one source
can be compensated for by the advantages of the others and vice versa.

A lot of research is currently being done on electrical energy storage systems [5–9],
including the optimization of vehicle energy management [9–12], state-of-charge (SOC)
estimation techniques [13–17] and cell aging [18,19]. In addition, the scientific literature con-
tains several works that study the value of energy storage units to improve the performance
of multi-source systems dedicated to transportation applications [20–22].

More and more studies have been conducted to design energy management strategies
(EMSs) for FCHEVs [23–28]. EMSs are mainly classified into rule-based and optimization-
based strategies [29–31].

EMSs based on rule-based methodologies offer advantages such as low computational
complexity, practicality and reliability. These primarily include state machine control
(SMC) [32–35] and fuzzy logic control [36–39], among others. The formulation of control
rules typically relies on “If . . . Then” based on engineering experience. For instance, the
authors of [32–35] devised an EMS based on SMC comprising eight operational modes,
which are selected based on the bus demand power and the auxiliary power state of charge
(SOC). However, simplistic rules often fail to meet the vehicle’s economic performance
requirements. In another study [36–39], a two-degree-of-freedom fuzzy logic controller
was implemented in an electric vehicle with an “FC + B” configuration. This approach
introduces a fuzzy energy allocation method based on expert experience with respect to
uncertainty and validates it using an advisor platform. The study in [40] integrated the
particle swarm optimization (PSO) algorithm into an enhanced FLC strategy, optimizing the
FLC membership function using PSO to enhance the fuel economy of FCHEVs. Nonetheless,
the reliance on historical data and expert knowledge in rule-based strategies impedes
adaptation to real-time driving conditions and does not guarantee optimal outcomes.

In recent years, EMSs based on optimization strategies have garnered significant
attention and research efforts. These systems can generally be categorized into two types:
global optimization and instantaneous optimization. Compared to EMSs based on rule-
based methodologies, EMSs based on optimization typically exhibit superior performance
in enhancing vehicle fuel economy and power durability [41,42].

Predictive and dynamic programming (DP) [43–51] is widely studied as a global
optimization algorithm in hybrid power systems and is capable of obtaining optimal control
outcomes for predefined operating conditions. The study in [52] proposed an enhanced
DP-based control strategy aimed at minimizing system operating costs by exploring the
impact of state-of-charge (SOC) penalty factors and the initial SOC. However, DP-based
strategies often suffer from complexity in calculation, offline applicability only and the
challenge of “dimension disaster” [53].

EMSs based on instantaneous optimization often utilize a sampling interval as the
optimization window to establish an objective function for achieving instantaneous control
optimization goals. One prominent strategy in this category is the equivalent consump-
tion minimization strategy (ECMS) [54–56], which introduces an equivalent factor (EF)
to convert battery power consumption into equivalent fuel consumption. Li et al. [57]
implemented the ECMS strategy with a fixed EF value for FCHEVs, demonstrating its
cost-effectiveness compared to rule-based EMSs. However, the fixed EF value limits the
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strategy’s applicability to known driving cycles. Tian et al. [58] proposed an adaptive power
distribution strategy based on ECMS; they regulated the EF value through a neural network
velocity predictor. Li et al. [32] presented an improved ECMS strategy incorporating the
lithium battery SOC that dynamically adjusts the EF value based on SOC changes to mini-
mize total equivalent hydrogen consumption (EHC) under unknown driving conditions.

Another typical instantaneous optimization strategy is Pontryagin’s minimum prin-
ciple (PMP) [59], which transforms the global optimization problem into a series of min-
imization problems, obtaining the optimal trajectory of the costate by minimizing the
Hamiltonian function at each step [60]. The costate in the PMP algorithm equates power
consumption between different sources to the equivalent hydrogen consumption, similar
to EF in ECMS [61]. PMP-based EMSs adjust the costate value to achieve optimal load
power distribution under specific driving conditions, thereby minimizing FCHEV hydro-
gen consumption. Meng et al. [62] developed a hierarchical PMP-based EMS, achieving an
optimal load demand power configuration under a given driving cycle and demonstrating
its superiority over DP-based EMSs. However, this method is limited to specific driving
conditions, and the costate value remains fixed throughout the driving cycle, restricting its
applicability. Li et al. [63] proposed an adaptive PMP-based EMS for FCHEVs, adjusting
the costate value online using a Markov velocity predictor. Yang et al. [64] employed a
linear weighted particle swarm optimization (PSO) algorithm to update the costate value
for different driving conditions, achieving a 16% improvement in system fuel economy
compared to a power following control (PFC) strategy. Onori and Tribioli [65] utilized
lookup table methods to select the appropriate costate, improving fuel economy by 15%
compared to a state machine control (SMC) EMS.

The aforementioned EMSs typically prioritize minimal hydrogen consumption as
the optimization objective to achieve satisfactory fuel economy, often overlooking system
lifespan considerations.

Based on global EMSs, there are also some works that intend to ensure the continuity
of the operation of the the fuel cell (FC) and the lithium-ion battery during fault actions.
This is called fault-tolerant control (FTC). The fault is detected, isolated and identified
thanks to a diagnostic system [66], and an adjustment to the controller’s parameters is
made to accommodate the fault. This is referred to as active FTC [67]. There is also
passive FTC [68], which is also called robust control. The authors in [69–75] propose
active FTC for a hybrid powertrain (FC/battery) applied to an urban bus. Lebreton
et al. [76] developed active FTC for water management problems in the FC. However, the
literature concerning the optimization of operating conditions to improve the durability of
PEMFC is not yet very extensive. Furthermore, ensuring the durability of fuel cells (FCs)
poses a significant challenge that must be addressed for the commercialization and mass
production of FCHEVs [77]. The FC stack comprises various materials, leading to diverse
reversible and irreversible degradation mechanisms within the FC. Irreversible degradation
mechanisms directly impact FC performance over time, with catalyst layer microporous
structure modification, carbon support corrosion, polymer membrane degradation and
catalyst dissolution/redeposition being the primary contributors [78]. These complex
degradation phenomena can result in performance losses in the FC stack. Notably, adverse
operating conditions and dynamic power distribution dynamics are the primary causes
of these degradation mechanisms [79]. Studies indicate that heavy loads, frequent load
fluctuations, and prolonged start–stop times accelerate FC degradation, with frequent load
fluctuations exerting the most significant impact on FC lifespan [80]. Zhang and Tao [81]
devised a fuzzy logic controller with a low-pass filter for FCHEV to enhance FC durability.
Similarly, Florescu et al. [82] proposed an EMS that accounts for FC degradation factors.
Increasing the lifetime of PEMFCs is still one of the most important issues related to the use
of this technology. There are two concomitant approaches to limit the degradation of fuel
cells. The first is in the field of materials and involves finding more resistant and robust
materials. The second solution is to act at the system level and, more particularly, on the
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operating conditions (in particular the temperature, pressure, relative humidity, sensor and
actuator faults, etc.).

However, the abovementioned studies [69–82] only focus on the FC and lithium-ion
battery durability and ignore the fuel economy of the FCHEV.

1.2. Objectives

The main objective of this paper is to develop an optimal management strategy to
improve the energy efficiency of hybrid vehicles (fuel cell/battery). We seek to minimize as
much as possible the consumption of hydrogen while maintaining the SOC of the battery. In
addition, the main objective of existing battery and fuel cell management system (BFCMS)
control strategies is to preserve the system and improve performance. The main aims that
can be considered for developing an EMS are mentioned in Figure 1. Firstly, the energy
sources used in this study, the modeling of the hybrid system and the choice of the type
of power electronic converters are presented. Secondly, an improved energy management
method based on dynamic programming (DP) and Pontryagin’s minimum principle (PMP)
are proposed. Thirdly, in order to maximize the extracted energy and the lifetimes of
lithium-ion batteries and proton-exchange-membrane fuel cell (PEMFC), it is necessary
to develop better battery and fuel cell management systems (BFCMSs) and thus improve
SOC estimation algorithms specifically for high-capacity batteries with a large number of
cells. SOC estimation is an important data point, because knowing the current capacity
of the battery makes it possible to accurately estimate the number of kilometers that can
be driven by the vehicle. A more accurate algorithm allows the vehicle to travel more
kilometers and increases the user’s sense of confidence and decrease the anxiety related
to the risk of breaking down with the vehicle. Finally, a model of a hybrid vehicle is built
using TruckMaker/MATLAB/Simulink software.

Figure 1. The main aims that can be considered for developing an EMS.

1.3. Main Contributions

Given the aforementioned considerations, this paper propose an intelligent hierarchical
supervisory energy management strategy (HSEMS) (cf. Section 4) to strike a balance
between fuel cell hydrogen consumption, degradation of the fuel cell lifespan and the
durability of the PEMFC and lithium-ion battery of a FCHEV in the presence of sensor
and/or actuator faults. The key contributions and novel aspects of this study are outlined
as follows:

• The problem is the instantaneous distribution of the electrical power requested from
the two energy sources while optimizing as much as possible the global consumption
of hydrogen on a given mission profile. Energy management strategies based on
improved energy management methods based on dynamic programming (DP) are
developed. Then, we present a method of Pontryagin’s minimum principle (PMP).
These strategies lead the fuel cell to operate at the points of best performance while
maintaining the SOC of the battery function. We then compare our method with two



Energies 2024, 17, 4686 5 of 26

other strategies based on a fuzzy-logicstrategy-based EMS (FLS) and an equivalent
consumption minimization strategy (ECMS).

• The estimation of the SOC of the battery is proposed. An algorithm supported by a
theory from the field of advanced control is used for the first time for the estimation of
the SOC. It is chosen for its accuracy and its low computational resources required,
which make it well-suited for the characteristics required for light electric vehicles.

• The work presented in this manuscript concerns the implementation of a better BFCMS
methodology that takes into account the occurrence of PEMFC and battery faults. The
developed strategy is FTC that aims to limit the occurrence of and reduce the effects
of faults. FTC based on an adaptive fuzzy observer (AFO) using the linear matrix
inequality (LMI) allows for sufficiently early mitigation of the fault to reduce its
consequences (performance decrease and degradations).

• Simulation results using TruckMaker/MATLAB software confirm that the proposed
approach leads to optimal energy consumption of the vehicle for any unknown driving
cycles and compensates for battery fault effects.

In order to implement the proposed HSEMS, firstly, a reliable model of the FCHEV
corresponding to a bus that was developed using professional TruckMaker/MATLAB
software (cf. Section 2.4) is proposed. A FCHEV is characterized by the same structure as a
series hybrid vehicle in which the functions of the internal combustion engine (ICE)–electric
generator system are performed by a PEMFC.

Secondly, an intelligent HSEMS (hierarchical supervisory energy management strat-
egy) (cf. Section 4) is designed in order to minimize the total energy consumption; it gives
better fuel cell and battery life and, therefore, increases the overall bus energy efficiency
based on the merging of adaptive fuzzy logic, dynamic programming (DP) and Pontrya-
gin’s minimum principle. Combining these techniques takes advantage of their strengths
while mitigating their weaknesses.

The proposed HSEMS strategy consists of two control levels. In the second level
(upper level), a supervisory battery and fuel cell management system (BFCMS) is designed
to generate healthy PEMFCs and the battery SOC for the first level and gives acceptable
performance during fault actions.

In the first level (lower level), an advanced energy optimization strategy based on
adaptive fuzzy logic, dynamic programming (DP) and Pontryagin’s minimum principle
is developed to minimize total energy consumption and, therefore, maximize the overall
bus energy efficiency. In this level, the overall proposed strategies (improved energy
management based on dynamic programming (DP) and Pontryagin’s minimum principle
(PMP)) are designed.

In addition, in the first level, an adaptive fuzzy-logic-controller-based proportional-
integral controller is used to give optimal vehicle subsystem set-point tracking, which is
generated at the second level.

The validation of the overall proposed strategies (DP and PMP) (cf. Sections 4.2 and 5.1)
is performed by comparing them using the equivalent consumption minimization strategy
(ECMS) given in [54] (cf. Section 5.2) and [32,51] (cf. Section 5.3).

The proposed strategy has several advantages: (i) it increases the studied bus energy
efficiency and minimizes the total energy consumption; (ii) it detects and compensates
for the effects of sensor and/or actuator faults of the PEMFC and battery for the studied
bus; (iii) the proposed DP and PMP reduces hydrogen consumption by 9.8% and 8.86%,
respectively, compared with the logic-strategy-based EMS (FLS) strategy under the same
driving conditions.

1.4. Plan of the Document

After this general introduction, Section 2 presents the modeling of the hydrogen
FC/battery hybrid vehicle. The formulation of the optimization problems are presented in
Section 3. In Section 4, the proposed HSEMS and the details regarding its adaptation to
the problem are presented. The optimized EMSs based on the fuzzy-logic-strategy-based
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EMS (FLS) and the equivalent consumption minimization strategy (ECMS) are given in
Section 5. Validation methods by simulation using the TruckMaker and MATLAB/Simulink
software are presented in Section 6. In Section 7, a conclusion summarizes the challenges
and contributions of this paper as well as suggestions for future work in order to improve
the present work.

2. Modeling of the Studied Vehicle

The structure of the studied bus (cf. Figure 2) consists of a PEMFC as the main power
source connected to a high-voltage DC/DC converter and battery as an auxiliary power
source connected to a low-voltage bi-directional DC/DC converter, a DC bus and a traction
machine. The hybrid powertrain architecture is composed of a primary source (energy
source), which is a FC, and a secondary source (power source), which is a battery. The
choice of these components and technologies is based on the current market and future
visions of possible technologies [83].

Figure 2. Structure of the bus powertrain.

2.1. Dynamics of the Vehicle

The fundamental principles of dynamics link the forces and accelerations of a solid,
and according to Newton’s second law, the traction force (Ft) of the vehicle can be written
as [51]:

Ft = δm dv
dt +

1
2 ρCd Av2 + mg f cos(α) + mgsin(α) (1)

where v is the bus speed, α is the slope, ρ is the air density, m is the bus mass, A is the
frontal area, and Cd is a constant called the drag coefficient that depends on the shape of
the vehicle. Based on Ft, v and the wheel radius (r), the wheel torque (Tw) and its rotation
speed (ww) are given by [51]:

Tw = r · Ft, ww = v/r (2)

Then, the rotational speed (wm) and torque (Tm) are calculated by:

Tm =

{
Tw/(η f dR f d), Tw ≥ 0
η f d · Tw/R f d, Tw < 0

, wm = ww · R f d =
v·R f d

r

where η f d is the transmission efficiency and R f d is the gear ratio. The power demand (Pt) is
written as:

Pt =

{
Tm · wm/ηm, Tm ≥ 0
ηm · Tm · wm, Tm < 0

(3)
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where ηm is the motor efficiency. The total power demand (Pdem) includes consumption by
the auxiliaries (Paux) and is written as:

Pdem = Pt + Paux (4)

2.2. Fuel Cell System Model

The model is composed of several cells mounted in series/parallel to obtain the
characteristics necessary for the desired dimensioning. The cell is the main source of energy
in the vehicle. Therefore, it must be able to provide sufficient power to the vehicle so that
the vehicle can run at the maximum speed in its specifications. The instantaneous hydrogen
consumption (ṁh) is given by [28]:

ṁh = N · Mh/n · FIstack (5)

where N is the number of cells, Mh is the molar mass of hydrogen, n is the transferred
electrons, F is Faraday’s constant, Istack is the fuel cell stack current, and the efficiency of
the PEMFC is given by

ηFC = PFC/ṁh · 120 MJ · kg−1 (6)

where PFC is the PEMFC power.

2.3. The Battery Model

The model used integrates unit cells connected in series/parallel. It is composed of
an open-circuit voltage (Eo) of the battery, the ohmic resistance (Rbat) and an equivalent
capacitor (Cbat) modeling the transient aspects of the battery’s behavior (cf. Figure 3). The
battery voltage (Vbat) is given by [74]:

Vbat = Eo − Rbat Ibat − VCbat (7)

where Ibat is the battery current. The SOC change rate is given by [74]: I revised all

d(SOC)
dt = − Ibat

Qbat
(8)

where Qbat is the battery capacity. The battery power (Pbat) is given by:

Pbat = IbatVbat (9)

Also, the battery SOC is given by:

SOC = SOC(0)− 1
Cbat

∫
Ibatdt (10)

Therefore the SOC change rate can be expressed by:

d(SOC)
dt = − Eo−

√
E2

o−4RbatPbat
2RbatQbat

(11)

Note that Eo is nonlinear; therefore, the battery model is nonlinear.

Figure 3. Electrical model of the battery.
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2.4. FCHEV Design Using TruckMaker

In order to obtain precise validation of the proposed control strategies, evaluation tests
of the control strategies discussed in this paper are performed on a high-fidelity simulation
platform based on TruckMaker and MATLAB/Simulink software (cf. Figure 4).

Figure 4. The studied FCHEV modeled using TruckMaker software.

The powertrain architecture of a hybrid vehicle modeled using the TruckMaker soft-
ware consists of several interconnected subsystems, allowing it to provide an overall
dynamic behavior of the powertrain that is comparable to the real system’s operation.
These subsystems can be classified into three distinct categories: (i) the powertrain’s control
strategy; (ii) the control units of the motors, the mechanical transmission and the electri-
cal power supply system; and (iii) the electromechanical and hydraulic components of
the powertrain.

In the proposed work, we are particularly interested in the development of simula-
tion model of the overall high-level control strategy of the studied hybrid powertrain. In
the TruckMaker simulation platform, the control layer is grouped inside a single control
block containing all the high-level control subsystems. This block manages the operating
states of the powertrain and generates the control set-point values for the different elec-
tromechanical components based on the inputs provided by the driver and on the current
driving conditions. The structure of the control blocks in TruckMaker differs according
to the powertrain’s architecture. For the hybrid parallel powertrain on which our work
is based, the control block must perform the following tasks: (i) braking management
and monitoring the vehicle’s operating state; (ii) interpretation of the accelerator pedal
position; (iii) planning of the energy sharing between the motors (energy management)
and generation of corresponding torque set-point values; (iv) power supply management
(batteries and converters); and (v) braking management.
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3. Formulation of the Optimization Problem

The decision-making problem for the vehicle is to find the best way to distribute, store
and consume energy to satisfy the driver’s demand while optimizing fuel consumption over
the entire mission. The criterion to be minimized is the total hydrogen (H2) consumption for
a given mission. The control objective function is to minimize hydrogen consumption [1]:

J = min
∫ t f +Hp

tk+1 ṁh(PFC(t))dt (12)

where ṁh is the instantaneous hydrogen consumption, which depends on the PEMFC
power supplied (PFC) and its total efficiency (ηFC); tk is the current time step, and Hp is the
prediction length. The total demand power Pdem is given by:

Pdem = PFC(t).ηDC−DC + Pbat(t) ∀t (13)

where ηDC−DC is the DC/DC efficiency. Therefore (11) can be rewritten as:

SȮC(t) = f (SOC, PFC) =
−Ibat
Qbat

=
Eo−

√
E2

o−4RbatPbat
2RbatQbat

, (14)

The first constraint is related to the limits of the battery SOC. We impose the following
boundary conditions, as given by (15)–(17):

SOCt f +1 = SOCt f +Hp = SOCre f (15)

where SOCre f are the SOC set-points, SOCt f +Hp is the SOC at the end of the mission, and
SOCt f +1 is the SOC at the initial time.

PFC(t) ∈ (max(PFC,min, (Pdem − Pbat,max)/ηDC−DC),
min(PFC,max, (Pdem − Pbat,min)/ηDC−DC))

(16)

Finally, the last constraint concerns the storage element. It is necessary to restrict the
evolution of the SOC in such a way that it remains within the range recommended by the
equipment manufacturer. These constraint limits can be expressed as follows:

∆PFC,min ≤ ∆PFC ≤ ∆PFC,max
Pbat,min ≤ Pbat ≤ Pbat,max

SOCmin ≤ SOC ≤ SOCmax

(17)

where PFC,max, PFC,min, Pbat,max, Pbat,min, SOCmax and SOCmin are the maximum and mini-
mum power of the PEMFC, battery and SOC, respectively.

4. Overall Proposed Control Architecture and Main Components

Managing the interactions between the various components of the hybrid powertrain
while respecting the actuators’ physical limitations and passenger comfort requirements to
achieve the most efficient operation of the vehicle is the main challenge when developing a
control strategy. From this perspective, the overall hierarchical supervisory energy man-
agement strategy (HSEMS) architecture proposed in this paper is designed to optimize the
power distribution between energy sources and reduce torque jolts to improve powertrain
reliability and passenger comfort. The proposed HSEMS strategy is given in Figure 5 and
consists of two control levels.

In the upper level (second), a supervisory fuzzy fault-tolerant control (FFTC) scheme
estimates a healthy SOC for the PEMFCs and the battery and gives acceptable performance
during fault actions.
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Figure 5. The proposed overall control strategy.

Energy optimization is performed at the first control level and is based on dynamic
programming (DP) and Pontryagin’s minimum principle (PMP); it has been developed
to minimize total energy consumption and, therefore, maximize the overall bus energy
efficiency. At this level, the overall proposed strategies (improved energy management
based on DP and PMP) are designed (cf. Sections 4.2 and 5.1). A comparative study in
terms of hydrogen consumption is made with two other strategies that are proposed for
level 1: The first one is called the equivalent consumption minimization strategy (ECMS)
(cf. Section 5.2) [54]. The second approach is a fuzzy logic strategy (FLS)-based EMS
(cf. Section 5.3) [32], which is a very simple strategy based on the constraints imposed by
the sources. The treated DP and PMP strategies present good improvement to hydrogen
consumption by adopting a good management strategy for the electrical energy in the
hybrid system.

4.1. Supervisory Fuzzy FTC and Prediction Strategy (Level 2: SFFTC)
4.1.1. Supervisory Fuzzy FTC

The main objective of the supervisory fuzzy fault-tolerant control (SFFTC) is to handle
and regulate battery faults and establish a healthy state-of-charge (SOC) set-point, which is
crucial for achieving a robust and optimal energy management system (EMS) at the first
level, thereby influencing fuel cell hybrid electric vehicle (FCHEV) power optimization.
The overall design of the proposed FFTC is shown in Figure 6. This section presents a
comprehensive fault diagnosis and control strategy for battery cells that aims to identify
current and/or voltage sensor faults and mitigate their impacts. To execute this diagnostic
and control strategy, fuzzy fault-tolerant control (FFTC) utilizing a fuzzy adaptive observer
is proposed to estimate and compensate for battery faults, including both current and
voltage sensor faults. The parallel distributed compensation (PDC) concept [76] is applied
to develop the fuzzy control and fuzzy adaptive observer using Takagi–Sugeno (TS) fuzzy
models. Robust stabilization conditions are derived based on Lyapunov stability theory
for voltage sensor faults, current actuator faults and state variables that are not directly
measurable. These conditions are expressed as linear matrix inequalities (LMIs).
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The flowchart of the proposed fuzzy logic controller (FLC)-based active fault-tolerant
control system (AFTCS) is shown in Figure 6. The system assesses sensor readings and
compares them to observer values to determine if they exceed a certain threshold. If no
faults are detected, the fuel cell and battery operate normally. If a fault is detected in a
sensor, the error signal surpasses the threshold. In this scenario, the fault detection and
isolation (FDI) unit replaces the faulty sensor value with an estimated value generated by
the FLC-based observer and sends this to the engine’s control unit. The model receives
the predicted value for the faulty sensor through analytical redundancy. It is assumed that
switching and reconfiguration happen instantaneously, although in practice, there may be
some delay due to controller computations. Note that the system only considers complete
sensor failures and does not account for partial faults.

a. Observer Design

The process can be represented in state-space form, as shown by the observer architec-
ture for the AFTCS system, as follows:

ẋ(t) =
p
∑

i=1
µi[Aix(t) + Biu(t) + E f (t)]

y(t) =
p
∑

i=1
µi[Cix(t)]

(18)

where x(t), u(t) and y(t) are the state, control input and the output vectors, respectively,
µ are the fuzzy sets, p is the number of rules, Ai ∈ ℜn×n, Bi ∈ ℜn×m and Ci ∈ ℜg×n are
system, input and output matrices, respectively, f (t) are the actuator faults, and E is the
actuator fault matrix. To estimate the state and fault of the battery and FC, the following
fuzzy adaptive observer is proposed based on reference [84]:

˙̂x(t) =
p

∑
i=1

µi[AiX(t) + Biu(t) + Ei f̂ (t) + Ki(y(t)− ŷ(t))] (19)

ex(t) = x(t)− x̂(t) ey(t) = y(t)− ŷ(t) = Ciex(t) (20)

˙̂f (t) =
p

∑
i=1

µiLi(ėy(t) + ey(t)) =
p

∑
i=1

µiLii(ėx(t) + ex(t)) (21)

ŷ(t) =
p

∑
i=1

µiCi x̂(t) (22)

In the proposed approach, the observer gains Ki and Li are to be designed appropriately
based on [84].

b. Proposed fuzzy fault-tolerant control

In this paper, an AFTCS is design based on [84].

u(t) =
p

∑
j=1

µj[Gj x̂(t)− Ej f̂ (t)] (23)

The controller gains Gj and Ej are designed based on [84].
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Figure 6. Schematic of the proposed FFTC.

4.1.2. Estimation of the SOC and Its Predicted Progress

Accurate state-of-charge (SOC) estimation and its anticipated evolution over a speci-
fied timeframe are critical for advanced energy management systems (EMSs). This section
aims to outline the methodology proposed to address these crucial issues. The central
concept involves calculating the SOC based on vehicle dynamics across various modes such
as consumption and generation throughout the operational day while considering traffic
conditions. For EMSs and applications like lithium-ion batteries, precise SOC estimation
is paramount to prevent issues such as over-charging or over-discharging, safeguarding
the battery’s internal state. Given the challenges in directly measuring the SOC during
battery operation, a suitable battery model becomes indispensable. Estimating the SOC
using electrical models for power battery packs is particularly significant for hybrid electric
vehicles as it provides essential data for efficient energy management. This subsection
briefly discusses the use of an adaptive fuzzy observer strategy (AFO) based on [84] and an
adaptive neuro-fuzzy inference system (ANFIS) [85] for SOC estimation. These methods
are then integrated with a switching strategy to leverage their respective strengths across
different operational contexts.

a. Estimation Results for the SOC Based on an AFO

The design of a battery management system is crucial for electric and hybrid vehicles
and enhances performance, maintains optimal vehicle operation and detects/controls
thermal runaway, which can lead to severe outcomes such as fires and explosions. Among
the key parameters monitored, the state-of-charge (SOC) stands out as pivotal for these
systems. However, direct measurement is impractical, necessitating estimation through
analytical or machine learning techniques rather than sensors. This subsection proposes
an electrical model incorporating thermal effects for lithium-ion batteries. The thermal
model calculates internal heat generation, followed by the implementation of an adaptive
fuzzy observer (AFO) to estimate the SOC and cell temperature within the battery system.
The AFO’s accuracy hinges on a precise model. The architecture leveraging the AFO for
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SOC and cell temperature estimation is depicted in Figure 7. Inputs to the electro–thermal
model include the current, ambient temperature and estimated SOCk derived from the
AFO, requiring a highly accurate electro–thermal model for effective implementation.

Figure 7. Block diagram for SOC prediction by adaptive fuzzy observer strategy.

b. Estimation Results for the SOC Based on the ANFIS

At the predictive level, optimal control problems are addressed based on trip forecasts.
Accurate prediction of road conditions such as the slope, ambient temperature, and wind
speed is crucial for energy management in hybrid systems. In [85], an adaptive neuro-
fuzzy inference system (ANFIS) is proposed to predict SOC evolution under varying
driving cycle conditions. The approach utilizes intelligent transportation data (such as GPS
and radar) along with local sensor measurements for short-term and long-term ambient
condition predictions. By analyzing locally collected data, the system can assess the battery
SOC’s power potential (SÔCpred), as depicted in Figures 8 and 9. This technique primarily
integrates predictions of vehicle power, real-time traffic information, vehicle state (including
torque and speed), and battery conditions (such as current, voltage and temperature).

Figure 8. Block diagram for SOC prediction using ANFIS strategy.
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Figure 9. SOC prediction using ANFIS technique.

4.2. Hybrid System Energy Management Algorithms (Level 1: HSEMA)

The main role at this level is to achieve optimal power management between the
different sources. Four different optimization strategies are implemented at this level.
These optimization strategies are DP (cf. Section 4.2), PMP (cf. Section 5.1), equivalent
consumption minimization strategy (ECMS) (cf. Section 5.2) and fuzzy logic strategy
(FLS)-based EMS (cf. Section 5.3).

4.2.1. EMS Optimization Based on Dynamic Programming

The DP algorithm, a nonlinear programming method based on the Bellman equation,
serves as a global optimization approach for multistage decision-making problems. When
applied to hybrid systems with prior knowledge of the driving cycle, it yields the global
optimal EMS. While real-time application is impractical, DP results serve as benchmarks for
evaluating vehicle performance. Energy management poses a complex multistage decision
challenge that aims to optimize fuel economy while meeting system constraints. DP is
well-suited for this task and facilitates the determination of power distribution schemes that
enhance FCHEV fuel economy. To derive the most economical power allocation strategy
for FCHEVs, prior knowledge of the driving cycle is discretized into N stages, enabling the
formulation of the system state transition equation in discrete form [86,87].

x(k + 1) = f (x(k), u(k)), k = 0, 1, ..., N − 1 (24)

In the context of the fuel cell/battery hybrid system, the state variable at stage k,
denoted as x(k) = SOC(k), represents the state-of-charge (SOC) of the battery. Meanwhile,
the control variable at stage k, expressed as u(k) = PFC, corresponds to the output power
of the fuel cell system (FCS) and facilitates power distribution across different stages.
Consequently, the output power of the power battery is calculated as Pbat(t) = Pdem −
PFC(t) and is based on (11). Thus, the system’s state transition equation can be described
as follows:

SOC(k + 1) = SOC(k)− Eo−
√

E2
o−4Rbat(Pdem(k)−PFC(k))

2RbatQbat
(25)
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The primary objective of the DP algorithm is to determine the optimal control variable,
PFC(k), at each stage to minimize the objective function, J. This objective function, as
described in references [88,89], can be formulated as follows:

J = min
N
∑

k=0
L(x(k), u(k)) (26)

The transition cost function for each stage is denoted by L()̇. In this study, the total
hydrogen consumption of the vehicle serves as the objective function. Based on (12), the
transition cost function for each stage can be expressed as follows:

J =
∫ k+1

k ṁh(PFC(t))dt (27)

During real vehicle operation, it is imperative to ensure that constraints (17) are
met. The flowchart depicting the DP process is presented in Figure 10. In the backward
calculation process, one x(k) is chosen from N parts at each moment k. Then, one x(k + 1)
is selected from the reachable state set, which comprises M states. Using the state equation,
u(k) and the corresponding J(k) are calculated for each state, and this process is repeated M
times. The optimal J∗(k) and u∗(k) corresponding to x(k) at each moment k are determined
by finding the minimum J∗(k). Since u(k) is not discretized, it is derived from x(k) and
x(k + 1) to minimize errors and computational workload. The process involves iterating
through all N parts of state x and recording the optimal solution for each state at each
moment. In the forward solution process, starting from the initial value x(1), the optimal
control sequence u0N−1 = (u(0), u(1), . . . , u(N − 1)) and the minimum J∗(x) are obtained
by sequentially referencing the table.

Figure 10. Flowchart of DP algorithm.
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4.2.2. Robust Adaptive Fuzzy Controller

In traditional PID control methods, control performance may suffer due to constraints
arising from various forms of uncertainty. To address this issue, a new PID control approach
is proposed that integrates the advantages of fuzzy PID control and predictive functional
control (PFC). This method is validated to give optimal vehicle subsystem set-point tracking,
which is generated at the second level. Following the PFC framework, future process
behavior is predicted based on the current process input signal. Subsequently, fuzzy PID
control, informed by multi-step prediction, is applied to determine the optimal control
strategy. The proposed strategy product with the PI controller parameters are calculated
by [90].

5. EMS Optimization Based on Rule-Based Strategy and ECMS

This section presents optimal EMSs that are proposed for level 2 (cf. Figure 5). The
control architectures are based on three different levels (cf. Section 4).

5.1. Improved EMS Based on PMP

Pontryagin’s minimum principle (PMP), formulated by Soviet researcher Lev Pontrya-
gin, is a fundamental algorithm in optimal control theory. According to PMP, an optimal
control problem with a fixed time and a fixed endpoint can be defined as follows [91]:
PFC(t) represents the control variable, SOC denotes the state variable, λ is the co-state,
t0 is the initial time, and t f is the final time. The objective is to find the optimal control
P∗

FC(t), t ∈ [t0, t f ] such that the system described in (28) transitions from an initial state to a
terminal state while minimizing the performance index given in (29).

d(SOC)
dt = −η Ibat

Cbat
(28)

Based on the principles of PMP, the optimal output power P∗
FC(t) of the fuel control

system at each time step is given by the following equation.

P∗
FC(t) = argmin H (29)

where H represents the Hamiltonian function, which is defined as shown in Equation (30)
as follows:

H = ṁh − λ.SȮC(t) = ṁh − λ.η Eo−
√

E2
o−4Rbat(Pdem−PFCηDC−DC)

2RbatCbat
, (30)

In the equation above, λ represents the co-state, and its state function is expressed as
shown in Equation (31):

λ̇ = dH
dSOC = λ.η

Cbat
( dIbat

dEo
dEo

dSOC + dIbat
dRbat

dRbat
dSOC ) (31)

From the analysis above, once the initial value of λ is established, Equation (17) can be
solved, and the optimal P∗

FC(t) can be obtained. In discrete optimal control based on PMP,
the optimal P∗

FC(t) is determined by solving Equation (29) at each time step and subject to
the system constraints outlined in Equation (17).

5.2. Improved EMS Based on ECMS

The studied EMS, which is based on ECMS as described in this paper, is derived from
the formulation presented in [54]. Its objective is to minimize hydrogen consumption while
ensuring that the SOC of the battery is maintained. ECMS operates by converting electrical
energy stored in energy sources into an equivalent fuel consumption and aims to minimize
the sum of instantaneous fuel consumption and equivalent fuel consumption [54].
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5.3. Improved Fuzzy-Logic-Strategy-Based EMS

The fuzzy logic strategy (FLS)-based EMS discussed in this paper is built upon the
approaches outlined in [32,51]. In real-world driving scenarios, vehicles operate in diverse
modes, adjusting their behavior according to driving conditions and the status of the
powertrain system. Following this principle, this study utilizes Stateflow within the
MATLAB platform to develop a fuzzy rule-based EMS. This EMS governs and manages
energy distribution within the vehicle, ensuring optimal power distribution between the
fuel cell system (FCS) and the battery. Vehicle operating modes are determined based on
vehicle speed (vx) and the accelerator pedal position (pacc), which is specifically categorized
into idle, running and braking modes, as illustrated in Figure 11.

Figure 11. Algorithm of the rule-based EMS.

6. Simulation and Validation Results

This section aims to validate and to compare experimentally the main control strategies
and energy management architectures described in this paper. The developed simulation
platform based on TruckMaker and MATLAB/Simulink is given. In this section, two
simulations are presented. The first simulation is to validate the overall HSEM during
fault actions and validate the PEMFC and battery fault compensation. In the second
simulation, the main proposed control strategies (DP and PMP) are compared with two
other strategies based on FLS and ECMS in order to demonstrate the pros and cons of each
proposed strategy.

6.1. Simulation 1: Overall HSEM Validation with and without FTC

The SOC of a hybrid vehicle’s battery is critical information for the driver. The accuracy
of the SOC algorithm is often limited by the computational capabilities of the electronic
components. It is critical to ensure that the performance requirements obtained in the
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design phase are maintained during the real-time implementation. The growing demand
for hybrid vehicles increases the need for low-computational-operation algorithms and
low-cost battery management systems. This paper introduces an accurate SOC estimation
algorithm that provides a compromise between accuracy and simplicity. The algorithm
offers a simple solution that reduces the computational time while achieving performance
similar to that of other well-known SOC estimation algorithms. This proposed estimator can
be programmed in an embedded system to be more representative of real computational
conditions. The validation of the overall control architecture with and without FTC is
performed in this subsection using TruckMaker/MATLAB software. The validation is done
by using a speed profile of the studied hybrid vehicle. The results indicate that the proposed
observer strategy can provide a more accurate estimate and is faster than other algorithms.
Figure 12 shows the driving profile (the EPA Urban Dynamometer Driving Schedule
(UDDS)), and the power demand profile is shown in Figure 13. Figures 14 and 15 show
the estimation of the SOC (initial condition = 68%) and the H2 consumption, respectively,
with a bias fault at the time of 600 sec, according to the proposed DP with and without FTC.
Table 1 shows the evolution of the SOC and the H2 consumption with and without FTC
based on the proposed DP strategy.

Figure 12. Speed profile of the UDDS standard velocity profile.

Figure 13. Power demand profile.
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Figure 14. Estimation of the SOC according to the proposed DP strategy with and without FTC.

Figure 15. Evolution of H2 consumption according to the proposed DP strategy with and without FTC.

Table 1. Overall performance obtained from simulations with the driving profile.

DP Strategy SOC [%] H2 Consumption [g]

Without FTC 69.2654 90.000
With FTC 67.9912 84.3681

The state of charge (SOC) of a hybrid vehicle’s battery holds crucial importance for
drivers. However, the accuracy of SOC algorithms is often constrained by the computa-
tional capacities of electronic components, necessitating the preservation of performance
requirements from the design to the real-time implementation. With the rising demand for
hybrid vehicles, there is a growing need for low-complexity algorithms and cost-effective
battery management systems.

This study presents a novel SOC estimation algorithm that strikes a balance between
accuracy and simplicity, offering a streamlined solution that reduces computational over-
head while maintaining comparable performance to established SOC estimation methods.
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This algorithm can be embedded into systems, ensuring real-world computational repre-
sentation.

Validation of the control architecture, with and without fault-tolerance control (FTC),
was conducted using TruckMaker/MATLAB software and a speed profile of the hybrid
vehicle under study. Results indicate that the proposed observer strategy yields more
accurate and faster SOC estimates compared to existing algorithms.

Figures 13–15 depict the power demand profile, SOC estimation (initial condition =
68%) and H2 consumption, respectively with a bias fault occurring at 600 s by employing the
proposed dynamic programming (DP) approach with and without FTC. Table 1 summarizes
the SOC and H2 consumption with and without FTC based on the proposed DP strategy.

From the simulation results and from Table 1, we notice that the proposed DP strategy
based on FTC can save 6.26% of H2 consumption compared to without FTC. In addition,
we notice that SOC estimation is significantly improved using the proposed FTC.

6.2. Simulation 2: Comparisons of the Different Energy Management Strategies

This section aims to demonstrate the pros and cons of each proposed strategy. The
main proposed control strategies (DP and PMP) are compared with two other strategies
based on FLS and ECMS in this subsection. The comparison of the strategies is performed
using the same power demand profile as given in Figure 13 and with the same initial
conditions (initial condition = 68%) and operating limits. Figures 16 and 17 show the
evolution of the SOC and H2 consumption over time for the proposed energy management
strategies (DP and PMP), which are compared to ECMS and FLS. Table 2 shows the
simulation results comparison.

Figures 16 and 17 show the evolution of the SOC and hydrogen consumption under
different EMSs (DP, PMP, ECMS and FLS) using the same cycle conditions with an SOC
initial condition of 68% during the sensor faults. The simulation results comparison is
shown in Table 2.

From Table 2, we can clearly see that DP and PMP reduce hydrogen consumption
by 9.8% and 8.86%, respectively, compared with the FLS strategy under the same driving
condition. From the simulation results, it can be seen that DP and PMP have the lowest H2
consumption compared to the other EMSs (ECMS and FLS) with respect to the constraint
on the final SOC and sensor faults. Therefore, an EMS based on DP can effectively improve
the fuel economy.

Figure 16. Evolution of SOC according to the proposed strategies.
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Figure 17. Evolution of H2 consumption according to the proposed strategies.

Table 2. Comparison of different energy management strategies.

EMS Strategy SOC [%] H2 Consumption [g] Economy (Relative to FLS) %

FLS 66.8731 91.9412 -
ECMS 67.9528 85.9618 6.5035
PMP 67.9311 83.7993 8.8556
DP 67.9912 82.9303 9.8007

7. Conclusions

The control and optimization of hybrid vehicle (fuel cell/battery) power manage-
ment are presented in this paper. The algorithm is validated using a dynamic bus model
with TruckMaker/MATLAB software. This proposed hierarchical supervisory energy
management strategy (HSEMS) consists of two control levels.

In the upper level (second level), a supervisory battery and fuel cell management
system (BFCMS) is designed to generate healthy proton-exchange-membrane fuel cells
(PEMFCs) and the battery state-of-charge (SOC) for the lower layer. In the lower layer,
an advanced energy management system (EMS) based on adaptive fuzzy logic, dynamic
programming and Pontryagin’s minimum principle (PMP) is developed to minimize the
total energy consumption and maximize the overall bus energy efficiency. Additionally, at
this level, an adaptive proportional-integral (PI) controller is used to optimally track the
bus subsystem set-points generated at the second level.

The overall validation of the proposed strategies (DP and PMP) is performed by
comparing them with previous algorithms (ECMS and FLS). The proposed strategy has
several advantages:

• Increasing the bus’s energy efficiency and minimizing total energy consumption;
• Detecting and compensating for the effects of sensor and/or actuator faults in the

PEMFC and battery;
• Reducing hydrogen consumption by 9.8% and 8.86%, respectively, compared to the

FLS strategy under the same driving conditions.

In the near future, more-exhaustive studies on the robustness of the proposed strategy
for various internal and external faults are planned. Additionally, the implementation of
the proposed strategy on an actual platform is anticipated.
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Nomenclature

v bus speed
Ft traction force
α slope
ρ air density
m bus mass
A frontal area
Cd drag coefficient (a constant)
r wheel radius
Tw wheel torque
ww rotation speed
η f d transmission efficiency
R f d gear ratio
Pt power demand
ηm motor efficiency
Pdem total power demand
Paux consumption by the auxiliaries
N number of cells
Mh molar mass of hydrogen
n transferred electrons
F Faraday’s constant
Istack fuel cell stack current
ηFC efficiency of the PEMFC
ṁh instantaneous hydrogen consumption
PFC PEMFC power
Eo open-circuit voltage of the battery
Rbat ohmic resistance
Cbat equivalent capacitor
Vbat battery voltage
Ibat battery current
Qbat battery capacity
Pbat battery power
H2 total hydrogen consumption
ṁh instantaneous hydrogen consumption
PFC PEMFC power supplied
Hp prediction length
tk current time step
ηFC total PEMFC efficiency
ηDC−DC DC/DC efficiency
SOCre f SOC set-points
SOCt f +Hp SOC at the end of the mission
SOCt f +1 SOC at the initial time
PFC,max PEMFC maximum power
PFC,min PEMFC minimum power
Pbat,max battery maximum power
Pbat,min battery minimum power
SOCmax SOC maximum power
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SOCmin SOC minimum power
x(t) state vector
u(t) control input vector
y(t) output vector
µ fuzzy sets
p number of rules
Ai ∈ ℜn×n system matrix
Bi ∈ ℜn×m input matrix
Ci ∈ ℜg×n output matrix
f (t) actuator faults
E actuator fault matrix
Ki and Li observer gains
Gj and Ej controller gains
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