Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts
Abstract
:1. Introduction
2. Fundamentals of Municipal Solid Waste for Energy Generation
2.1. MSW as a Renewable Energy Source
2.2. Composition and Properties of MSW
3. Conversion Technologies
3.1. Thermochemical Conversion
3.1.1. Incineration
3.1.2. Pyrolysis
- Char, due to its high carbon content, has a higher heating value (HHV) ranging from 11 to even 23 MJ/kg, depending on the composition of the feedstock [69,70]. Char can contain up to 55% of the energy present in the original material [71]. The main factor reducing its calorific value is the ash content and other non-combustible parts.
- Pyrolysis oil is a mixture of liquid hydrocarbons—including C8-C39 alkenes, C8-C20 alkanes, and aromatic compounds—as well as short-chain acids and alcohols [72]. Pyrolysis oil obtained from the conversion of polyolefins, with an HHV of up to 43 MJ/kg, can have properties similar to gasoline and diesel [73].
- The first stage begins after 200 °C, with the degradation of simple organic acids and alcohols [75].
- Slow pyrolysis, also known as conventional pyrolysis, is dedicated to substrates with a particle size of <50 mm. The process involves slowly heating the biomass to the pyrolysis temperature at a rate of 0.1 to 1 K/s [81], followed by conversion at a temperature typically ranging from 400 to 500 °C for up to 2 h [81,82].
- Fast pyrolysis is dedicated to substrates with a particle size of <3 mm. The reactor is heated at a rate of 10 to 200 K/s to a pyrolysis temperature typically ranging from 500 to 700 °C. The process requires a short residence time of vapors in the conversion zone (up to a few seconds) [81].
- Ultra-fast pyrolysis, also known as flash pyrolysis, requires substrates with very fine granulation [81]. The reactor is heated at a rate exceeding 1000 K/s to a pyrolysis temperature above 700 °C. The residence time of vapors in the conversion zone is <0.5 s. In practice, laboratory studies using flash pyrolysis are conducted on waste with a particle size ranging from 125 µm to even 80 mm [74].
- Organic and Food Waste Pyrolysis: Organic and food waste pyrolysis produces bio-oils with an even higher water content and a greater concentration of oxygenated compounds compared to woody or agricultural biomass. This high water and oxygen content leads to a lower energy density and reduced stability of the bio-oil. Oils derived from food waste often require further processing to remove water and reduce oxygen content to improve their energy value and stability. These oils are less suitable for direct use as fuels and need additional treatment, such as catalytic upgrading, to make them more usable as energy sources [102].
- Plastic Wastes: The pyrolysis of plastic wastes results in liquids with high aromatic content, especially when the feedstock includes metals or catalysts. The composition of plastic-based liquid products depends on the proportion of paper, plastic, and metal in the feedstock. A high content of metals or catalytic additives increases the production of aromatic hydrocarbons, while paper-based substrates yield more water in the liquid fraction [103].
- Agricultural Residues: The pyrolysis of agricultural residues, such as corncobs and straw, produces a two-phase liquid: an aqueous phase and an oil phase. The oil phase, rich in organic compounds, varies depending on the type of agricultural biomass used. Corncob pyrolysis yields a higher proportion of phenols and aromatics in the liquid phase, while straw produces more oxygenated compounds, affecting the fuel properties of the bio-oil [104].
- Forestry Residues: Forestry residues, rich in extractives, produce a top-phase liquid fraction with high heating value, while the bottom phase resembles pyrolysis liquids from bark-free wood. The high extractive content in forestry residues leads to phase separation in the liquid products, influencing their handling and storage properties [105].
- Effect of Pyrolysis Conditions: The temperature and residence time during pyrolysis also impact the yield and quality of liquid products. For instance, polystyrene waste pyrolyzed at 450 °C produces a high yield of liquid oil with a high calorific value, consisting primarily of styrene, toluene, and ethyl-benzene [106].
3.1.3. Gasification
4. Current Research Trends in Thermochemical Conversion Technologies
4.1. Incineration
4.2. Pyrolysis
- Zeolites, such as ZSM-5, Y-zeolite, and β-zeolite, enhance the yield of volatile fractions and accelerate the breakdown of polymer chains, converting aliphatic hydrocarbons into aromatic and cyclic compounds in pyrolytic oils [154]. In the study of [155], Y-zeolite and ZSM-5 were used in amounts ranging from 0.1 to 2.0 wt% of the feedstock. Increasing the Si/Al ratio in the catalyst influenced the increase in gas fraction production and the reduction of the molecular weight of liquid fraction products.
- Metal oxides, such as MgO, exhibit high deoxygenation activity, which improves the quality of pyrolytic oils. The study of [156] demonstrated that the use of MgO on activated carbon (AC) in doses ranging from 5 to 30 wt% of the reactor feed resulted in a decrease in liquid fraction yield and an increase in gas and solid fraction yields.
- Iron-based catalysts reduce activation energy, resulting in higher production of combustible gases and a reduced amount of oxygen-containing compounds in pyrolytic tars. The study of [157] investigated the impact of iron-based additives (iron ore and iron oxide) on municipal waste pyrolysis; catalyst doses ranged from 10 to 30 wt% of the feed. The addition of iron reduced the activation energy of the process and increased the efficiency of MSW conversion to 55.81%.
- Composites, such as Ni-Mo/Al2O3 and Ni/ZSM-5, allow for increased hydrogen content in the gas fraction and aromatization of the liquid fraction. In a study [158], high concentrations of Ni/ZSM-5 and Ni/SAPO-11 composites also increased the production yield of both fractions.
- The study of [159] showed that using calcined dolomite as a catalyst at a feed-to-dolomite weight ratio of 5:1 wt significantly increased the gas fraction production yield compared to the process without a catalyst. Calcium oxide, CaO, promotes secondary cracking and reduction reactions, which in turn increases the production of the gas fraction [160].
4.3. Gasification and Other Thermochemical Conversion Technologies
- Dolomite: It is widely used as a catalyst in gasification processes, especially for biomass substrates. Dolomite effectively reduces tar content and promotes carbon conversion into syngas. Studies have shown that dolomite significantly improves gas efficiency, particularly in relation to hemicellulose, while its impact on other biomass components, such as cellulose and lignin, is more limited [164].
- Metal Oxides such as Ni and Fe: Metallic catalysts, such as nickel (Ni) and iron (Fe), are widely used in steam-reforming processes and tar reduction. In gasification processes, Ni/Fe acts as a dual-function catalyst, allowing for more efficient hydrogen production and increased resistance to carbon deposition. For example, nickel and metal-oxide-based catalysts have demonstrated the ability to improve methane r-forming efficiency at moderate temperatures (400–600 °C), reducing CO and CO2 content [165].
- Composite Catalysts, such as Rh/CeO2: High-performance composite catalysts, such as Rh/CeO2, are used in biomass gasification at lower temperatures, leading to higher carbon conversion and minimal tar formation. The use of such catalysts significantly increases process efficiency, even at lower temperatures compared to conventional methods [166].
- Alkaline Catalysts: Alkaline metal salts, such as Na2CO3, exhibit high activity in the gasification process, particularly with carbon. These catalysts can significantly lower the activation energy and increase carbon conversion in syngas. Na2CO3 has proven to be highly effective during biomass and coal gasification, contributing to the reduction of tar content [167].
4.4. Summary of the Section
5. Environmental Impacts
5.1. Air Quality and Emissions
5.2. Solid Waste and Byproduct Management
6. Conclusions
6.1. Summary of Key Findings
6.2. Recommendations for Policymakers and Practitioners
- Promote Advanced Conversion Technologies: Encourage the adoption of advanced thermochemical conversion technologies such as pyrolysis and gasification, which offer higher efficiency and lower environmental impact compared to traditional incineration.
- Strengthen Regulatory Frameworks: Implement and enforce stringent emission standards to ensure that waste-to-energy plants operate within safe environmental limits. Continuous monitoring and improvement of emission control technologies are essential.
- Support Research and Development: Invest in research and development to further improve the efficiency of waste conversion technologies and explore new methods for reducing emissions and recovering valuable materials from waste.
- Enhance Public Awareness and Participation: Increase public awareness about the benefits and challenges of waste-to-energy technologies. Encourage community participation in waste management practices to ensure successful implementation and acceptance of these technologies.
- Facilitate International Collaboration: Promote international cooperation and knowledge exchange to leverage best practices and technological advancements in waste management and renewable energy.
6.3. Future Research Needs
- Optimization of Conversion Processes: Further research is needed to optimize the operational parameters of pyrolysis and gasification processes to maximize energy yield and minimize emissions.
- Development of New Catalysts: Investigate the use of novel and low-cost catalysts to enhance the efficiency of pyrolysis and gasification while reducing the overall process cost.
- Waste Composition Analysis: Continuously update and refine the understanding of global MSW composition to tailor waste management strategies to specific regional and economic contexts.
- Integration with Other Renewable Technologies: Explore the integration of waste-to-energy technologies with other renewable energy sources, such as solar and wind, to create hybrid systems that can provide more stable and efficient energy solutions.
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. World Population Prospects 2019: Highlights. Available online: https://population.un.org/wpp/Publications/ (accessed on 25 July 2024).
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series. World Bank, 2018; pp. 1–295. Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 25 July 2024).
- World Bank. Global Waste to Grow by 70 Percent by 2050 Unless Urgent Action is Taken: World Bank Report. Available online: https://www.worldbank.org/en/news/press-release/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unless-urgent-action-is-taken-world-bank-report (accessed on 25 July 2024).
- Kazimierowicz, J.; Zieliński, M.; Dębowski, M. Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. Fermentation 2021, 7, 12. [Google Scholar] [CrossRef]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens III, W.W. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, NY, USA, 1972; pp. 1–205. [Google Scholar]
- Malthus, T.R. An Essay on the Principle of Population; J. Johnson: London, UK, 1798; pp. 1–396. [Google Scholar]
- Gipe, P.; Möllerström, E. An overview of the history of wind turbine development: Part II–The 1970s onward. Wind. Eng. 2023, 47, 220–248. [Google Scholar] [CrossRef]
- European Commission. Energy. In White Paper for a Community Strategy and Action Plan; COM(97)599 Final; European Commission: Brussels, Belgium, 1997; pp. 1–54. [Google Scholar]
- Eurostat. Renewable Energy Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics (accessed on 25 July 2024).
- European Environment Agency. Share of EU Energy Consumption from Renewable Sources, 2005–2050. Available online: https://www.eea.europa.eu/en/analysis/indicators/share-of-energy-consumption-from (accessed on 25 July 2024).
- Sarkanen, K.V. Renewable resources for the production of fuels and chemicals. Science 1976, 191, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Rybár, R.; Kudelas, D.; Beer, M. Selected problems of classification of energy sources–What are renewable energy sources? Acta Montan. Slovaca 2015, 20, 172–180. [Google Scholar] [CrossRef]
- Herzog, A.V.; Lipman, T.E.; Kammen, D.M. Renewable energy sources. Encycl. Life Support Syst. 2001, 5, 275–301. [Google Scholar]
- Sayigh, A. Renewable Energy: The Only Solution. Int. J. Environ. Sustain. 2012, 1, 97–112. [Google Scholar] [CrossRef]
- Gámez, M.R.; Pérez, A.V.; Será, A.S. Renewable energy sources and local development. Int. J. Soc. Sci. Humanit. (IJSSH) 2017, 1, 10–19. [Google Scholar] [CrossRef]
- Yadav, A.; Bhagoria, J. Renewable Energy Sources: An Application Guide. In Renewable Energy: Applications and Trends; Springer: Berlin, Germany, 2018; Volume 1, pp. 120–135. [Google Scholar]
- Saxena, A. Study of Renewable Energy Sources its Types, Benefits and Drawbacks. Renew. Energy 2019, 12, 78–85. [Google Scholar]
- Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Bahr, K.; Szarka, N.; Boeing, E. Renewable Energy: A Technical Overview. In The Oxford Handbook of Energy Politics; Oxford Academic: Oxford, UK, 2018; pp. 125–148. [Google Scholar] [CrossRef]
- Maradin, D. Advantages and disadvantages of renewable energy sources utilization. Int. J. Energy Econ. Policy 2021, 11, 268–275. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Renewable Energy Technologies: Cost Analysis Series. IRENA. 2012. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/RE_Technologies_Cost_Analysis-HYDROPOWER.pdf (accessed on 25 July 2024).
- United Nations Development Programme (UNDP). Global Trends in Sustainable Energy Investment 2009 Report. UNDP. 2009. Available online: https://www.undp.org/sites/g/files/zskgke326/files/publications/9-GTF_ch4.pdf (accessed on 25 July 2024).
- Energy Policy Act of 2005; Pub. L. No. 109–58, 119 Stat. 594 (2005); U.S. Government Publishing Office (GPO): Washington, DC, USA, 2005.
- Energy Information Administration. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy. U.S. Department of Energy; The Energy Information Administration, U.S. Department of Energy: Washington, DC, USA, 2007. [Google Scholar]
- Hamadeh, N.; Van Rompaey, C.; Metreau, E. World Bank Group Country Classifications by Income Level for FY24 (1 July 2023–30 June 2024). World Bank Blogs 2023. Available online: https://blogs.worldbank.org (accessed on 26 June 2024).
- Ma, S.; Zhou, C.; Chi, C.; Liu, Y.; Yang, G. Estimating Physical Composition of Municipal Solid Waste in China by Applying Artificial Neural Network Method. Environ. Sci. Technol. 2020, 54, 9609–9617. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, Ş.; Yaman, C.; Demir, G.; Ozcan, H.; Çoban, A.; Okten, H.; Sezer, K.; Goren, S. Characterization of municipal solid waste in Istanbul, Turkey. Environ. Prog. Sustain. Energy 2013, 32, 734–739. [Google Scholar] [CrossRef]
- Miguel, M.; Filho, J.; Benatti, J.; Leme, M.; Mortatti, B.; Gabrielli, G.; Elaiuy, M.; Pereira, S.; Teixeira, E. Gravimetric composition of municipal solid waste disposed in a large-scale experimental cell in Southeastern Brazil. Int. J. Environ. Waste Manag. 2016, 17, 128–145. [Google Scholar] [CrossRef]
- Ramachandra, T.; Bharath, H.; Kulkarni, G.; Han, S. Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renew. Sustain. Energy Rev. 2018, 82, 1122–1136. [Google Scholar] [CrossRef]
- Guermoud, N.; Ouadjnia, F.; Abdelmalek, F.; Taleb, F.; Addou, A. Municipal solid waste in Mostaganem city (Western Algeria). Waste Manag. 2009, 29, 896–902. [Google Scholar] [CrossRef]
- Guerrero, L.; Maas, G.; Hogland, W. Solid waste management challenges for cities in developing countries. Waste Manag. 2015, 33 1, 220–232. [Google Scholar] [CrossRef]
- Zohoori, M.; Ghani, A. Municipal Solid Waste Management Challenges and Problems for Cities in Low-Income and Developing Countries. Int. J. Sci. Eng. Appl. 2017, 6, 039–048. [Google Scholar] [CrossRef]
- Asakawa, K. The Current Situation surrounding Recycling of Waste Plastic Containers and Packaging. J. Waste Manag. Resour. Cycles 2010, 21, 300–308. [Google Scholar] [CrossRef]
- Hassan, A.M.M.; Asif, M.; Al-Mansur, M.A.; Uddin, M.R.; Alsufyani, S.J.; Yasmin, F.; Khandaker, M.U. Characterization of municipal solid waste for effective utilization as an alternative source for clean energy production. J. Radiat. Res. Appl. Sci. 2023, 16, 100683. [Google Scholar] [CrossRef]
- Abelha, P.; Franco, C.; Pinto, F.; Lopes, H.; Gulyurtlu, I.; Gominho, J.; Lourenço, A.; Pereira, H. Thermal Conversion of Cynara cardunculus L. and Mixtures with Eucalyptus globulus by Fluidized-Bed Combustion and Gasification. Energy Fuels 2013, 27, 6725–6737. [Google Scholar] [CrossRef]
- Svoboda, K.; Martinec, J.; Pohořelý, M.; Baxter, D. Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds. Chem. Pap. 2009, 63, 15–25. [Google Scholar] [CrossRef]
- Kumar, S. Hydrothermal Processing of Biomass for Biofuels. Biofuels Res. J. 2014, 1, 43. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, S. Municipal solid waste generation, composition, and management: The global scenario. Soc. Responsib. J. 2020, 16, 917–948. [Google Scholar] [CrossRef]
- Sadaka, S. Gasification of Raw and Torrefied Cotton Gin Wastes in an Auger System. Appl. Eng. Agric. 2013, 29, 405–414. [Google Scholar] [CrossRef]
- Gunamantha, M. Prediction of Higher Heating Value Bioorganic Fraction of Municipal Solid Waste from Proximate Analysis Data. Int. J. Eng. Res. Technol. 2016, 5, 442–447. [Google Scholar]
- Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renew. Sustain. Energy Rev. 2014, 36, 107–122. [Google Scholar] [CrossRef]
- Leitol, C.; Győrfi, A.; Kiss, T. The correlations of the particle size, calorific value, moisture- and ash content of waste derived fuel, and examination of its heavy metal content. Waste Manag. 2020, 103, 19–27. [Google Scholar] [CrossRef]
- Tanner, V.R. Die Entwicklung der Von-Roll-Müllverbrennungsanlagen (The development of the Von-Roll incinerators). Schweiz. Bauztg. 1965, 83, 251–260. (In German) [Google Scholar] [CrossRef]
- Komilis, D.; Kissas, K.; Symeonidis, A. Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram. Waste Manag. 2014, 34, 249–255. [Google Scholar] [CrossRef]
- Franjo, C.F.; Ledo, J.P.; Rodriguez-Añon, J.A.; Regueira, L.N. Calorific value of municipal solid waste. Environ. Technol. 1992, 13, 1085–1089. [Google Scholar] [CrossRef]
- Bagheri, M.; Esfilar, R.; Golchi, M.S.; Kennedy, C.A. Supplementary materials for “A comparative data mining approach for the prediction of energy recovery potential from various municipal solid waste”. Renew. Sustain. Energy Rev. 2019, 116, 109423. [Google Scholar] [CrossRef]
- Ecoprog GmbH. Waste to Energy 2023/24. Available online: www.ecoprog.com/publications/data-wte (accessed on 25 July 2024).
- Bertone, M.; Stabile, L.; Buonanno, G. An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application. Sustainability 2024, 16, 4117. [Google Scholar] [CrossRef]
- Kazimierowicz, J. Organic Waste Used in Agricultural Biogas Plants. J. Ecol. Eng. 2014, 15, 88–92. [Google Scholar] [CrossRef]
- Maxwell, W.H. Destructors. In The Encyclopedia Britannica, 11th ed.; University Press: Cambridge, UK, 1910; Volume 8, pp. 104–109. Available online: https://archive.org/details/dli.bengal.10689.6474 (accessed on 20 August 2024).
- Zhao, B.; Hu, X.; Lu, J. Analysis and discussion on formation and control of dioxins generated from municipal solid waste incineration process. J. Air Waste Manag. Assoc. 2022, 72, 1063–1082. [Google Scholar] [CrossRef]
- Huuskonen, H.; Unkila, M.; Pohjanvirta, R.; Tuomisto, J. Developmental toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the most TCDD-resistant and -susceptible rat strains. Toxicol. Appl. Pharmacol. 1994, 124, 174–180. [Google Scholar] [CrossRef]
- Steenland, K.; Deddens, J.; Piacitelli, L. Risk assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) based on an epidemiologic study. Am. J. Epidemiol. 2001, 154, 451–458. [Google Scholar] [CrossRef]
- Aylward, L.; Brunet, R.; Carrier, G.; Hays, S.; Cushing, C.; Needham, L.; Patterson, D.; Gerthoux, P.; Brambilla, P.; Mocarelli, P. Concentration-dependent TCDD elimination kinetics in humans: Toxicokinetic modeling for moderately to highly exposed adults from Seveso, Italy, and Vienna, Austria, and impact on dose estimates for the NIOSH cohort. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 51–65. [Google Scholar] [CrossRef]
- Stieglitz, L.; Vogg, H. On formation conditions of PCDD/PCDF in fly ash from municipal waste incinerators. Chemosphere 1987, 16, 1917–1922. [Google Scholar] [CrossRef]
- Zheng, J.; Qi, H. Impact of chlorine concentration on the formation of dioxins. J. Hazard. Mater. 2008, 152, 276–282. [Google Scholar] [CrossRef]
- Kasiński, S.; Dębowski, M.; Olkowska, M.; Rudnicki, M. Analysis of the Long-Term Mass Balance and Efficiency of Waste Recovery in a Municipal Waste Biodrying Plant. Energies 2021, 14, 7711. [Google Scholar] [CrossRef]
- Mckay, G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chem. Eng. J. 2002, 86, 343–368. [Google Scholar] [CrossRef]
- Berdnikov, V.; Gudim, Y. Formation of dioxins in high-temperature combustion of chlorine-bearing material. Steel Transl. 2015, 45, 89–93. [Google Scholar] [CrossRef]
- Fujii, T.; Murakawa, T.; Maeda, N.; Kondo, M.; Nagai, K.; Hama, T.; Ota, K. Removal technology of PCDDs/PCDFs in flue gas from MSW incinerators by fabric bag filter and SCR system. Chemosphere 1994, 29, 2067–2070. [Google Scholar] [CrossRef]
- Koller, J.; Baumer, U.; Kaup, Y.; Schmid, M.; Weser, U. Analysis of a pharaonic embalming tar. Nature 2003, 425, 784. [Google Scholar] [CrossRef]
- Mcintyre, A.D.; Papic, M.M. Pyrolysis of municipal solid waste. Can. J. Chem. Eng. 1974, 52, 263–272. [Google Scholar] [CrossRef]
- Crane, T.H.; Ringer, H.N.; Bridges, D.W. Production of Gaseous Fuel by Pyrolysis of Municipal Solid. Waste. Patent No. NASA-CR-141791, 20 March 1975. [Google Scholar]
- Boegly, W.J., Jr.; Mixon, W.R.; Dean, C.; Lizdas, D.J. Solid Waste Utilization: Pyrolysis (No. ANL/CES/TE-77-15); Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1977. [Google Scholar]
- Schlesinger, M.D.; Sanner, W.S.; Wolfson, D.E. Pyrolysis of waste materials from urban and rural sources. In Proceeding of Third Mineral Waste Utilization Symp; Schwartz, M.L., Ed.; Bureau of Mines/Illinois Inst. of Tech: Chicago, IL, USA, 1972; pp. 423–428. [Google Scholar]
- Recycling magazine. Advanced Recycling on the Rise. Recycling Magazine. 23 February 2024. Available online: https://www.recycling-magazine.com (accessed on 26 June 2024).
- Weibold. Report: Global Tire Pyrolysis Market Update, Trends & Technology Suppliers 2024. Weibold. 2024. Available online: https://www.weibold.com (accessed on 26 June 2024).
- Chen, D.; Yin, L.; Wang, H.; He, P. Pyrolysis technologies for municipal solid waste: A review. Waste Manag. 2014, 34, 2466–2486. [Google Scholar] [CrossRef]
- AlDayyat, E.; Saidan, M.; Al-Hamamre, Z.; Al-Addous, M.; Alkasrawi, M. Pyrolysis of Solid Waste for Bio-Oil and Char Production in Refugees’ Camp: A Case Study. Energies 2021, 14, 3861. [Google Scholar] [CrossRef]
- Ridout, A.; Carrier, M.; Collard, F.; Görgens, J. Energy conversion assessment of vacuum, slow and fast pyrolysis processes for low and high ash paper waste sludge. Energy Convers. Manag. 2016, 111, 103–114. [Google Scholar] [CrossRef]
- Phan, A.; Ryu, C.; Sharifi, V.; Swithenbank, J. Characterisation of slow pyrolysis products from segregated wastes for energy production. J. Anal. Appl. Pyrolysis 2008, 81, 65–71. [Google Scholar] [CrossRef]
- Efika, E.C.; Onwudili, J.A.; Williams, P.T. Products from the high temperature pyrolysis of RDF at slow and rapid heating rates. J. Anal. Appl. Pyrolysis 2005, 112, 14–22. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Buah, W.; Williams, P.T. Combustible Gaseous Products from Pyrolysis of Combustible Fractions of Municipal Solid Waste. J. Solid Waste Technol. Manag. 2016, 42, 191–196. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Chhabra, V.; Bhattacharya, S.; Shastri, Y. Pyrolysis of mixed municipal solid waste: Characterisation, interaction effect and kinetic modelling using the thermogravimetric approach. Waste Manag. 2019, 90, 152–167. [Google Scholar] [CrossRef]
- Fu, P.; Yi, W.; Bai, X.; Li, Z.; Hu, S.; Xiang, J. Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues. Bioresour. Technol. 2011, 102, 8211–8219. [Google Scholar] [CrossRef]
- Leung, D.; Yin, X.; Zhao, Z.; Xu, B.; Chen, Y.B. Pyrolysis of tire powder: Influence of operation variables on the composition and yields of gaseous product. Fuel Process. Technol. 2002, 79, 141–155. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Boutaieb, M.; Guiza, M.; Román, S.; Nogales, S.; Ledesma, B.; Ouederni, A. Pine cone pyrolysis: Optimization of temperature for energy recovery. Environ. Prog. Sustain. Energy 2019, 39, 13272. [Google Scholar] [CrossRef]
- Rasaq, W.A.; Golonka, M.; Scholz, M.; Białowiec, A. Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass A Review. Energies 2021, 14, 5426. [Google Scholar] [CrossRef]
- Velghe, I.; Carleer, R.; Yperman, J.; Schreurs, S. Study of the pyrolysis of municipal solid waste for the production of valuable products. J. Anal. Appl. Pyrol. 2011, 92, 366–375. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, A.; Jiang, E.; Qin, L. Pyrolysis of industrial waste lignin: Analysis of product yields and character. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 458–464. [Google Scholar] [CrossRef]
- Patra, B.R. Slow pyrolysis of Agro-Food Waste to Produce Biochar and Activated Carbon for Adsorption of Pollutants from Model Wastewater. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, July 2021. [Google Scholar]
- Song, Q.; Zhao, H.; Xing, W.; Song, L.; Yang, L.; Shu, X. Effects of various additives on the pyrolysis characteristics of municipal solid waste. Waste Manag. 2018, 78, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Z.; Li, J.; Yan, B.; Chen, G. Pyrolysis of food waste and food waste solid digestate: A comparative investigation. Bioresour. Technol. 2022, 354, 127191. [Google Scholar] [CrossRef]
- Kardaś, D.; Kluska, J.; Klein, M.; Kazimierski, P.; Heda, Ł. Modelowe Kompleksy Agroenergetyczne: Teoretyczne I Eksperymentalne Aspekty Pirolizy Drewna I Odpadów; Wydawnictwo UWM: Olsztyn, Poland, 2014. [Google Scholar]
- Ruiz, B.; Fuente, E.; Pérez, A.; Taboada-Ruiz, L.; Sanz, J.M.; Calvo, L.F.; Paniagua, S. Employment of conventional and flash pyrolysis for biomass wastes from the textile industry with sustainable prospects. J. Anal. Appl. Pyrolysis 2023, 169, 105864. [Google Scholar] [CrossRef]
- Volpe, M.; Panno, D.; Volpe, R.; Messineo, A. Upgrade of citrus waste as a biofuel via slow pyrolysis. J. Anal. Appl. Pyrolysis 2015, 115, 66–76. [Google Scholar] [CrossRef]
- Brown, L.J.; Collard, F.-X.; Görgens, J. Fast pyrolysis of fibre waste contaminated with plastic for use as fuel products. J. Anal. Appl. Pyrolysis 2019, 138, 261–269. [Google Scholar] [CrossRef]
- Ding, K.; Zhong, Z.; Zhong, D.; Zhang, B.; Qian, X. Pyrolysis of municipal solid waste in a fluidized bed for producing valuable pyrolytic oils. Clean Technol. Environ. Policy 2016, 18, 1111–1121. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Jahirul, M.I.; Khan, M.M.K. Fast pyrolysis of municipal green waste in an auger reactor: Effects of residence time and particle size on the yield and characteristics of produced oil. Energies 2024, 17, 2914. [Google Scholar] [CrossRef]
- Kar, T.; Kaygusuz, Ö.; Güney, M.Ş.; Cuce, E.; Keleş, S.; Shaik, S.; Owolabi, A.B.; Nsafon, B.E.K.; Ogunsua, J.M.; Huh, J.-S. Fast Pyrolysis of Tea Bush, Walnut Shell, and Pine Cone Mixture: Effect of Pyrolysis Parameters on Pyrolysis Crop Yields. Sustainability 2023, 15, 13718. [Google Scholar] [CrossRef]
- Waheed, Q.M.K.; Nahil, M.A.; Williams, P.T. Pyrolysis of waste biomass: Investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. J. Energy Inst. 2013, 86, 233–241. [Google Scholar] [CrossRef]
- Septien, S.; Valin, S.; Dupont, C.; Peyrot, M.; Salvador, S. Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000–1400 degrees C). Fuel 2012, 97, 202–210. [Google Scholar] [CrossRef]
- Onay, O.; Kockar, O.M. Slow, fast and flash pyrolysis of rapeseed. Renew. Energy 2003, 28, 2417–2433. [Google Scholar] [CrossRef]
- Maliutina, K.; Tahmasebi, A.; Yu, J.; Saltykov, S.N. Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Convers. Manag. 2017, 151, 426–438. [Google Scholar] [CrossRef]
- Lédé, J.; Li, H.Z.; Villermaux, J. Pyrolysis of Biomass. Evidence for a Fusion-Like Phenomenon ACS Symposium Series; ACS Publication: Washington, DC, USA, 1988; pp. 66–78. [Google Scholar]
- Malinowski, A.; Chwiałkowski, W. Energy recycling of RDF fraction of municipal solid waste by continuous pyrolysis. Chem. Environ. Biotechnol. 2017, 20, 27–33. [Google Scholar] [CrossRef]
- Couhert, C. Pyrolyse Flash à Haute Température De La Biomasse Ligno-Cellulosique Et De Ses Composés: Production De Gaz de Synthèse. Doctoral Dissertation, École Nationale Supérieure des Mines de Paris, Paris, France, 2007. [Google Scholar]
- Caubet, S.; Corte, P.; Fahim, C.; Traverses, J.P. Thermochemical conversion of biomass: Gasification by flash pyrolysis study. Sol. Energy 1982, 29, 565–572. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Lyczko, N.; Minh, D. The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review. Energy 2019, 170, 326–337. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Pyrolysis of plastic wastes: Influence of material composition on product yield. J. Anal. Appl. Pyrolysis 2010, 85, 536–541. [Google Scholar]
- Yanik, J.; Kornmayer, C.; Saglam, M.; Yüksel, M. Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products. Fuel Process. Technol. 2007, 88, 942–947. [Google Scholar] [CrossRef]
- Oasmaa, A.; Kuoppala, E.; Solantausta, Y. Fast pyrolysis of forestry residue. 2. Physicochemical composition of product liquid. Energy Fuels 2003, 17, 433–443. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A.S. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Manag. 2016, 58, 250–259. [Google Scholar] [CrossRef]
- Look and Learn. William Murdock and His Unpatented Invention of Gas Lighting. Look and Learn. Available online: https://www.lookandlearn.com/blog/25129/william-murdock-and-his-unpatented-invention-of-gas-lighting/ (accessed on 25 July 2024).
- Karl, J.; Pröll, T. Steam gasification of biomass in dual fluidized bed gasifiers: A review. Renew. Sustain. Energy Rev. 2018, 98, 64–78. [Google Scholar] [CrossRef]
- Krichko, A.A.D. Theoretical Bases of Coal Gasification. In Oils and Gases from Coal: A Symposium of The United Nations Economic Commission for Europe; Pergamon Press: Oxford, UK, 1980; p. 89. [Google Scholar] [CrossRef]
- Guangul, F.M.; Sulaiman, S.A.; Ramli, A. Temperature Profile and Producer Gas Composition of High Temperature Air Gasification of Oil Palm Fronds. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2013; p. 012067. [Google Scholar]
- All Power Labs. The Five Processes of Gasification. Available online: https://www.allpowerlabs.com/gasification-explained (accessed on 25 July 2024).
- Arena, U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.; Turányi, T.; Clague, A.; Pilling, M. Development and testing of a comprehensive chemical mechanism for the oxidation of methane. Int. J. Chem. Kinet. 2001, 33, 513–538. [Google Scholar] [CrossRef]
- Freni, S.; Calogero, G.; Cavallaro, S. Hydrogen production from methane through catalytic partial oxidation reactions. J. Power Sources 2000, 87, 28–38. [Google Scholar] [CrossRef]
- Bossard, A.; Back, M.H. The homogeneous thermal conversion of methane to higher hydrocarbons in the presence of ethylene. Can. J. Chem. 1990, 68, 1401–1407. [Google Scholar] [CrossRef]
- Kuo, Y.; Almansa, G.A.; Vreugdenhil, B. Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production. Appl. Energy 2018, 215, 21–30. [Google Scholar] [CrossRef]
- Leppälahti, J.; Kurkela, E.; Simell, P.; Ståhlberg, P. Formation and removal of nitrogen compounds in gasification processes. In Proceedings of the International Conference on Coal Science 1993, Banff, AB, Canada, 12–17 September 1993; pp. 160–174. [Google Scholar] [CrossRef]
- Leppälahti, J.; Simell, P.; Kurkela, E. Catalytic conversion of nitrogen compounds in gasification gas. Fuel Process. Technol. 1991, 29, 43–56. [Google Scholar] [CrossRef]
- Das, B.; Bhave, P.V.; Sapkota, A.; Byanju, R.M. Estimating emissions from open burning of municipal solid waste in municipalities of Nepal. Waste Manag. 2018, 79, 481–490. [Google Scholar] [CrossRef]
- Sutton, D.; Kelleher, B.; Ross, J.R. Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 2001, 73, 155–173. [Google Scholar] [CrossRef]
- Tanigaki, N.; Manako, K.; Osada, M. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system. Waste Manag. 2012, 32, 720–726. [Google Scholar] [CrossRef]
- García-Bacaicoa, P.; Gonzalez, M.; Lopez, D.; Cobo, M. Gasification of high-density polyethylene in mixtures with other plastics in a downdraft gasifier. Energy Fuels 2008, 22, 457–463. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Gong, M.; Zhu, W.; Xu, Z.; Zhang, H.; Yang, H. Influence of sludge properties on the direct gasification of dewatered sewage sludge in supercritical water. Renew. Energy 2014, 66, 605–611. [Google Scholar] [CrossRef]
- Seggiani, M.; Vitolo, S.; Puccini, M.; Bellini, A. Cogasification of sewage sludge in an updraft gasifier. Fuel 2012, 93, 486–491. [Google Scholar] [CrossRef]
- Lombardi, L.; Carnevale, E.; Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 2015, 37, 26–44. [Google Scholar] [CrossRef]
- La Villetta, M.; Costa, M.; Cirillo, D.; Massarotti, N.; Vanoli, L. Performance analysis of a biomass powered mi-cro-cogeneration system based on gasification and syngas conversion in a reciprocating engine. Energy Convers. Manag. 2018, 175, 33–48. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, W.; Blasiak, W. Energy and exergy analysis of high temperature agent gasification of biomass. Energies 2014, 7, 2107–2122. [Google Scholar] [CrossRef]
- Costa, M.; Rocco, V.; Caputo, C.; Cirillo, D.; Blasio, G.; Villetta, M.L.; Martoriello, G.; Tuccillo, R. Model based optimization of the control strategy of a gasifier coupled with a spark ignition engine in a biomass powered cogeneration system. Appl. Therm. Eng. 2019, 160, 114083. [Google Scholar] [CrossRef]
- Chen, Y.; Niroumandi, H.; Duan, Y. Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant. Energy 2021, 235, 121313. [Google Scholar] [CrossRef]
- Agon, N.; Hrabovský, M.; Chumak, O.; Hlína, M.; Kopecký, V.; Mašláni, A.; Bosmans, A.; Helsen, L.; Skoblja, S.; Van Oost, G. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents. Waste Manag. 2016, 47, 246–255. [Google Scholar] [CrossRef]
- Bao, W. Research in China focuses on the characteristics and latest technological advancements in municipal waste combustion, including fluidized beds and circulating beds. J. Environ. Sci. 2013, 25, 1509–1517. [Google Scholar]
- Kaneko, S.; Arakawa, Y.; Takatsuka, H.; Hashimoto, A. Development of high efficiency refuse fired boiler applied in circulating fluidized bed combustion. Jsme Int. J. Ser. B-Fluids Therm. Eng. 1998, 41, 714–719. [Google Scholar] [CrossRef]
- Desroches-Ducarne, E.; Marty, É.; Martin, G.; Delfosse, L. Co-combustion of coal and municipal solid waste in a circulating fluidized bed. Fuel 1998, 77, 1311–1315. [Google Scholar] [CrossRef]
- Leckner, B.; Lind, F. Combustion of municipal solid waste in fluidized bed or on grate-A comparison. Waste Manag. 2020, 109, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Shimizu, H.; Onishi, H. High efficiency biomass power generation by internal circulation fluidized bed boiler, ICFB. J. Jpn. Inst. Energy 2017, 96, 509–512. [Google Scholar] [CrossRef]
- Tian, W.; Wei, X.L.; Li, J.; Sheng, H. Internal circulating fluidized bed incineration system and design algorithm. J. Environ. Sci. 2001, 13, 185–188. [Google Scholar]
- Choi, K.I.; Lee, S.H.; Lee, D.H.; Osako, M. Fundamental characteristics of input waste of small MSW incinerators in Korea. Waste Manag. 2008, 28, 2293–2300. [Google Scholar] [CrossRef]
- Kerdsuwan, S. Green, eco, innovative design, and manufacturing technology of a 1-ton per batch municipal solid waste incinerator. MATEC Web Conf. 2016, 66, 08001. [Google Scholar] [CrossRef]
- Chen, X.; Pan, M.; Li, X. Novel supercritical CO2/organic Rankine cycle systems for solid-waste incineration energy harvesting: Thermo-environmental analysis. Int. J. Green Energy 2021, 19, 786–807. [Google Scholar] [CrossRef]
- Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low-temperature organic Rankine cycles. Energy 2007, 32, 1210–1221. [Google Scholar] [CrossRef]
- Touaibi, R.; Koten, H.; Boydak, O. Parametric study of an organic Rankine cycle using different fluids. Energy Sustain. 2020, 4, 122–128. [Google Scholar] [CrossRef]
- Herath, H.; Wijewardane, M.; Ranasinghe, R.; Jayasekera, J.M.K.B. Working fluid selection of organic Rankine cycles. Energy Rep. 2020, 6, 680–686. [Google Scholar] [CrossRef]
- Kölsch, B.; Radulovic, J. Utilisation of diesel engine waste heat by organic Rankine cycle. Appl. Therm. Eng. 2015, 78, 437–448. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Wang, G. Selection of organic Rankine cycle working fluids in the low-temperature waste heat utilization. J. Hydrodyn. 2015, 27, 458–464. [Google Scholar] [CrossRef]
- Satanphol, K.; Pridasawas, W.; Suphanit, B. A study on optimal composition of zeotropic working fluid in an organic Rankine cycle (ORC) for low grade heat recovery. Energy 2017, 123, 326–339. [Google Scholar] [CrossRef]
- Antono, V.; Nurhasanah, R.; Chairat, A. Domestic waste incinerator design with bio-mass fuel. Adv. Sci. Technol. 2023, 125, 39–47. [Google Scholar] [CrossRef]
- Butt, O.; Ahmad, M.; Che, H.; Rahim, N. Design of a Small Scale Fluidized-Bed Incinerator for MSW with Ability to Utilize HHO as Auxiliary Fuel. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; p. 012040. [Google Scholar] [CrossRef]
- Butt, O.; Ahmad, M.; Che, H.; Rahim, N. Design of an incinerator working on solar PV powered electrolyzer for municipal solid waste management. In Proceedings of the 2022 International Conference on Engineering and Emerging Technologies (ICEET), Kuala Lumpur, Malaysia, 27–28 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Gabitov, R.; Kolibaba, O.; Dolinin, D.; Chizhikova, M. Improvement of efficiency of pyrolysis processing of municipal solid waste. Vestn. IGEU 2023, 93. [Google Scholar] [CrossRef]
- Aishwarya, K.; Sindhu, N. Microwave Assisted Pyrolysis of Plastic Waste. Procedia Technol. 2016, 25, 990–997. [Google Scholar] [CrossRef]
- Mahari, W.; Azwar, E.; Foong, S.; Ahmed, A.; Peng, W.; Tabatabaei, M.; Aghbashlo, M.; Park, Y.; Sonne, C.; Lam, S. Valorization of municipal wastes using co-pyrolysis for green energy production, energy security, and environmental sustainability: A review. Chem. Eng. J. 2021, 421, 129749. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wang, H. Optimization of microwave-assisted pyrolysis of sewage sludge for biofuel production. Renew. Energy 2017, 111, 303–312. [Google Scholar]
- Ateş, F.; Miskolczi, N.; Borsodi, N. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties. Bioresour. Technol. 2013, 133, 443–454. [Google Scholar] [CrossRef]
- Onwudili, J.; Muhammad, C.; Williams, P.T. Influence of catalyst bed temperature and properties of zeolite catalysts on pyrolysis-catalysis of a simulated mixed plastics sample for the production of upgraded fuels and chemicals. J. Energy Inst. 2019, 92, 1181–1191. [Google Scholar] [CrossRef]
- Almohamadi, H.; Aljabri, A.; Mahmoud, E.R.; Khan, S.; Aljohani, M.E.; Shamsuddin, R. Catalytic pyrolysis of municipal solid waste: Effects of pyrolysis parameters. Bull. Chem. React. Eng. Catal. 2021, 16, 342–352. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, H.; Jia, J.; Yang, L.; Lv, W.; Bao, J.; Shu, X.; Gu, Q.; Zhang, P. Pyrolysis of municipal solid waste with iron-based additives: A study on the kinetic, product distribution and catalytic mechanisms. J. Clean. Prod. 2020, 244, 118733. [Google Scholar] [CrossRef]
- Fekhar, B.; Gombor, L.; Miskolczi, N. Pyrolysis of chlorine contaminated municipal plastic waste: In-situ upgrading of pyrolysis oils by Ni/ZSM-5, Ni/SAPO-11, red mud and Ca(OH)2 containing catalysts. J. Energy Inst. 2019, 92, 1270–1283. [Google Scholar] [CrossRef]
- Tursunov, O. A comparison of catalysts zeolite and calcined dolomite for gas production from pyrolysis of municipal solid waste (MSW). Ecol. Eng. 2014, 69, 237–243. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Yang, J.; Du, Z.; Cheng, S. Production of syngas from pyrolysis of municipal solid waste with dolomite as downstream catalysts. J. Anal. Appl. Pyrolysis 2017, 126, 68–75. [Google Scholar]
- Kim, Y.M.; Pyo, S.; Hakimian, H.; Yoo, K.S.; Rhee, G.H.; Park, Y.K. Kinetic analysis for the catalytic pyrolysis of polypropylene over low cost mineral catalysts. Sustainability 2021, 13, 13386. [Google Scholar] [CrossRef]
- Whyte, H.E.; Loubar, K.; Awad, S.; Tazerout, M. Pyrolytic oil production by catalytic pyrolysis of refuse-derived fuels: Investigation of low cost catalysts. Fuel Process. Technol. 2015, 140, 32–38. [Google Scholar] [CrossRef]
- Vasalos, I.; Lappas, A.; Kopalidou, E.P.; Kalogiannis, K. Biomass catalytic pyrolysis: Process design and economic analysis. Wiley Interdiscip. Rev.: Energy Environ. 2016, 5, 370–383. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Z.; Chen, G. Catalytic gasification characteristics of cellulose, hemicellulose, and lignin. Renew. Energy 2018. [Google Scholar] [CrossRef]
- Zeng, X.; Fang, M.; Lv, T.; Tian, J.; Xia, Z.; Cen, J.; Wang, Q. Enhanced hydrogen production by the catalytic alkaline thermal gasification of cellulose with Ni/Fe dual-functional CaO based catalysts. Int. J. Hydrogen Energy 2021, 46, 32783–32799. [Google Scholar] [CrossRef]
- Asadullah, M.; Miyazawa, T.; Ito, S.; Kunimori, K.; Yamada, M.; Tomishige, K. A novel biomass gasification method with high efficiency: Catalytic gasification at low temperature. Green Chem. 2002, 4, 385–389. [Google Scholar] [CrossRef]
- Popa, T.; Fan, M.; Argyle, M.; Slimane, R.B.; Bell, D.; Towler, B. Catalytic gasification of a Powder River Basin coal. Fuel 2013, 103, 161–170. [Google Scholar] [CrossRef]
- Hrabovský, M.; Kopecký, V.; Kavka, T.; Chumak, O.; Serafín, J.; Hlína, M. Properties of hybrid water/gas stabilized arc. Plasma Chem. Plasma Process. 2006, 26, 155–171. [Google Scholar] [CrossRef]
- Thevenin, P.; Villermaux, P.; Lefebvre, G.; Polizzi, S. Refractory materials for plasma gasification reactors. Ceram. Int. 2014, 40, 12407–12413. [Google Scholar]
- Sturm, G.; Schmid, J.; Höller, S. Thermal and kinetic study of the pyrolysis and gasification of biomass. J. Anal. Appl. Pyrolysis 2016, 122, 117–127. [Google Scholar]
- Kaldas, A.; Picard, I.; Chronopoulos, C.; Chevalier, P.; Carabin, P.; Holcroft, G.; Alexander, G.; Spezio, J.; Mann, J.; Molintas, H. Plasma Arc Waste Destruction System (PAWDS) A Novel Approach to Waste Elimination Aboard Ships. Nav. Eng. J. 2006, 118, 139–150. [Google Scholar] [CrossRef]
- Indrawan, N.; Mohammad, S.; Kumar, A.; Huhnke, R.L. Modeling low temperature plasma gasification of municipal solid waste. Environ. Technol. Innov. 2019, 15, 100412. [Google Scholar] [CrossRef]
- Tamošiūnas, A.; Gimžauskaitė, D.; Uscila, R.; Aikas, M. Thermal arc plasma gasification of waste glycerol to syngas. Appl. Energy 2019, 251, 113306. [Google Scholar] [CrossRef]
- Djaenudin, D.; Permana, D.; Ependi, M.; Putra, H.E. Experimental studies on hydrothermal treatment of municipal solid waste for solid fuel production. J. Ecol. Eng. 2021, 22, 208–215. [Google Scholar] [CrossRef]
- Lu, L.; Namioka, T.; Yoshikawa, K. Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes. Appl. Energy 2011, 88, 3659–3664. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Prawisudha, P. Hydrothermal Treatment of Municipal Solid Waste for Producing Solid Fuel. In Application of Hydrothermal Reactions to Biomass Conversion; Springer: Berlin/Heidelberg, Germany, 2014; pp. 355–383. [Google Scholar]
- Prawisudha, P.; Namioka, T.; Yoshikawa, K. Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment. Appl. Energy 2012, 90, 298–304. [Google Scholar] [CrossRef]
- Safril, T.S.; Safril, B.I.; Yoshikawa, K. Commercial demonstration of solid fuel production from municipal solid waste employing the hydrothermal treatment. Int. J. Environ. Sci. 2017, 02, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.R. Identification of Toxic Chlorinated Dioxins and Dibenzofurans in Municipal and Industrial Waste Incineration Effluents. Environmental Science & Technology 1971. Available online: https://pubs.acs.org/journal/esthag (accessed on 20 August 2020).
- Lisk, D. Environmental implications of incineration of municipal solid waste and ash disposal. Sci. Total Environ. 1988, 74, 39–66. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, M.; Sharma, R.; Sharma, V. The impact of incinerators on human health and environment. Rev. Environ. Health 2013, 28, 67–72. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hsiue, T.R.; Chen, H.I. Bronchial responsiveness in an area of air pollution resulting from wire reclamation. Arch. Dis. Child 1992, 67, 488–490. [Google Scholar] [CrossRef]
- Zmirou, D.; Parent, B.; Potelon, J.-L. Etude epidemiologique des effets sur la sante des rejets atmospherique d’une usine d’inceneration de dechets industriels et menagers. Rev. Epidemiol Sante. Publ. 1984, 32, 391–397. [Google Scholar]
- Kumagai, S.; Koda, S. Polychlorinated dibenzo-p-dioxin and dibenzofuran concentrations in serum samples of workers at an infectious waste incineration plant in Japan. J. Occup. Environ. Hyg. 2005, 2, 120–125. [Google Scholar] [CrossRef]
- Kumagai, S.; Koda, S.; Miyakita, T.; Ueno, M. Polychlorinated dibenzo-p-dioxin and dibenzofuran concentrations in serum samples of workers at intermittently burning municipal waste incinerators in Japan. Occup. Environ. Med. 2002, 59, 362–368. [Google Scholar] [CrossRef]
- Kitamura, K.; Kikuchi, Y.; Watanabe, S.; Waechter, G.; Sakurai, H.; Takada, T. Health effects of chronic exposure to polychlorinated dibenzo-P-dioxins (PCDD), dibenzofurans (PCDF) and coplanar PCB (Co-PCB) of municipal waste incinerator workers. J Epidemiol. 2000, 10, 262–270. [Google Scholar] [CrossRef]
- Gonzalez, C.A.; Kogevinas, M.; Gadea, E.; Huici, A.; Bosch, A.; Bleda, M.J.; Ergo, O.P. Biomonitoring study of people living near or working at a municipal solid-waste incinerator before and after two years of operation. Arch. Environ. Health Int. J. 2000, 55, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Schecter, A. Chloracne and elevated dioxin and dibenzofurans levels in the blood of two Japanese municipal incinerator workers and of the wife of one worker. Organohalogen Comp. 1999, 44, 247–250. [Google Scholar]
- Miyata, H.; Kuriyama, S.; Nakao, T.; Aozasa, O.; Ohta, S. Contamination levels of PCDDs, PCDFs and non-ortho coplanar PCBs in blood samples collected from residents in high cancer-causing area close to batch-type municipal waste incinerator in Japan. Organohalogen Comp. 1998, 38, 143–146. [Google Scholar]
- Wrbitzky, R.; Göen, T.; Letzel, S.; Frank, F.; Angerer, J. Internal exposure of waste incineration workers to organic and inorganic substances. Int. Arch. Occup. Environ. Health 1995, 68, 13–21. [Google Scholar] [CrossRef]
- Angerer, J.; Heinzow, B.; Reimann, D.O.; Knorz, W.; Lehnert, G. Internal exposure to organic substances in a municipal waste incinerator. Int. Arch. Occup. Environ. Health 1992, 64, 266–273. [Google Scholar] [CrossRef]
- Kurttio, P.; Pekkanen, J.; Alfthan, G.; Paunio, M.; Jaakkola, J.J.; Heinonen, O.P. Increased mercury exposure in inhabitants living in the vicinity of a hazardous waste incinerator: A 10-year follow-up. Arch. Environ. Health 1998, 53, 129–137. [Google Scholar] [CrossRef]
- Elliott, P.; Eaton, N.; Shaddick, G.; Carter, R. Cancer incidence near municipal solid waste incinerators in Great Britain. Part 2: Histopathological and case-note review of primary liver cancer cases. Br. J. Cancer 2000, 82, 1103–1106. [Google Scholar] [CrossRef]
- Biggeri, A.; Barbone, F.; Lagazio, C.; Bovenzi, M.; Stanta, G. Air pollution and lung cancer in Trieste, Italy: Spatial analysis of risk as a function of distance from sources. Environ. Health Perspect. 1996, 104, 750–754. [Google Scholar] [CrossRef]
- Viel, J.-F.; Arveux, P.; Baverel, J.; Cahn, J.-Y. Soft-tissue sarcoma and non-Hodgkin’s lymphoma clusters around a municipal solid waste incinerator with high dioxin emission levels. Am. J. Epidemiol. 2000, 152, 13–19. [Google Scholar] [CrossRef]
- Schuhmacher, M.; Meneses, M.; Granero, S.; Llobet, J.; Domingo, J. Trace element pollution of soils collected near a municipal solid waste incinerator: Human health risk. Bull. Environ. Contam. Toxicol. 1997, 59, 861–867. [Google Scholar] [CrossRef]
- Fagin, A. Environmental Protest in Central Europe: The Case of Waste Incineration in Pilsen, Czech Republic. Environ. Politics 1998, 7, 59–80. [Google Scholar] [CrossRef]
- Rushton, L. Health hazards and waste management. Br. Med. Bull. 2003, 68, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Gladding, T.; Thurgood, M. Review of Environmental and Health Effects of Waste Management: Municipal Solid Waste and Similar Wastes; GOV.UK: London, UK, 2004. [Google Scholar]
- Reis, M.F. Solid waste incinerators: Health impacts. In Encyclopedia of Environmental Health; Viegas, E.C., Pereira, A.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 163–176. [Google Scholar]
- Douglas, P.; Freni-Sterrantino, A.; Leal Sanchez, M.; Ashworth, D.C.; Ghosh, R.E.; Fecht, D.; Hansell, A.L. Estimating particulate exposure from modern municipal waste incinerators in Great Britain. Environ. Sci. Technol. 2017, 51, 7511–7519. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-M.; Kim, J.-W.; Lee, H.-J. Burden of disease attributable to air pollutants from municipal solid waste incinerators in Seoul, Korea: A source-specific approach for environmental burden of disease. Sci. Total Environ. 2011, 409, 2019–2028. [Google Scholar] [CrossRef]
- Tian, H.; Gao, J.; Lu, L.; Zhao, D.; Cheng, K.; Qiu, P.; Hao, J. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environ. Sci. Technol. 2012, 46, 10364–10371. [Google Scholar] [CrossRef]
- Lee, R.P.; Meyer, B.; Huang, Q.; Voss, R. Sustainable waste management for zero waste cities in China: Potential, challenges and opportunities. Clean Energy 2020, 4, 169–201. [Google Scholar] [CrossRef]
- United Kingdom Without Incineration Network. Fireworks Myth Debunked. Available online: https://ukwin.org.uk/resources/health/dioxins-and-other-harmful-incinerator-emissions/fireworks-myth-debunked/ (accessed on 25 July 2024).
- Lee, B.J.; Lee, J.I.; Yun, S.Y.; Hwang, B.G.; Lim, C.-S.; Park, Y.-K. Methodology to Calculate the CO2 Emission Reduction at the Coal-Fired Power Plant: CO2 Capture and Utilization Applying Technology of Mineral Carbonation. Sustainability 2020, 12, 7402. [Google Scholar] [CrossRef]
- Al Hameli, F.; Belhaj, H.; Al Dhuhoori, M. CO2 Sequestration Overview in Geological Formations: Trapping Mechanisms Matrix Assessment. Energies 2022, 15, 7805. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M. Characteristics of Solidified Carbon Dioxide and Perspectives for Its Sustainable Application in Sewage Sludge Management. Int. J. Mol. Sci. 2023, 24, 2324. [Google Scholar] [CrossRef]
- Zieliński, M.; Karczmarczyk, A.; Kisielewska, M.; Dębowski, M. Possibilities of Biogas Upgrading on a Bio-Waste Sorbent Derived from Anaerobic Sewage Sludge. Energies 2022, 15, 6461. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Vdovychenko, A.; Kazimierowicz, J. The Use of the Autotrophic Culture of Arthrospira platensis for CO2 Fixation from Biogas Combustion. Processes 2024, 12, 396. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Kazimierowicz, J.; Świca, I. Microalgal Carbon Dioxide (CO2) Capture and Utilization from the European Union Perspective. Energies 2023, 16, 1446. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Świca, I.; Kazimierowicz, J. Algae Biomass as a Potential Source of Liquid Fuels. Phycology 2021, 1, 105–118. [Google Scholar] [CrossRef]
- Dębowski, M.; Michalski, R.; Zieliński, M.; Kazimierowicz, J. A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions. Atmosphere 2021, 12, 1099. [Google Scholar] [CrossRef]
- Kujawska, N.; Talbierz, S.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M. Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon. Energies 2021, 14, 2952. [Google Scholar] [CrossRef]
- Lindsey, A.J.; Thoms, A.W.; Dancer, J.; Gross, M. Evaluation of Algae-Based Fertilizers Produced from Revolving Algal Biofilms on Kentucky Bluegrass. Agronomy 2021, 11, 1288. [Google Scholar] [CrossRef]
- GB 18485–2001; National Standards of the People’s Republic of China. Standard Press of China: Beijing, China, 2024.
- Headquarters, U.S. Forces Japan. Japan Environmental Governing Standards. Department of Defense 2016. Available online: https://www.usfj.mil/Resources/JEGS/ (accessed on 20 August 2020).
- Seoul Urban Solutions Agency. Joint Use of Municipal Waste Incineration Infrastructure in Seoul. Seoul Solution 2023. Available online: https://www.seoulsolution.kr/en/content/joint-use-municipal-waste-incineration-infrastructure-seoul (accessed on 15 June 2023).
- European Parliament and Council of the European Union. Directive 2010/75/EU on Industrial Emissions (Integrated Pollution Prevention and Control); Official Journal of the European Union: Dublin, Ireland, 2010; L 334; pp. 17–119. [Google Scholar]
- Environmental Protection Agency. Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Large Municipal Waste Combustors Voluntary Remand Response and 5-Year Review. Fed. Regist. 2024, 89, 4243–4251. [Google Scholar]
- de Titto, E.; Savino, A. Environmental and health risks related to waste incineration. Waste Manag. Res. 2019, 37, 976–986. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, S.; Hai, J.; Lei, M. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Manag. 2017, 69, 170–186. [Google Scholar] [CrossRef]
- van Dijk, C.V.; Doorn, W.; van Alfen, B. Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands. Chemosphere 2015, 122, 45–51. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Namiecińska, O.; Czerwińska, J. Environmental impact of emissions from incineration plants in comparison to typical heating systems. E3S Web Conf. 2018, 28, 01038. [Google Scholar] [CrossRef]
- Ye, W.-W.; Cai, P.-T.; Zhan, M.-X.; Jiao, W.-T.; Xu, X.; Fu, J.-Y.; Chen, T.; Li, X.-D. Dioxin emission and distribution from cement kiln co-processing of hazardous solid waste. Environ. Sci. Pollut. Res. 2020, 29, 53755–53767. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, C.; Tudor, P.; Istrate, I.-A.; Voicu, G. Assessment of environmental pollution in cement plant areas in Romania by co-processing waste in clinker kilns. Energies 2022, 15, 2656. [Google Scholar] [CrossRef]
- Recycling Magazine. Factually Confusing Classification of Pyrolysis. Available online: https://www.recycling-magazine.com/2022/02/07/factually-confusing-classification-of-pyrolysis/ (accessed on 25 July 2024).
- European Parliament and Council of the European Union. Directive 2008/98/Ec on Industrial Emissions on Waste and Repealing Certain Directives; Official Journal of the European Union: Dublin, Ireland, 2008; L 312; pp. 3–30. [Google Scholar]
- Neuwahl, F.; Cusano, G.; Benavides, J.G.; Holbrook, S.; Roudier, S. Best Available Techniques (BAT) Reference Document for Waste Incineration; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Ebadolahzadeh, M. Air Pollution Emissions from Pyrolysis Plants: A Systematic Mapping. Master’s Thesis, Università degli Studi di Padova, Dipartimento di Ingegneria Civile, Edile e Ambientale, Padova, Italy, 2023. [Google Scholar]
- Yao, Z.; You, S.; Dai, Y.; Wang, C.H. Particulate emission from the gasification and pyrolysis of biomass: Concentration, size distributions, respiratory deposition-based control measure evaluation. Environ. Pollut. 2018, 242, 1108–1118. [Google Scholar] [CrossRef]
- Hu, B.; Huang, Q.; Chi, Y.; Yan, J. Polychlorinated dibenzo-p-dioxins and dibenzofurans in a three-stage municipal solid waste gasifier. J. Clean. Prod. 2019, 218, 920–929. [Google Scholar] [CrossRef]
- Garrido, M.A.; Font, R.; Conesa, J.A. Pollutant emissions from the pyrolysis and combustion of viscoelastic memory foam. Sci. Total Environ. 2017, 577, 183–194. [Google Scholar] [CrossRef]
- Avenell, C.; Sainz-Díaz, C.I.; Griffiths, A. Solid waste pyrolysis in a pilot-scale batch pyrolyser. Fuel 1996, 75, 1167–1174. [Google Scholar] [CrossRef]
- Schwartz, N.; Paulsen, A.D.; Blaise, M.; Wagner, A.L.; Yelvington, P.E. Analysis of emissions from combusting pyrolysis products. Fuel 2020, 274, 117863. [Google Scholar] [CrossRef]
- Sainz-Díaz, C.I.; Kelly, D.; Avenell, A.; Griffiths, A. Pyrolysis of furniture and tire wastes in a flaming pyrolyzer minimizes discharges to the environment. Energy Fuels 1997, 11, 1061–1072. [Google Scholar] [CrossRef]
- Xiao, K.; Guan, R.; Yang, J.; Li, H.; Yu, Z.; Liang, S.; Yu, W.; Hu, J.; Hou, H.; Liu, B. Effects of red mud on emission control of NOx precursors during sludge pyrolysis: A protein model compound study. Waste Manag. 2019, 85, 452–463. [Google Scholar] [CrossRef]
- Li, Y.-J.; Test Study on Emission of NOx and SO2 from Gasified Incineration of Organic Solid Wastes. Thermal Power Generation 2008. Available online: https://www.semanticscholar.org/paper/TEST-STUDY-ON-EMISSION-OF-NO_x-AND-SO_2-FROM-OF-Yan-ji/594e95b97d3ea8e773a71f64138fd21772276cb2 (accessed on 20 August 2020).
- Gao, N.; Li, A. Emissions of SO2, NO and NO2 in biogas incinerator during solid waste gasification. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Lopes, E.J.; Queiroz, N.; Yamamoto, C.; da Costa Neto, P.R. Evaluating the emissions from the gasification processing of municipal solid waste followed by combustion. Waste Manag. 2017, 73, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T. Prediction methodology of fuel-NOx emissions in gasified fuels’ combustion. J. Gas Turbine Soc. Jpn. 2010, 3, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Van Huynh, C.; Kong, S.C. Combustion and NOx emissions of biomass-derived syngas under various gasification conditions utilizing oxygen-enriched-air and steam. Fuel 2013, 107, 455–464. [Google Scholar] [CrossRef]
- Park, S.W.; Lee, J.S.; Yang, W.S.; Kang, J.J.; Alam, M.T.; Seo, Y.C.; Oh, J.H.; Gu, J.H.; Chennamaneni, S.R.; Kandasamy, V.K. Emission characteristics of gaseous pollutants from pilot-scale SRF gasification process. In Waste Management and Resource Efficiency; Ghosh, S.K., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 51–57. [Google Scholar] [CrossRef]
- Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H.; Smebye, A.; Cornelissen, G. Waste timber pyrolysis in a medium-scale unit: Emission budgets and biochar quality. Sci. Total Environ. 2020, 718, 137335. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Selvam, A.; Wong, J.W.C. Emerging trends in municipal solid waste incineration ashes research: A bibliometric analysis from 1994 to 2018. Environ. Sci. Pollut. Res. 2020, 27, 7757–7784. [Google Scholar] [CrossRef]
- Wang, J.; Hu, W.; Cheng, H. Comparative study on metal solidification/stabilization of municipal solid waste incineration fly ash. Waste Manag. 2015, 45, 312–318. [Google Scholar] [CrossRef]
- Chansuvarn, W. Determination of residual heavy metals in incinerator bottom ash and their mobility. Appl. Mech. Mater. 2020, 901, 65–71. [Google Scholar] [CrossRef]
- Ghouleh, R.; Shao, Y. Turning municipal solid waste incineration into a cleaner cement production. J. Clean. Prod. 2018, 195, 268–279. [Google Scholar] [CrossRef]
- Huang, Q.; Cai, X.; Alhadj-Mallah, M.; Du, C.; Chi, Y.; Yan, J. Thermal Plasma Vitrification of MSWI Fly Ash Mixed With Different Biomass Ashes. IEEE Trans. Plasma Sci. 2014, 42, 3549–3554. [Google Scholar] [CrossRef]
- Bontempi, E.; Zacco, A.; Borgese, L.; Gianoncelli, A.; Ardesi, R.; Depero, L. A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J. Environ. Monit. 2010, 12, 2093–2099. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, S.; Liu, L.-l.; Wang, X.; Zhang, Z. Recycling ground MSWI bottom ash in cement composites: Long-term environmental impacts. Waste Manag. 2018, 78, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Lederer, J.; Trinkel, V.; Fellner, J. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria. Waste Manag. 2017, 60, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Bie, R.; Chen, P.; Song, X.; Ji, X. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J. Energy Inst. 2016, 89, 704–712. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Tan, S.; Sun, X.; Deng, Y.; Yang, W. Solidification and multi-cytotoxicity evaluation of thermally treated MSWI fly ash. J. Hazard. Mater. 2020, 388, 122041. [Google Scholar] [CrossRef]
- Ma, W.; Chen, D.; Pan, M.; Gu, T.; Zhong, L.; Chen, G.; Yan, B. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: A comparative study. J. Environ. Manag. 2019, 247, 169–177. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, H.; Zhang, D. Solidification of municipal solid waste incineration fly ash with waste glass. Chemosphere 2021, 283, 131240. [Google Scholar] [CrossRef]
- Chou, S.Y.; Lo, S.; Hsieh, C.H.; Chen, C. Sintering of MSWI fly ash by microwave energy. J. Hazard. Mater. 2009, 163, 357–362. [Google Scholar] [CrossRef]
- Morf, L.S.; Gloor, R.; Haag, O.; Haupt, M.; Skutan, S.; Di Lorenzo, F.; Böni, D. Metals and their fate in municipal solid waste incineration. Waste Manag. 2013, 33, 634–644. [Google Scholar] [CrossRef]
- Funari, V.; Fornari, F.; Groppi, G. Residues from waste incinerators as a source of materials. Waste Manag. 2015, 45, 206–216. [Google Scholar] [CrossRef]
- Jahromy, S.S.; Jordan, C.; Azam, M.; Werner, A.; Harasek, M.; Winter, F. Fly ash from municipal solid waste incineration as a potential thermochemical energy storage material. Energy Fuels 2019, 33, 7763–7775. [Google Scholar] [CrossRef]
Category | Low-Income Countries | Lower-Middle-Income Countries | Upper-Middle-Income Countries | High-Income Countries |
---|---|---|---|---|
Organic Waste | 56% | 54% | 53% | 32% |
Plastic | 6.4% | 12% | 12.5% | 12% |
Paper and Cardboard | 27% | 15% | 17% | 25% |
Metal | 1% | 2% | 3% | 5% |
Glass | 2% | 4% | 2% | 4% |
Others | 7% | 13% | 12.5% | 22% |
Category | North America | Europe and Central Asia | Middle East and North Africa | South Asia | Sub-Saharan Africa |
---|---|---|---|---|---|
Organic Waste | <30% | 36% | 58% | 64% | 57% |
Plastic | 12% | 18.6% | 13% | 9% | 10% |
Paper and Cardboard | 28% | 21% | 8% | 8% | 9% |
Metal | - | 3% | 3% | 2% | 4% |
Glass | - | 8% | 3% | 2% | 3% |
Others | 55% | 11.5% | 15% | 15% | 17% |
Category | Elemental Composition Range [% wt] | HHV [MJ/kg] | |||||
---|---|---|---|---|---|---|---|
C | H | N | S | O | HHV Range | Mean HHV | |
Paper waste | 30.50–59.18 | 3.46–9.25 | 0.05–2.9 | 0.0–1.50 | 27.5–46.9 | 10.40–19.30 | 14.85 |
Textile waste | 46.19–66.85 | 5.34–9.72 | 0.1–4.62 | 0.0–0.40 | 18.7–43.6 | 18.69–31.16 | 24.93 |
Leather and rubber waste | 42.01–84.22 | 5.18–9.44 | 0.0–10.0 | 0.0–2.46 | 2.67–23.3 | 19.67–42.14 | 30.91 |
MSW mixture | 31.20–59.20 | 3.80–9.07 | 0.22–1.4 | 0.0–0.89 | 21.8–46.32 | 11.99–27.63 | 19.81 |
Plastic waste | 38.00–92.00 | 4.90–14.2 | 0.0–6.26 | 0.0–0.86 | 0.05–48.62 | 15.82–46.60 | 31.21 |
Wood waste | 36.20–53.30 | 4.75–6.66 | 0.05–6.99 | 0.02–1.2 | 30.34–47.7 | 14.61–23.26 | 18.94 |
Organic and other waste | 20.62–50.94 | 2.87–7.60 | 0.5–6.26 | 0.0–0.81 | 4.0–48.62 | 9.10–22.61 | 15.86 |
HR | Temperature [°C] | Reactor Type | Feedstock|Size|Ash [%wt] | Share of the Fraction [%wt] | Ref. | ||
---|---|---|---|---|---|---|---|
Gas | Liquid | Solid | |||||
Slow pyrolysis | 300 | Horizontal tube | Lignin waste|<1 mm|N/A | 8.93 | 18.13 | 72.94 | [83] |
300 | Horizontal tube | Food waste|N/A|9.09 | ~15 | ~25 | 52.4 | [84] | |
400 | Horizontal tube | Mixed MSW|<1 mm|9.61 | 30.31 | 20.94 | 44.47 | [85] | |
450 | Horizontal tube | Mixed MSW|<1 mm|9.61 | 31.96 | 22.51 | 42.23 | [85] | |
500 | Fixed-bed | Mixed MSW|<5 cm|N/A | 8.92 | 61.26 | 29.82 | [68] | |
500 | Fixed-bed | FWSD **|20–40 mm|N/A | 5.3 | 52.2 | 42.5 | [86] | |
500 | Fixed-bed | Food waste|20–40 mm|N/A | 7.4 | 60.3 | 32.3 | [86] | |
500 | Horizontal tubular | RDF|<10 mm|12.4 | 26 | 34 | 40 | [87] | |
500 | Horizontal tubular | Biomass *|<0.2 mm|14.18 | 21.99 | 55.12 | 22.89 | [88] | |
550 | Horizontal tubular | Mixed MSW|<2 mm|5.9 | 34 | 48 | 18 | [82] | |
600 | Fixed-bed | Mixed MSW|<5 cm|N/A | 13.41 | 59.98 | 26.61 | [68] | |
600 | Horizontal tube | Food waste|N/A|9.09 | 22.3 | 49.7 | 28 | [84] | |
650 | Fixed-bed | Citrus residues|<850 µm|2.85 | <25.5 | 39.2 | 35.3 | [89] | |
700 | Fixed-bed | Mixed MSW|<5 cm|N/A | 13.41 | 59.98 | 26.61 | [70] | |
700 | Horizontal tube | Lignin waste|<1 mm|N/A | 28.09 | 32.12 | 39.79 | [83] | |
750 | Horizontal tubular | Biomass *|<0.2 mm|14.18 | 37.16 | 41.42 | 21.42 | [86] | |
800 | Fixed-bed | Mixed MSW|<5 cm|N/A | 31.16 | 52.61 | 16.23 | [68] | |
800 | Fixed-bed | FWSD **|20–40 mm|32.17 | 48.9 | 8.3 | 42.8 | [86] | |
800 | Fixed-bed | Food waste|20–40 mm|16.96 | 67 | 8.2 | 24.8 | [86] | |
Fast pyrolysis | 350 | Horizontal tubular | Mixed paper/plastic|6 mm|10 | 9.4 | 6.2 | 12.8 | [90] |
400 | Fixed-bed | RDF |16/80 mm|17 | 18.6 | 30 | 49.8 | [74] | |
450 | Fluidized-bed | MSW|<1 cm|8.54 | 19 | 56.5 | 24.5 | [91] | |
500 | Auger reactor | MGW ***|2 mm|0.93 | 27.5 | 31.2 | 41.3 | [92] | |
500 | Horizontal tubular | RDF|<0.2 mm|12.4 | 10 | 48 | 42 | [87] | |
550 | Fluidized-bed | MSW|<1 cm|8.54 | 10.1 | 38.4 | 21.5 | [91] | |
550 | Horizontal tubular | Mixed paper/plastic|6 mm|10 | 14.9 | 40.2 | 29.4 | [90] | |
600 | Fixed-bed | Mixed biomass|<1 mm|1.02 | 33.53 | 47.94 | 18.53 | [93] | |
650 | Fluidized-bed | Mixed MSW|<1 cm|8.54 | 40.8 | 42.1 | 17.1 | [91] | |
700 | Fixed-bed | RDF|16/80 mm|17 | 20.1 | 50 | 32.3 | [74] | |
750 | Fixed-bed | Forestry residues|1.4–2.8 mm| | 60.13 | 20.11 | 14.37 | [94] | |
850 | Fixed-bed | Forestry residues|1.4–2.8 mm| | 73.91 | 16.98 | 7.69 | [94] | |
950 | Fixed-bed | Forestry residues|1.4–2.8 mm| | 79.27 | 12.21 | 5.44 | [94] | |
1000 | Drop tube furnace | Woody biomass|<0.8 mm|0.4 | 85 | 10 | 5 | [95] | |
1050 | Fixed-bed | Forestry residues|1.4–2.8 mm| | 85.91 | 10.31 | 3.21 | [94] | |
Flash pyrolysis | 500 | Horizontal tubular | Biomass *|<0.2 mm|14.18 | 33.33 | 43.75 | 22.92 | [88] |
550 | Tubular transport | Rapeseed|<1.8 mm|5.5 | 11 | 72 | 17 | [96] | |
600 | Entrained-flow | Lignocellulosic|<125 µm|3.87 | 5.37 | 73.74 | 20.89 | [97] | |
625 | Ablative vortex | Pine|<3.2 mm| | 13 | 71 | 18 | [98] | |
700 | Horizontal tubular | RDF|16/80 mm|13 | 43.6 | 29 | 22.4 | [72] | |
750 | Horizontal tubular | Biomass *|<0.2 mm|14.18 | 55.53 | 25.96 | 18.51 | [88] | |
800 | Horizontal tubular | RDF|16/80 mm|13 | 46.9 | 23 | 22.8 | [72] | |
850 | Continuous flow | Light RDF foils|6/20 mm|23 | 55.2 | 12 | 32.8 | [99] | |
850 | Continuous flow | Heavy RDF pack.|6/20 mm|23 | 62.6 | 5.8 | 31.4 | [99] | |
900 | Horizontal tubular | RDF|16/80 mm|13 | 52.3 | 23 | 21 | [72] | |
950 | Entrained-flow | Biomass|<125 µm|1.2 | 68.5 | 16.8 | 12 | [100] | |
1000 | Tubular | Wood|1–2 mm|0.5 | >75 | N/A | N/A | [101] |
Biomass Type | Key Liquid Products | Remarks | Ref. |
---|---|---|---|
Organic/Food waste | Water, organic acids, ox. compounds | High water content, low energy density | [102] |
Plastic waste | Aromatics, water | Metal content increases aromatic fraction | [103] |
Agricultural waste | Phenols, organic acids, aldehydes | Composition based on residue type | [104] |
Forestry residues | Extractives, sugars, aldehydes | High extractive content leads to phase separation | [105] |
Polystyrene waste | Styrene, toluene, ethyl-benzene | High liquid yield at 450 °C | [106] |
Type of Reaction | Reaction | Enthalpy [MJ/kmol] |
---|---|---|
Oxidation reactions: | ||
Carbon partial oxidation | C + ½ O2 → CO | −111 |
Carbon monoxide oxidation | CO + ½ O2 → CO2 | −283 |
Carbon oxidation | C + O2 → CO2 | −394 |
Hydrogen oxidation | H2 + ½ O2 → H2O | −242 |
Gasification reactions involving water vapor: | ||
Water–gas reaction | C + H2O → CO + H2 | +131 |
Water–gas shift reaction | CO + H2O → CO2 + H2 | −41 |
Steam methane reforming (I) | CH4 + H2O → CO + 3 H2 | +206 |
Steam methane reforming (II) | CH4 + 2 H2O → 2 CO2 + 4 H2 | +165 |
Steam reforming | CnHm + n H2O → n CO + (n + m/2) H2 | Endothermic |
Gasification reactions involving hydrogen: | ||
Hydrogasification | C + 2 H2 → CH4 | −75 |
Methanation | CO + 3 H2 → CH4 + H2O | −227 |
Gasification reactions involving carbon dioxide: | ||
Boudouard reaction | C + CO2 → 2 CO | +172 |
Dry reforming | CnHm + n CO2 → 2n CO + m/2 H2 | Endothermic |
Gasification reactions involving hydrocarbons: | ||
Ethylene formation | 2CH4 + C2H4 → CO + 2 H2 | +202 |
Gasification reactions involving ammonia: | ||
Ammonia formation | 3 H2+ N2 → CO + 2 NH3 | +92 |
Type of Waste | HHV [MJ/kg] | Humidity [%wt] | Feedstock | a | b | c = a + b | d | e | e-c-d | |
---|---|---|---|---|---|---|---|---|---|---|
mf [kg] | mw [kg] | Qev [MJ/kg] | Qen [MJ/kg] | Qin [MJ/kg] | Qrad [MJ/kg] | Qrec [MJ/kg] | ΔQ [MJ/kg] | |||
Mixed MSW | 15 | 40 | 0.6 | 0.4 | 1.03 | 3.05 | 4.08 | 0.41 | 2.79 | −1.70 |
RDF | 22 | 12 | 0.88 | 0.12 | 0.31 | 3.05 | 3.36 | 0.34 | 6.00 | 2.31 |
HAP | Unit | China | Japan * | South Korea | EU | USA ** |
---|---|---|---|---|---|---|
PM | mg/m³ | 20 | 24 | 20 | 10 | 25|7.4 |
NOx | mg/m³ | 250 | 307.5 | 143.5 | 200 | 180|110 |
SOx | mg/m³ | 80 | 85.8 | 85.8 | 50 | 29|20 |
HCl | mg/m³ | 50 | 41 | 32.8 | 10 | 29|13 |
CO | mg/m³ | 8 | N/A | 62.5 | 50 | <125 |
Cd | mg/m³ | 0.1 | N/A | 0.05 | 0.05 | 0.035|0.0015 |
Hg | mg/m³ | 0.05 | 0.08 | 0.05 | 0.05 | 0.05|0.012 |
Pb | mg/m³ | 1.6 | 0.2 | N/A | 0.5 | 0.4|0.056 |
PCDD/Fs | ng I-TEQ/m³ | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasiński, S.; Dębowski, M. Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts. Energies 2024, 17, 4704. https://doi.org/10.3390/en17184704
Kasiński S, Dębowski M. Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts. Energies. 2024; 17(18):4704. https://doi.org/10.3390/en17184704
Chicago/Turabian StyleKasiński, Sławomir, and Marcin Dębowski. 2024. "Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts" Energies 17, no. 18: 4704. https://doi.org/10.3390/en17184704
APA StyleKasiński, S., & Dębowski, M. (2024). Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts. Energies, 17(18), 4704. https://doi.org/10.3390/en17184704