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Abstract: This article provides an overview of control algorithms for grid-connected converters
in renewable energy systems, demonstrating their relevance and potential for further research. A
common issue among authors of scientific works is the lack of a wide range of conducted research.
Often, the results showing the operation of the developed algorithms in transient states or under
abnormal supply conditions (such as asymmetries and distortions) are missing. This significantly
reduces the ability to compare developed solutions, making it difficult to choose the appropriate
control method for future research. The article suggests which control algorithm for power converters
is best suited for research considering various factors.

Keywords: control algorithm; grid converter; PV inverter; linear control method; non-linear control
method; predictive control method; renewable energy systems

1. Introduction

The multidimensional and dynamic development of material, information, and produc-
tion technologies enables increasingly efficient utilisation of renewable energy sources [1].
Many experts focus on improving the first stage of electric energy processing, involving
direct extraction from solar radiation, wind, or water [2]. Subsequently, the harvested
energy is transferred to a DC intermediary voltage circuit through a converter. It is then
transformed using an AC/DC grid converter and fed into the power grid [3].

At the AC terminals of the grid converter, a high-frequency rectangular voltage
is present, resulting from the switching of transistors according to the applied control
algorithm. This type of voltage cannot be directly applied to the terminals of the power
grid, which carries a relatively slow-varying, sinusoidal voltage. This necessitates using an
additional coupling element to connect the grid converter to the power grid. This additional
coupling can be achieved using inductors or a combination of inductors and capacitors.
Moreover, these elements play a crucial role in ensuring the quality of electric energy. The
switching of transistors within the converter branches generates higher harmonics, which
reduce the efficiency of the power electronic device itself and increase transmission losses
in the power grid. The aforementioned coupling elements mitigate the negative impact
of using converters on the quality of electric energy due to their filtering properties that
smooth rapid changes in currents and voltage [4,5].

2. Classification of Voltage Converter Control Methods

The classification presented in Figure 1 does not encompass all the known groups of
AC/DC grid converter control methods described in the literature. However, the depicted
groups highlight the fundamental differences from other well-known and practically
applied control methods.
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Figure 1. Classification of voltage converter control methods.

Selected methods used to control voltage converters can be classified in two ways.
The first way divides the methods into those easily implementable for control systems of
converters coupled with the power grid using an L-type filter and those that enable control
of converters coupled with the power grid using an LCL filter. The second classification
distinguishes between linear methods, marked with blue block backgrounds in Figure 1,
and nonlinear methods, indicated by yellow backgrounds.

The simplest method of filtering the currents generated in the network is to use an
L-type filter. This method of coupling the converter to the power grid offers several
advantages. Among these are the absence of the filter’s resonant frequency and ease of use
with most converter control methods (both linear and nonlinear).

Linear methods generally exhibit high accuracy in converters’ static operating state.
However, due to the use of linear PI controllers in the regulation loop, their dynamic
response is limited and does not allow full utilisation of the controlled object’s dynamics.
Conversely, nonlinear methods enable the utilisation of the controlled object’s maximum
dynamics during transient states. Additionally, they are characterised by a spread spectrum
of generated grid current, which complicates the selection of a coupling filter between the
converter and the power grid.

Using LCL input filters ensures a higher level of attenuation of higher harmonics.
However, combining inductive and capacitive elements creates two resonance circuits, pre-
cluding linear PI control methods and basic nonlinear methods for controlling the converter.
Active Damping algorithms are applied to eliminate the filter’s resonant harmonics in linear
methods and, thus, enable their use in converters coupled with the power grid via an LCL
filter. The effectiveness of these methods is low under distorted supply voltage conditions.

Some methods combine the advantages of linear algorithms with those of nonlinear
methods. Examples include the FCS MPC (Finite Control Set Model Predictive Control)
method, which features the application of a single output voltage vector to the AC terminals
of the converter within one control period; the predictive CCS MPC (Continuous Control
Set Model Predictive Control) method, which can apply several vectors to the AC terminals
within one control period, and the Deadbeat method. By utilising the mathematical model
of the converter with an L or LCL filter, these methods ensure high-quality regulation of the
generated current under various supply conditions. The yellow-blue background signifies
that these methods possess the advantages of both linear and nonlinear methods, which
will be described in greater detail in the following sections of the article.
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3. Overview of Key Features of Selected Control Methods
3.1. Control Methods Suitable Exclusively for L-Type Filter
3.1.1. Voltage-Oriented Control

On the grey background of Figure 1, examples of control methods suitable for convert-
ers coupled to the power grid solely through an inductive element are listed. Among the
linear methods, marked with a blue background in the blocks in Figure 1, the VOC (Voltage
Oriented Control) and DPC SVM (Direct Power Control with Space Vector Modulation)
methods are included. The essence of the VOC method lies in the regulation of transformed
information about the generated grid currents into two orthogonal components, x and y, in
a rotating reference frame xy aligned with the power grid voltage vector (Figure 2) [6–8].
The proper process of current component regulation is typically executed using two lin-
ear proportional–integral (PI) controllers, with one controller for the x and one for the y
component. The control signals from the PI controllers are the reference voltage signals
in the synchronously rotating xy reference frame. These signals undergo a transformation
from the xy reference frame to the natural abc frame, and the resulting three signals are
fed into the modulators, which directly generate the control signals for the transistors
of the grid converter. Practical implementations of the VOC method exhibit advantages
and disadvantages, primarily stemming from using the modulator. The benefits include a
low total harmonic distortion (THD) coefficient of the shaped grid current and a constant
switching frequency of the transistors. However, it is challenging to select the controller
settings in a way that achieves high-quality regulation indicators both in steady-state and
transient conditions (e.g., during a step change in the set value of one of the regulated
current components) [9].
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3.1.2. Direct Power Control with Space Vector Modulation

On the other hand, the DPC SVM method involves direct control of the active and re-
active power delivered to or drawn from the power grid [10,11]. This regulation uses linear
controllers (e.g., PI controllers) and modulators (Figure 3). The structure of this control
system is simple and very similar to that of the VOC method. Both methods essentially
share the same advantages and disadvantages regarding the quality of regulation results.
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3.1.3. ∆-Modulation

In contrast, moving to the group of nonlinear methods, marked in yellow in Figure 1,
it is worth noting that the simplest nonlinear control method to implement using micropro-
cessors is ∆-modulation [12]. The regulation process occurs in the natural three-phase abc
system, where the actual phase currents are compared with the set value in comparators
(Figure 4) [13,14]. This method is characterised by good dynamic response in transient
states and allows independent current regulation in each phase. However, this control
method is associated with an increased total harmonic distortion (THD) of the current. The
current spectrum is spread out due to the variable switching frequency.
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3.1.4. Direct Power Control with Switching Table

The DPC ST (Direct Power Control with Switching Table) method employs compara-
tors, and a switching table in the control paths of active and reactive power exchanged
with the power grid (Figure 5) [15–17]. Compared to linear methods, this control system
structure ensures excellent transient state regulation properties. Improving the regulation
indicators in steady states, such as current ripple, requires high control and measurement
system operating frequencies. The shaped current using DPC-ST methods is resistant to
distorted supply voltage in the power grid [18].
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3.2. Control Methods Originally Designed for L-Type Filters Incorporate Additional Active
Damping to Adapt These Methods for Use in Systems with LCL Filters

In the discussed control systems, significant inductance values must be used in an
L-type filter for adequate filtering, especially compared to an LCL filter with the same total
inductance, which offers higher suppression efficiency of higher harmonics. Furthermore,
using LCL filters reduces the filter components’ size and cost. An LCL filter circuit contains
two resonant circuits. To achieve high-quality regulation, appropriate resonant frequency
values must be ensured during the filter design stage, preventing the amplification of
harmonics generated by the AC/DC converter. For this reason, nonlinear control methods
with variable switching frequencies are more challenging to implement in a converter
system with an LCL filter. Linear controllers in linear methods exhibit good regulation
effectiveness with steady or slowly varying signals, i.e., at frequencies significantly lower
than the grid voltage frequency. In contrast, the resonant frequencies associated with
the resonant circuits of the LCL input filter are rapidly varying signals in the rotating
reference frame. Such signals significantly degrade regulation effectiveness in systems
with linear controllers. The literature describes developing DPC and VOC methods using
active damping (AD) strategies [19–21]. This strategy involves damping current compo-
nents to the control signals to suppress resonant harmonics associated with an LCL filter
(Figure 6). The effectiveness of using AD strategies significantly decreases with distorted
grid voltage, requiring more complex methods [22]. Predictive algorithms are accessible
from this drawback.
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3.3. Predictive Control Methods for Use with L or LCL-Type Filter

The predictive methods group is the last group of control methods visible in Figure 1,
whose dynamic development is further supported by the rapid advancement of micropro-
cessor technology. Available microprocessors are rapidly gaining increased computational
power. This directly translates into the ability to process more calculations within a single
control period. The group of predictive methods is fundamentally divided into three
subgroups: FCS-MPC, CCS-MPC, and Deadbeat (DB). All mentioned control methods are
based on equations describing the mathematical model of the converter connected to the
grid via an L or LCL filter.

Examples of predictive methods applied to power electronics converter control in-
clude [23,24]. They are characterised by simplicity and intuitive control design principles,
high dynamic response in transient states, and the ability to control multiple physical quan-
tities simultaneously. They also benefit from the extended prediction horizon option [25].
In optimising the selection of the appropriate vector, parameters related to the sampling
period and/or the number of transistors switching can reduce the switching frequency [26].
Besides using model equations to determine the control vector, various configurations
of additional feedback in the control system are being tested [27]. An important aspect,
often overlooked during algorithm design, is its sensitivity to parameter mismatches in
the model compared to their real counterparts. Lack of precise information about the
controlled object prevents accurate prediction and, thus, the correct vector selection for the
next control period [28]. Model imperfections become particularly significant in the steady-
state operation of the regulated system, where maintaining a minimal ripple of regulated
quantity is desired. Factors such as temperature and the ageing of electrical/electronic
components affect the value of real parameters [29]. In power electronics, the influence of
magnetic material saturation cannot be ignored [30]. Compensating for errors due to model
imperfections is a central topic in the work of many researchers, e.g., [31]. Examples of
developed methods for compensating model parameter estimation imperfections include
using integration functions of steady-state error and applying this information to modify
equation coefficients [32], as well as employing adaptive functions that allow for improved
regulation parameters in both static and dynamic states [33,34].

3.3.1. Finite Control Set Model Predictive Control

The FCS-MPC (Finite Control Set Model Predictive Control) method involves applying
one voltage vector to the AC terminals of the grid converter at the end of the control
period [35–38]. Figure 7 shows an example diagram of such a control method. The selection
of the optimal voltage vector is based on analysing a defined cost function for each available
vector configuration. The cost function aims to enable parallel regulation of one or more
physical quantities in the system [39]. The cost function result is calculated as many times
as there are available voltage vectors for the converter. The high flexibility in designing the
cost function, in terms of the quantities used for calculations and scaling factors, allows
for almost infinite modification of the ongoing regulation process [40]. Methods from
this group combine the advantages and disadvantages of linear and nonlinear methods,
i.e., they exhibit high dynamics in transient states. In contrast, in steady states, they offer
low current ripple coefficients [26]. A significant drawback of methods belonging to this
group is the spread of the current spectrum due to variable switching frequency [41]. This
fact effectively complicates the proper selection of coupling filter parameters to minimise
the impact of voltage converters on the quality of the power grid’s electrical parameters.
Methods with a so-called continuous control set (CCS) were developed to eliminate the
identified drawback of FCS-MPC methods.



Energies 2024, 17, 4690 7 of 18Energies 2024, 17, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 7. Example block diagram of FCS MPC control algorithm. 

3.3.2. Deadbeat 
The predictive principles of DB algorithms use the equations of the controlled object 

[42–44]. The calculations aim to determine the resultant voltage vector at the AC terminals 
of the converter, which will compensate the controlled variable error to zero within one 
control period. The voltage vector, determined based on the equations of the controlled 
object, is reproduced using a modulator (Figure 8). This results in a constant switching 
frequency, facilitating the design of the coupling filter between the converter and the grid, 
especially the LCL filter, which may have undesirable effects due to its resonant frequen-
cies. Using a modulator offers the possibility of using several converter vectors within one 
control period, allowing the shaping of any voltage vector at the AC terminals of the grid 
converter. As long as the modulator operates within the active modulation area, i.e., in 
static states and minor transients, small ripple values of the controlled variable are ob-
tained. However, when a sudden and significant change occurs in the control system, the 
modulator exits the active modulation range, and a single vector is applied to the AC ter-
minals of the converter for the entire control period. This enables the control system’s 
dynamic and swift response to significant changes in the regulated system parameters. 

 
Figure 8. Example block diagram of Deadbeat controller. 

3.3.3. Continuous Control Set Model Predictive Control 
Another control group is classified as CCS MPC (Figure 9) [45–47]. All the infor-

mation in the above paragraph concerning the DB method is also valid for CCS MPC al-
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ous control of one or more variables. The influence of individual model parameters on the 
target vector to be recreated can be controlled using weighting factors assigned to specific 
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3.3.2. Deadbeat

The predictive principles of DB algorithms use the equations of the controlled ob-
ject [42–44]. The calculations aim to determine the resultant voltage vector at the AC
terminals of the converter, which will compensate the controlled variable error to zero
within one control period. The voltage vector, determined based on the equations of the
controlled object, is reproduced using a modulator (Figure 8). This results in a constant
switching frequency, facilitating the design of the coupling filter between the converter and
the grid, especially the LCL filter, which may have undesirable effects due to its resonant
frequencies. Using a modulator offers the possibility of using several converter vectors
within one control period, allowing the shaping of any voltage vector at the AC terminals
of the grid converter. As long as the modulator operates within the active modulation area,
i.e., in static states and minor transients, small ripple values of the controlled variable are
obtained. However, when a sudden and significant change occurs in the control system,
the modulator exits the active modulation range, and a single vector is applied to the AC
terminals of the converter for the entire control period. This enables the control system’s
dynamic and swift response to significant changes in the regulated system parameters.
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3.3.3. Continuous Control Set Model Predictive Control

Another control group is classified as CCS MPC (Figure 9) [45–47]. All the information
in the above paragraph concerning the DB method is also valid for CCS MPC algorithms.
The distinguishing element of CCS MPC algorithms from DB algorithms is using a cost
function [48]. As with FCS MPC algorithms, the cost function allows simultaneous control
of one or more variables. The influence of individual model parameters on the target vector
to be recreated can be controlled using weighting factors assigned to specific quantities
in the control system. It should be noted that correctly selected weighting factors in the
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cost function should bring the controlled quantity to the target value at the end of the
considered control period. Hence, there is a high similarity between DB control methods
and CCS MPC methods [49]. Both DB and CCS MPC methods have many advantages in
both static and transient states of control. Although they require powerful computing units,
using the modulator block extends the time between data acquisitions and iterations of the
control algorithm while maintaining a constant and higher switching frequency than the
measurement system’s operating frequency [50].
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CCS MPC methods have the advantages of both linear and nonlinear methods. For
this reason, they are widely used in various applications, as extensively documented in the
scientific literature. The authors of [51,52] present the application of CCS MPC methods
in control systems for permanent magnet synchronous motors. In contrast, the use of
CCS MPC in controlling induction motors is given in [51,53,54]. The infinite number
of controls has also been utilised in DC-DC converters, as demonstrated by the authors
in [55–58]. On the other hand, refs. [59,60] presents the application of the discussed group
of methods in matrix converters. Among the applications of CCS MPC methods are also
active filters [61,62] and rectifiers [46,48]. The scientific literature also includes examples of
using CCS MPC in controlling grid-connected current converters [47].

4. Comprehensiveness and Completeness of Scientific Research

Considering that electricity generation is associated with various types of devices that
convert renewable energy into electrical energy and numerous kinds of devices that convert
electrical energy with specific parameters into electrical energy with different parameters
(e.g., DC-AC conversion), it is crucial to select appropriate control algorithms for power
electronic devices carefully. The first significant factor is the nature of the renewable energy
source and the direct converter of this energy into electrical energy. This determines the rate
of changes in the amount of delivered energy, which can vary with a time constant ranging
from a fraction of a second to a minute. This directly influences the selection of regulator
settings in the control loops of the converter to ensure the best compromise between the
required dynamics and the highest accuracy in steady-state regulation. It must be noted
that specific control algorithms are entirely vulnerable to significant disturbances occurring
in the power grid and are particularly sensitive to the supply voltage distortion. When a
grid-connected converter is connected to a power supply with distorted voltage, there is a
possibility that the shaped grid current may not meet the quality requirements regarding
harmonic content and may not achieve a steady-state error of zero in steady states. This
is extremely important from the perspective of a power grid with high penetration of
microgeneration based on renewable energy sources.

Various positions in the literature describe the different topologies of converters com-
bined with various input filters. Unfortunately, a common practice among the authors
of scientific works is the lack of a broad spectrum of conducted research. Most often, the
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results presenting the operation of the developed algorithms in transient states or under
abnormal supply conditions (i.e., asymmetries, distortions) are missing. This significantly
reduces the ability to compare developed solutions. Therefore, Table 1 compares selected lit-
erature positions describing representatives of the control algorithms classified in Section 3.
It details the features that should be investigated when proposing new control methods. If
the literature position is highlighted in grey, it means that the publication does not present
the results of the algorithm feature described in the left column of the given row.

Table 1. List of types of experiments regarding grid converter control algorithms.

Whether the Paper
Contains? Paper

simulation experiments

VOC [6] [7] [8] [9]
DPC SVM [10] [11]

∆-modulation [12] [13]
DPC ST [15] [16] [17] [18]

FCS MPC [35] [36] [37] [38] [39] [41]
Deadbeat [42] [43] [44]
CCS MPC [45] [46] [47] [48] [49] [50]

experimental verification in
steady state

VOC [6] [7] [8] [9]
DPC SVM [10] [11]

∆-modulation [12] [13] [14]
DPC ST [15] [16] [17] [18]

FCS MPC [35] [36] [37] [38] [39] [41]
Deadbeat [42] [43] [44]
CCS MPC [45] [46] [47] [48] [49] [50]

experimental verification in
transient states

VOC [6] [7] [8] [9]
DPC SVM [10] [11]

∆-modulation [12] [13] [14]
DPC ST [15] [16] [17] [18]

FCS MPC [35] [36] [37] [38] [39] [41]
Deadbeat [42] [43] [44]
CCS MPC [45] [46] [47] [48] [49] [50]

experimental verification
under distorted supply

voltage

VOC [6] [7] [8] [9]
DPC SVM [10] [11]

∆-modulation [12] [13]
DPC ST [15] [16] [17] [18]

FCS MPC [35] [36] [37] [38] [39] [41]
Deadbeat [42] [43] [44]
CCS MPC [45] [46] [47] [48] [49] [50]

discussion/experiments on
robustness against system

parameter changes

VOC [6] [7] [8] [9]
DPC SVM [10] [11]

∆-modulation [12] [13]
DPC ST [15] [16] [17] [18]

FCS MPC [35] [36] [37] [38] [39] [41]
Deadbeat [42] [43] [44]
CCS MPC [45] [46] [47] [48] [49] [50]

5. Applications and Research Directions

The numerous examples of the application of predictive methods presented so far
prove their relevance and the need for further research [63–67]. The authors [64] developed
a different control strategy to maintain good-quality parameters of the controlled grid
current. They created individual models for various supply conditions deviating from
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sinusoidal, symmetrical three-phase voltage. Each model variant includes additional calcu-
lations related to complementary equations and performing discrete Fourier transforms
for selected frequencies. In terms of the overall structure of the presented model, this is a
highly complex solution.

An interesting example of a prediction algorithm is the creation of hybrid methods
combining FCS MPC and CCS MPC in one control algorithm [66]. The proposed control
aims to minimise switching losses without significantly losing the ability to reproduce a
sinusoidal grid current by switching between the two types of control. As highlighted
by the authors, such a solution has a problem with excessively long computation times,
which practically excludes the possibility of implementing the proposed solution in practi-
cal applications.

One development direction of CCS algorithms discusses the control of grid-connected
converters using an LCL filter and cooperating with renewable energy sources. Models
of the controlled grid converter are extended with equations describing, for example, a
converter receiving electrical energy from photovoltaic panels [67]. Therefore, the control
system includes additional components related to maximising the power received from
photovoltaic panels, which affects the functioning of the entire control system.

A significantly more significant number of publications in the field of predictive
methods does not mean that linear control methods are not being developed. For example,
the article [68] presents a Voltage-Oriented Control (VOC) strategy for LCL-filtered grid-
connected bidirectional AC-DC converters in the context of renewable energy sources.
Key achievements include the introduction of observer-based active damping to mitigate
LCL filter resonance, eliminating the need for passive damping components and reducing
power losses. The control scheme, validated through real-time software-in-the-loop (RT-SIL)
simulations, demonstrated compliance with international power quality standards.

The objective of article [69] was to develop a Direct Power Predictive Control (DPPC)
for a single-stage PV system connected to the grid through a current source inverter. The
study demonstrated the effectiveness of DPPC in tracking power references for PV systems,
with the ability to control reactive power independently from active power. Single-state
topologies were emphasised over two-stage topologies for CSI control in PV applications.

It is essential to highlight a fundamental flaw associated with the mathematical descrip-
tion of linear methods. Small-signal models are frequently used for method analysis, based
on which frequency characteristics are determined. These frequency characteristics are then
used to assess dynamics and stability of control systems. The primary issue to emphasise
is that most linear methods utilise Pulse Width Modulators, Space Vector Modulators, or
more complex modulation techniques. When using small-signal models, it is approximated
that the modulator acts as an amplifying component with a time delay. Unfortunately, this
is not a correct approach due to the differing dynamics of vector interactions at the AC
terminals of the converter on the controlled network filter system and the power grid. The
issue of vector interactions on the converter system with an L-filter should begin with the
schematic of such a system (see Figure 10).
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The fundamental executive component of an AC/DC and DC/AC converter is a three-
phase, two-level transistor bridge, which connects each AC terminal to the potential +UDC
or −UDC, depending on the state of the individual switches. Depending on the selected
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configuration of conducting switches, in the stationary αβ coordinate system, the voltage at
the UVW terminals can be described by the following relationship:

uαβ =

{
2
3 UDCej(n−1) π

3 : forn = {1, 2, 3, 4, 5, 6}
”0” : forn = {0, 7}

(1)

where
2
3 UDCej(n−1) π

3 —are the space vectors of the converter voltage at the AC terminals,
determined by the configuration of the conducting switches of the converter, which can
take states dependent on the coefficient n = from 1 to 6,

“0”—are the zero vectors formed by the converter when all three phases of the load
are connected to one potential (+UDC or −UDC), denoted as “0”.

The converter-power grid system (Figure 10) is described by vector Equation (1) in the
stationary xy coordinate system:

eαβ = L
d
dt

iαβ + uαβ (2)

where
eαβ—is the grid voltage vector in the stationary αβ coordinate system,
iαβ—is the grid current vector,
uαβ—is the voltage vector shaped by the AC/DC converter, and
L—is the inductance of the grid inductors.
Transitioning to the rotating coordinate system makes all quantities related to the

power grid (e.g., voltage e, current ixy) constant in the steady state. For convenience in
further analysis, Equation (2) is transformed to the xy coordinate system rotating with the
grid voltage angular frequency ω:

exy = L
d
dt

ixy + jωLixy + uxy (3)

where
exy—is the grid voltage vector in the stationary xy coordinate system,
ixy—is the grid current vector, and
uxy—is the voltage vector on AC terminals of the AC/DC converter, dependent on the

state of the conducting switches.
The task of the current control algorithm is to maintain the grid current ixy with the

slightest possible deviation from the reference value. Hence, it can be assumed that the
control error is defined as i*xy − ixy equals 0. Equation (3) in a steady state can be visualised,
as shown in Figure 11.
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The direction and rate of change of the grid current vector are determined by the
derivative of this current, which, after considering relationship (3), takes the following form:

L
d
dt

ixy = exy − jωLi∗xy − uxy (4)
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L
d
dt

ixy = u∗
xy − uxy = du (5)

di =
d
dt

ixy =
du

L
(6)

where
u*

xy—is the reference vector of the first harmonic of the converter’s output voltage,
which enforces the grid current to flow close to the reference value, and

du—is the direction vector proportional to the derivative of the current.
Based on the above relationships, the direction of the generated current in the xy plane

depends on the difference between the vectors u*
xy and uxy. The situation is depicted in

the Figure 12.
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According to (6), the current derivative vectors di are proportional to vectors du. Hence,
Figure 13 shows the influence of individual converter’s voltage vectors on a controlled
grid current.

As can be observed, the increase in the x component of the grid current vector occurs
at a completely different rate compared to the decrease of the same component. The longer
the vectors di, the faster the controlled current changes. Vectors di101 and di001 or di‘0’
should be used to increase the x-component value of the grid. Conversely, to decrease
the x-component value of the grid current vector, vectors di110 or di010 should be used.
It is important to emphasise that increasing only the x component is impossible in the
situation depicted in Figure 13. Applying any converter voltage vector changes the x and y
components of the controlled grid current vector. The above information is confirmed by
the results of simulation studies where the example of the predictive control method was
compared with the example of the linear control method.
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A two-level converter model was simulated in the setup shown in Figure 10. A typical
VOC structure was chosen for the linear method, with settings adjusted according to the
modulus symmetry criterion. The predictive method described in [70] was selected for the
nonlinear method. The simulation results are presented in Figures 14 and 15. As can be
observed, the predictive method does not exhibit overshoot after changing the setpoint
(Figure 14). In both methods, the new setpoint current value is achieved faster when
increasing the x component than when decreasing it. In the linear method (Figure 15), it
is important to note the larger variations in the y component of the grid current during
transient states, which are significantly greater than in the predictive method.
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In the predictive method, the voltage vectors at the AC terminals of the converter,
which influence the changes in the individual components of the grid current vectors x
and y, are selected considering the dynamics of the grid current changes. Compared to the
linear method, this results in shorter times to reach new set values in transient states. This
is extremely important, especially in converters dedicated to photovoltaic panels where
frequent and significant changes in the amount of electricity fed into the grid can occur,
such as those resulting from shading of panels due to cloud cover. Therefore, the future
direction for the development of linear methods should involve the creation of alternative
small-signal models that account for the different dynamics in increasing and decreasing
the shaped current values. Consequently, it becomes clear that universal settings for linear
controllers, which guarantee acceptable regulation parameters and minimise overshoot
and short regulation time in transient states during positive and negative step change of set
values, cannot be applied. This would undoubtedly benefit the stability of the controlled
system and shorten regulation times in transient states.

6. Discussion

The literature review indicates that traditional, simpler control methods often present
only simulation results and straightforward experimental outcomes. These studies, which
focus on linear or non-predictive nonlinear methods, typically exclude experiments that
test the control algorithm’s robustness against changes in power supply parameters such
as voltage asymmetries and harmonic distortions. This omission is primarily due to the
inadequate performance of these control strategies under such conditions. In contrast,
predictive control algorithms are frequently evaluated through experimental research
rather than simulations. These experiments often reflect real-world conditions, including
non-ideal sinusoidal supply voltages and mismatches between the control algorithm’s
parameter assumptions and the actual characteristics of the power conversion components.
For example, inductance values may vary with different current levels, and filter capacitor
capacitance may change due to ageing and temperature effects. Predictive control methods,
such as Deadbeat (DB) and Continuous Control Set Model Predictive Control (CCS-MPC),
are increasingly popular due to their advanced performance and flexibility. These meth-
ods provide several advantages, particularly in systems with numerous small renewable
energy generators.

Control algorithms that use a model of the system being controlled can be affected by
inaccuracies in the model’s parameters compared to the system’s actual parameters. This
difference can cause various problems, including reduced control accuracy, more significant
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tracking errors, and instability in the control system. Using adaptive methods that can
estimate the actual parameter values is essential in minimising or eliminating these issues.

It should be recognised that systems with an L filter and a simple, easy-to-implement
algorithm are sufficient for the most straightforward simulations and experimental studies
under undistorted conditions. However, investing effort in implementing the most ad-
vanced methods using object model equations and prediction is worthwhile when aiming
for experimental studies in real conditions. The use of FCS MPC methods is recommended
to have efficient control units. Such methods are easy to implement. The available literature
provides ready-made cost functions that are ready to use.

7. Conclusions

The article offers an overview of control algorithms for grid-connected converters
in renewable energy systems, emphasising the benefits of predictive control methods.
Traditional control algorithms, primarily based on linear methods, encounter difficulties
managing non-ideal conditions such as voltage asymmetries and harmonic distortions.
Although these methods perform adequately in simple scenarios, they encounter challenges
in real-world conditions. In contrast, predictive control algorithms provide enhanced
performance and robustness, making them well-suited for practical applications. The
study presents various applications of predictive methods, including developing intricate
models for different supply conditions and utilising hybrid control algorithms to minimise
switching losses while optimising grid current quality.

The literature outlines various converter topologies combined with different input
filters. However, a key issue lies in the limited range of conducted research. Frequently,
results illustrating the operation of the developed algorithms in transient states or under
abnormal supply conditions are absent, significantly limiting the capability to compare
developed solutions. The study advocates for the broader adoption of predictive control
algorithms in renewable energy applications, to achieve more efficient and resilient power
conversion systems.
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