
Citation: Kamyabi, L.; Lie, T.T.;

Madanian, S.; Marshall, S. A

Comprehensive Review of Hybrid

State Estimation in Power Systems:

Challenges, Opportunities and

Prospects. Energies 2024, 17, 4806.

https://doi.org/10.3390/en17194806

Academic Editors: Adrian Ilinca and

Ahmed Abu-Siada

Received: 5 August 2024

Revised: 18 September 2024

Accepted: 24 September 2024

Published: 25 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

A Comprehensive Review of Hybrid State Estimation in Power
Systems: Challenges, Opportunities and Prospects
Leila Kamyabi 1, Tek Tjing Lie 1,* , Samaneh Madanian 1 and Sarah Marshall 2

1 School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology,
Auckland 1120, New Zealand; leila.kamyabi@autuni.ac.nz (L.K.); sam.madanian@aut.ac.nz (S.M.)

2 Department of Information Systems and Operations Management, University of Aukland,
Auckland 1120, New Zealand; sarah.marshall@auckland.ac.nz

* Correspondence: tek.lie@aut.ac.nz

Abstract: Due to the increasing demand for electricity, competitive electricity markets, and economic
concerns, power systems are operating near their stability margins. As a result, power systems
become more vulnerable following disturbances, particularly from a dynamic point of view. To
maintain the stability of power systems, operators need to continuously monitor and analyze the
grid’s state. Since modern power systems are large-scale, non-linear, complex, and interconnected,
it is quite challenging and computationally demanding to monitor, control, and analyze them in
real time. State Estimation (SE) is one of the most effective tools available to assist operators in
monitoring power systems. To enhance measurement redundancy in power systems, employing
multiple measurement sources is essential for optimal monitoring. In this regard, this paper, following
a brief explanation of the SE concept and its different categories, highlights the significance of Hybrid
State Estimation (HSE) techniques, which combine the most used data resources in power systems,
traditional Supervisory Control and Data Acquisition (SCADA) system measurements and Phasor
Measurement Units (PMUs) measurements. Additionally, recommendations for future research
are provided.
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1. Introduction

Power systems are one of the most sophisticated and largest systems, with a significant
number of substations that are interconnected through transformers and lines. Furthermore,
different meters and protection devices are installed in power systems to protect and control
them [1]. Hence, monitoring and protecting them from unexpected situations in real time
are challenging issues for engineers. One of the most powerful tools that enable operators
to monitor the system approximately in real-time is State Estimation (SE) [2]. The concept of
power systems SE was introduced in the 1970s for the first time, and since then, numerous
researchers have studied SE of power systems [3–5]. SE acts as a fundamental module
of Energy Management Systems (EMSs) because EMS methods are vulnerable to bad or
missing data, network topology, and any measurement or parameter errors; hence, they
are not capable of using raw collected measurements [1,3,6]. The responsibility of SE is to
process the raw data set, remove the errors, and find the optimum prediction of variables
that contain the magnitude and phase angle of voltages for all buses. This generated
information plays a vital role in modern EMSs, where a variety of applications depend on
precise and updated snapshots of the operating condition of the system [7].

Although most SE methods are based on Static State Estimation (SSE) and assume
that the system is operating in its steady-state mode, loads and generators are changing
dynamically. Hence, current SSE methods employed in EMS cannot capture the system’s
dynamics and need to be modified using new techniques like Dynamic State Estimation
(DSE) [8]. In recent decades, the advent of Phasor Measurement Units (PMUs) and modern
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communication systems have enhanced the accuracy and redundancy of measurements,
making implementing DSE possible [9,10].

By installing a PMU at a bus, operators have access to synchro phasor data of that
bus, such as its voltage phasor and all its branch current phasors, in real time. Hence,
to observe a power system dynamically, ideally, PMUs should be installed on all buses.
However, today’s power systems are large and consist of a large number of buses, and
PMU devices are costly. Therefore, in the present context or even in the near future, it is not
practical to replace all traditional measurements such as Remote Terminal Units (RTUs)
with PMUs [11]. Thus, in each system, in addition to traditional Supervisory Control
and Data Acquisition (SCADA) system measurements, just a few PMU measurements
are available [12]. Hence, to improve redundancy to monitor a system near real-time
(dynamically) and in an optimum way, it is inevitable to employ multiple measurement
sets [13]. In each power system, there are some measurement sets such as PMU, SCADA,
intelligent electronic devices (IEDs), and merging units (MUs). However, the most widely
used measurement sources are SCADA and PMU [14]. Hence, the focus of this research is
on a kind of SE method called HSE, in which both SCADA and PMU measurements are
utilized [15].

The contribution of this review study is summarized as follows: it provides a thorough
review of existing SE methods in power systems, with an emphasis on HSE approaches
that utilize both SCADA and PMU measurements. It discusses various algorithms and
techniques that can be used for SE and covers the limitations, challenges, advantages, and
disadvantages of each methodology. Then, the areas that require more investigation and
improvement are presented.

2. State Estimation

The main goal of SE is to assign a value to unknown system state variables (voltage
magnitude and angle of buses) based on available measurements, and it can be mathemati-
cally formulated in Equation (1) as follows [16].

z = h(x) + e (1)

where h(x) is a non-linear function that indicates the relationship between the state variables
and measurements, z = [z1, z2, . . . , zm]T is measurement vector and m is the number of
measurements, x = [x1, x2, . . . , xn]T is a state vector where xi = [Vi, θi], i = 1, 2, . . ., n, and
n is the number of buses, e ~ N(0, R) is the measurement error vector. It is assumed that
elements of this vector have random Gaussian distributions with zero mean and covariance
matrix R as presented in Equation (2).

R = diag
(

σ1
2, σ2

2, . . . , σm
2
)

(2)

where σk
2 is the variance of the kth measurements, k = 1, 2, . . ., m [1].

Power systems comprise two interconnected parts, a physical part and a cyber part.
Integrating these parts will result in a cyber-physical system [17] as shown in Figure 1.



Energies 2024, 17, 4806 3 of 20
Energies 2024, 17, 4806 3 of 19 
 

 

SCADA State 
estimation

Contingency 
analysis

Optimal 
power flow

Planning, 
operations

Load 
forecasting

Other EMS 
applications

System 
operator

Dynamic 
and static 

data

Observability 
analysis

Topology 
processing 

Pre-filtering 

State 
estimator

Bad data 
processor

System 
operator

Generator 

Load

Line 

Physical layer Cyber layer 

Physical system Communication medium Energy management system

 
Figure 1. SE function in a power system [18]. 

Typically, a series of functions support the state estimator, as shown in Figure 1 
[1,19]. The first block is to receive data from the meters of the system, which can be dy-
namic and alter with time or be static, like transmission line parameters. 

Any information regarding topology changes and the estimated status is sent to an 
internal block called the topology processor. Based on the measurements and the network 
topology, the observability analyzer block is responsible for determining whether the re-
dundancy of measurements is sufficient for full observability or not. Note that a bus that 
has a PMU installed on it or at one of its adjacent buses is referred to as a PMU observable 
bus. The measurement pre-filtering block is responsible for removing the measurements 
that are obviously incorrect. For example, any negative values for voltage magnitudes, 
values of power flow that exceed the bounds. 

The next block is SE, in which, based on the results of previous blocks, the most ac-
curate estimates are calculated. Since SE is vulnerable to bad data (BD), topology, and 
parameter errors, it needs an additional process to identify them. In this regard, the aim 
of the next block is to identify BD and errors based on the statistical characteristics of SE. 

There has been an increase in research investigating different techniques for estimat-
ing the state of the power systems. Built on the research and studies conducted, the SE 
methods can be divided into two main categories depending on the number of measure-
ment resources they employed: HSE and non-HSE methods. In HSE methods, multiple 
measurement sets are used to estimate the states of the power system, whereas in non-
HSE approaches, only a single measurement source is employed.  

Each of these methods is further divided into SSE and DSE approaches, which are, in 
turn, categorized into centralized and decentralized methods [8]. The proposed categori-
zation of SE methods is shown in Figure 2. 

Figure 1. SE function in a power system [18].

Typically, a series of functions support the state estimator, as shown in Figure 1 [1,19].
The first block is to receive data from the meters of the system, which can be dynamic and
alter with time or be static, like transmission line parameters.

Any information regarding topology changes and the estimated status is sent to an
internal block called the topology processor. Based on the measurements and the network
topology, the observability analyzer block is responsible for determining whether the
redundancy of measurements is sufficient for full observability or not. Note that a bus that
has a PMU installed on it or at one of its adjacent buses is referred to as a PMU observable
bus. The measurement pre-filtering block is responsible for removing the measurements
that are obviously incorrect. For example, any negative values for voltage magnitudes,
values of power flow that exceed the bounds.

The next block is SE, in which, based on the results of previous blocks, the most
accurate estimates are calculated. Since SE is vulnerable to bad data (BD), topology, and
parameter errors, it needs an additional process to identify them. In this regard, the aim of
the next block is to identify BD and errors based on the statistical characteristics of SE.

There has been an increase in research investigating different techniques for estimat-
ing the state of the power systems. Built on the research and studies conducted, the SE
methods can be divided into two main categories depending on the number of measure-
ment resources they employed: HSE and non-HSE methods. In HSE methods, multiple
measurement sets are used to estimate the states of the power system, whereas in non-HSE
approaches, only a single measurement source is employed.

Each of these methods is further divided into SSE and DSE approaches, which are, in
turn, categorized into centralized and decentralized methods [8]. The proposed categoriza-
tion of SE methods is shown in Figure 2.
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2.1. Static State Estimation

Historically, SE methods deployed traditional measurements that were collected by
the SCADA system. These measurements contain power injections of buses, voltage
magnitudes, and line flows (active and reactive) with the rate of a sample every 0.5–2 s [20],
which is inadequate for recording system dynamics [21]. These conventional methods are
called SSE and employ Equation (1) to model the relationship between the state variables of
the power system and their corresponding measurements at a time instant and then solve
this model, typically using iterative methods.

Many researchers have investigated SSE, and various methods are proposed in the lit-
erature. To solve the SSE problem, some robust techniques such as Weighted Least Squares
(WLS), Weighted Least Absolute Value (WLAV), and Schweppes–Huber-generalized M-
estimator (SHGM) have been proposed. Comparing these methods shows that the WLS
method is computationally lighter, has a better performance, and is more practical. Hence,
in real power systems, control centers use WLS to estimate the states of the system stati-
cally [22,23].

In the following, the WLS formulations are presented. Using Taylor’s expansion and
assuming that the system is operating at the point x0, the measurement in Equation (1) is
linearized, and it can be expressed as in Equation (3):

z = h(x0) + (x − x0)

(
∂h(x)

∂x

)
+ e(x) + h.o.t. (3)

where h.o.t. is a short term for higher order terms.
After disregarding the h.o.t. in Equation (3), it can be expressed as Equation (4):

∆z = H∆x + e(x) (4)

where H is defined as the Jacobian matrix and given by Equation (5):

H =
∂h(x)

∂x
(5)
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Hence, the objective function of WLS can be presented by Equation (6) as:

min f = ∑m
n=1 W[z − h(x)]2 or min[z − h(x)]TW[z − h(x)] (6)

where W = R−1 is the matrix of measurement weight, R is the measurement covariance
matrix, and G is the gain matrix as defined in Equation (7) as follows:

G = HTWH (7)

In full observability of the system, G is positive definite and always non-singular.
Since the relationship between system states and the measurements is non-linear,

iterative methods like the Newton–Raphson are applied to estimate the state of the system,
as expressed in Equations (8) and (9) [7].

∆x = G−1HTW[z − h(x)] (8)

xk+1 = xk + ∆xk+1 (9)

where k represents the number of iterations.
However, the SSE method is not able to predict the state of the system across successive

time intervals and needs to perform a new estimation for each time instant using a new
set of measurements without any pre-existing knowledge about the previously estimated
states [24]. Performing the entire procedure for each time instant is computationally
intensive and thus time-consuming. These are the main disadvantages of SSE [25,26].

Furthermore, the main assumption in SSE is that the system is working in its quasi-
steady state mode and changing very slowly. However, in a power system, loads and
generators are continuously changing, which means that the state of the system is not
steady [8,27]. Furthermore, widespread integration of distributed energy resources (DERs)
into power networks on the generator side, complex loads, and advancements in demand
response devices on the demand side, including Internet of Things (IoT) technology, make
the situation even worse and increase systems’ uncertainties. As a result, the assumption
of working in a quasi-steady state becomes controversial, and SSE techniques are unable to
adequately represent these dynamics in a real-world system [8]. Hence, it is imperative to
improve SSE techniques currently employed in practice in EMS [1,3–5] by utilizing new
monitoring methods like DSE.

2.2. Dynamic State Estimation

The advent of smart meters like PMUs leads to a revolution in SE. PMUs can mea-
sure voltage and current phasors, which, in comparison with SCADA measurements, are
synchronized, more accurate, and have a higher resolution (sampling rate). Their high
sampling rate (60–120 samples per second), enables operators to capture state variables
in real-time and track the system dynamically [28]. Researchers have employed PMU
measurements as a powerful tool to address the drawbacks of SSE and introduced DSE,
which is also known as forecasted-aided state estimation (FASE).

A mathematical model of DSE is presented in Equation (10) as follows [29]:

xk+1 = Fkxk + gk + qk (10)

where x, g, q are state, input and the process noise vector, respectively, F is the matrix of
state transition and k indicates the time instant.

The elements F and g can be calculated as presented in Equations (11) and (12).

Fk = αk(1 + βk)I (11)

gk = (1 + βk)(1 − αk)x−k − βkak−1 + (1 − βk)bk−1 (12)
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where αk and βk are two scalers in the interval (0, 1), I is the identity matrix, and its size is
the same as the state vector size. x−k is estimated states at time instant k. a and b are two
parameter vectors, which are expressed at time k in Equations (13) and (14).

ak = αkxk + (1 − αk)x−k (13)

bk = βk(ak − ak−1) + (1 − βk)bk−1 (14)

DSE can predict the state of system in time instant k and k + 1 using two sets of data,
measurements and predicted data, from the former time instant [30]. It can predict the state
of the system one time instant ahead, which gives more time for operators to analyze the
system in emergency situations. Similarly, it helps to identify anomalies such as topology
errors and sudden changes. These properties make it an important tool for today’s modern
EMS [31].

In DSE methods, under the assumption of full observability of the system by PMUs,
either electrotechnical parameters, such as rotor angle and generator speed, are esti-
mated [30,32–41], or both dynamic and static states are estimated in sequence [42,43]. To
solve the DSE problem, two types of methods are applied: model-based [30,32–35,38,39,41–
43] and data-driven approaches [36,37,40]. In the model-based approaches, at first, with
the help of DSEs, the system is mathematically simulated, and then by applying recursive
filters like Kalman filters (KF) [44], least squares [45], particle filters [46], etc., the state of
variables is estimated. For instance, an Extended Kalman Filter (EKF)-based approach
is proposed in [47] to solve the reliability problem of the medium voltage DC integrated
power system (MIPS) under the circumstances of sudden pulse load changes. However,
the EKF methodology is not reliable under the strong nonlinearity of the power system.
To address this issue, authors in [48] developed an Unscented Kalman Filter (UKF)-based
approach. However, due to the observability problem, this method is unable to estimate a
large number of parameters. The most widely used method in systems with large state vec-
tors is the Cubature Kalman Filter (CKF), as it is both accurate and stable in such cases [49].
However, CKF-based methods are unable to handle non-Gaussian and outliers. A DSE
methodology based on the CKF and the Lp norm estimator is proposed in [50], which is
able to handle the effect of non-Gaussian noise (see also Section 3 for further discussion
on KF performance). Under some assumptions, these methods have acceptable operations
and results. First, it is assumed that the system operation and observation noise have zero
means, and their covariance matrices are known at all instants. The second assumption
is that they are following Gaussian distribution, and the last one is knowing the model of
the system accurately [8]. Without either of these assumptions, the state estimator may
lead to inaccurate estimation or even not converge [8,42]. In data-driven methods, the SE
problem is addressed using Artificial Intelligence (AI), e.g., Neural Networks (NN). These
trainable methods can describe the non-linear performance of the system by learning from
the training dataset without considering the mathematical model of the system. Much
research has investigated these model-free methods, and the results have demonstrated
that they are flexible, offer superior performance, and have faster computational times
compared to model-based approaches. However, to have acceptable performance, the
training dataset must involve all aspects of transient and steady states of the system under
investigation. This dependency is the main drawback of data-driven methods and may
result in erroneous results in some cases.

To monitor the entire system and implement the DSE method, two different techniques,
namely centralized and decentralized DSE, are employed. These techniques are described
in the following subsections.
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2.2.1. Centralized DSE

Several centralized SE techniques are available in the literature that provide accurate
results regardless of the size or topology of the system [51–56].

The basic concept underlying this technique is that the measurements from all meters
(e.g., RTUs) are sent to a center to be processed; hence, the redundancy of measurements is
high, and they are robust to security and data quality issues [57]. However, in centralized
methods, a large amount of data from the entire system needs to be analyzed, which results
in a considerable computational burden, especially in the case of large-scale power systems.
Furthermore, to transfer this huge amount of data, they require a communication system
with minimum latency, which is not available in some power systems [58].

Centralized DSE methods are based on two main assumptions: first, the system
is fully observable by PMUs, and second, Kron reduction is applicable to simplify the
system to the terminals of its generators. In these methods, it is imperative to have
real-time PMU measurements as well as accurate knowledge about the parameters of all
system components. However, it is not possible to extract a dynamic model that exactly
displays the whole system, and every model has some inaccuracies, which results in
inaccurate predictions [8]. The following Table 1 represents the summary of centralized
DSE challenges.

Table 1. Centralized DSE challenges.

Category Challenges References

Centralized DSE

- It is prone to communication
problems and single points of failure.
- It might be difficult to handle
massive amounts of data from
sensors and measurement devices.
- It is vulnerable to cyber attacks.

[1,59–62]

2.2.2. Decentralized DSE

To address the challenges of centralized techniques, researchers have proposed decen-
tralized SE as an alternative solution [63].

In decentralized DSE, it has been assumed that the system is divided into several
sub-areas based on different characteristics such as geographic location, communication
resources, or operational resemblance properties [57]. In each sub-area, decentralized DSE
can be executed by employing measurements of that area, and the states are estimated in all
areas simultaneously. In decentralized DSE, it is imperative that areas have the minimum
data exchange rate with each other at their borders, i.e., the solution of decentralized
and centralized SE will be the same. Accordingly, one way to classify decentralized DSE
methods is based on their overlapping degrees, as described below [7].

1. None-overlapping areas.

In this case, none of the buses or branches are in common, and areas are just connected
to each other by tie-lines, as shown in Figure 3.
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2. Border-bus overlapping areas.

In this scenario, adjacent areas do not have any tie-lines linking them, and areas
overlap across a single layer of border buses, as represented in Figure 4. The prior case can
be used to artificially generate this scenario by constructing a virtual border bus at each
tie-line mid-point and then extending each area up to the virtual bus (see Figure 5).
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Generally, the approach that is being used will determine how much data must be
shared. In this regard, a comprehensive review of decentralized approaches considering
some indices, such as the rate of convergency and data exchange, has been completed
in [64], which strongly demonstrates that methods are different based on the amount of
exchanged data.

Decentralized DSE techniques can also be categorized based on whether areas are
fully distributed or under the supervision of a central controller. Hence, these methods
can be divided into two groups: hierarchical decentralized DSE techniques that have a
central controller [65–67] or are fully distributed so that adjacent areas may exchange
data [64,68,69], as shown in Figure 8. Both of these techniques lead to acceptable results,
for example, the network is divided into areas by choosing buses randomly, and a fully
distributed SE approach is proposed in [70] based on the network gossiping technique.
Nevertheless, comparing the results with the centralized DSE indicates a noticeable error.
In [71], the power system is partitioned into sub-areas based on the number of State
Load Dispatch Centers (SLDCs) and their boundaries. In this decentralized approach,
the estimated states of all sub-areas are sent to the central coordinator, who works as an
angle referencing. The proposed method in [72] is a hierarchical decentralized DSE in
which sensitivity functions of all estimators are shared instead of the estimated states or
boundaries information.
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It is obvious that executing the dynamic model of a sub-area is faster than modeling
the entire system; furthermore, any inaccuracy in other parts of the system does not affect
the dynamic model of the understudied area. Hence, to implement DSE for bulk power
systems, it is more reasonable to apply decentralized DSE. However, the low redundancy of
local measurements is one of the disadvantages of decentralized methods, which makes it
difficult to deal with the measurements’ quality and security problems [8]. The challenges
of implementing decentralized DSE for a power system are shown in Table 2.
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Table 2. Decentralized DSE challenges.

Category Challenges References

Decentralized DSE

- To have reliable estimation, it
is important to employ an
accurate and fast SE algorithm.
- It is imperative to control the
amount of data exchange
between sub-areas to
computational burdens and
communication resources.

[60,64,69,73,74]

2.3. Hybrid State Estimation

Due to the high price of PMUs, it is not economically practical to install a PMU on each
bus of today’s large-scale power systems, and just a few numbers of PMUs are available.

Nevertheless, different sampling rates of these sets are a significant challenge of hybrid
methods [75]. Because of the higher sampling rate of PMUs, between each two successive
SCADA measurements, for example, time instances of t and t + 1, there are some PMU
measurements, as is obvious in Figure 9. Although the system is observable at specific
time instances t and t + 1, due to the limited number of PMUs in the system, there may be
periods between t and t + 1 when the system is not fully observable.
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HSE methods can be categorized into two groups: static HSE (SHSE) and dynamic HSE
(DHSE) [71,72]. SHSE methods assume that the system state does not change significantly
over the period of analysis, making them suitable for steady-state scenarios. In contrast,
DHSE methods account for changes in the system state over time, making them ideal for
systems experiencing fluctuations or transient conditions. The details of both dynamic and
static HSE methods are described in the following subsections.

2.3.1. Dynamic Hybrid State Estimation

In the literature, numerous DHSEs have been proposed, which generally are composed
of three categories: sequential measurement-state fusion (two-stage SE), parallel state
fusion, and direct measurement fusion (one-stage SE) [14]. The details are described in the
following subsections.

1. Sequential measurement-state fusion.

These HSE methods, also known as two-stage SE, involve two stages where a tradi-
tional state estimator in one stage is combined with a linear one in sequence. As shown in
Figure 10, there are two different estimator orders to process measurements. In the first
sequence of processing, in the first stage, SCADA measurements are processed, then the
estimated states are transformed into rectangular coordinates to be compatible with the
linear estimator, and the second stage is to process traditional SE output as well as PMU
measurements using a linear estimator [7,13,21,76–84]. In [16,85], the process is carried out
in a reversed sequence, where using a linear estimator, PMU measurements are handled
in the first stage, and then the results are combined with the SCADA measurements to



Energies 2024, 17, 4806 11 of 20

obtain the final results by employing a non-linear estimator. In these references, to solve
the unobservability problem in the first stage, only state variables in PMU buses or their
adjacent buses are estimated.
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For instance, to estimate the state variables of the power system under PMU phase
errors, authors in [86] proposed a distributed two-stage HSE method. In this approach,
the power system is divided into sub-areas, each with its own estimator, while the current
SCADA system remains intact. In [87], a physics-embedded data-driven SE is proposed
to estimate the states of the power system in real time. In this method, the purpose
of the physics part is to generate node features by employing both SCADA and PMU
measurements, while the data-driven part is responsible for estimating the state variables
of the system by utilizing the multi-head graph attention (MGAT) algorithm. In [85], a linear
estimator is employed in the first stage, while in the second stage, an iterative estimator is
utilized to estimate the states of the system based on both conventional measurements and
pseudo-measurements derived from the first stage. In [88], the procedure of SE and the
data collection is carried out in parallel to accelerate the estimation process of large-scale
power systems based on EKF. A two-stage HSE is proposed in [78], where in the presence
of both SCADA and PMU measurements, a non-linear SE method is applied, and when
just PMU measurements are available, a linear SE method is used.

Utilizing the existing traditional SE methods is one clear benefit of two-stage ap-
proaches. This implies that they should be less complicated and costly compared to the
estimators needed for one-stage HSE methods since they apply LSE for the post-processing
stage. Additionally, it is not imperative to have full observability of the network from
PMU devices. Conversely, the major drawback of the two-stage method is that the system
has to be completely observable from SCADA measurements (RTUs). Each power system
has enough RTUs available, making it completely observable with a considerable level of
redundancy. Nevertheless, due to RTU aging or failure over time, the system could not be
fully observable. In such a scenario, PMUs are unable to compensate for the lack of RTUs
since the traditional estimator in the first stage is incompatible with PMU measurements
and cannot utilize them directly. Consequently, the best solution under this circumstance is
to substitute obsolete RTUs with new ones to protect the HSE operation.

2. Parallel state fusion.

In parallel fusion methods, two estimators are working in parallel simultaneously
to independently evaluate PMU and SCADA measurements, and incorporating their
results leads to the final SE [89–93], as shown in Figure 11. For example, in [91] a parallel
SE algorithm is proposed, taking into account the statistics of unknown measurement
noise. In this method, PMU measurements are buffered to address the issue of varied
sampling rates.
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Since the number of PMUs in a power system is limited, the linear estimator may
encounter unobservability problems, which is the main drawback of parallel methods.
Some techniques, such as utilizing data obtained from SCADA estimator in previous time
instances [89] or using pseudo-measurements [90], are proposed to solve this problem.
However, SCADA measurements are not accurate, which potentially results in less accurate
SE, similarly, pseudo-measurements may not always be guaranteed, and inaccurate pseudo-
data can lead to erroneous SE. In [94], a parallel method based on the KF is proposed, which
employs multi-rate data to predict the state of the power system. However, this standard
KF is accurate only in linear systems, making it unsuitable for use in real power systems.
To address this issue, the authors in [95] employed the UKF, which is capable of accounting
for the non-linear behavior of the power system. The main assumption of this method is
that loads are constant impedance. However, this load modeling is unrealistic, and in real
power systems, loads are rarely constant impedance.

3. Direct measurement fusion.

These HSE methods are also known as integrated or one-stage SE since they have only
one stage where both SCADA and PMU measurements are incorporated with each other
and make one dataset [51,96], as shown in Figure 12.
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The primary benefit of one-stage SE over two previous methods is that it requires
less execution time due to its single processing stage and the contribution of both PMU
and SCADA measurements to keep the system fully observable. Consequently, despite
two-stage methods, it will not encounter any unobservability issues in the long term.
Nevertheless, it is not possible to use previous estimators for one stage SE, and new SE
methods need to be created. These developed estimators will be more complicated and may
be more costly than other hybrid methods. Much research has been conducted to develop
direct measurement fusion methods and integrate PMU and SCADA measurements, which
can be categorized into model-based and data-based approaches.

In the model-based methods, models of the system are employed to determine how
future states are related to past states [97–103]. For instance, authors in [104,105] utilized
the model of the system, and voltage phasor measurements were incorporated into the SE
for the first time. The basic idea of these methods is to set the Jacobian matrix elements that
are related to the voltage phasor data to 1. Conversely, PMUs measure both voltage and
current phasors; hence, they employed the minimum data to build the Jacobian matrix. To
solve this problem, current and voltage phasors are both incorporated into the traditional
state estimator and developed the Jacobian matrix in [28,106]. To tackle the numerical
issue, especially undefined elements in the Jacobian matrix during flat start initialization,
phasor measurements transformed from polar to rectangular coordinates. However, this
transformation magnifies PMU measurement errors, which leads to erroneous SE. To
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address this problem and minimize any errors in transformation, the authors proposed
applying rectangular coordinates for the problematic iteration [51] or only for the initial
iteration [107], where polar coordinates are used for the other iterations. The drawback
of these techniques is that they were designed for SCADA sampling rates and were not
appropriate for dynamic systems.

An integrated HSE method, which is based on a static estimator, is introduced in [98],
where the states of unobservable buses are calculated using PMU measurements and
an interpolation matrix, which is formed from system admittances. This interpolation
matrix is updated by assigning differential weights to each measurement whenever the
SCADA measurement set comes in, or significant changes occur in phasor measurements.
Nevertheless, these weights are determined by how far each measurement is from the fault,
which is unreasonable, particularly when multiple faults occur. Hence, the authors in [100]
introduced an adaptive weight function to adjust each measurement weight dynamically.
However, the main assumption in constructing the interpolation matrix is that loads are
static while most loads represent dynamic behavior in power systems. To compensate for
the low sampling rate of SCADA measurements, distributed Compressive Sensing (CS)
is used in [101] to take advantage of PMU measurements’ spatial–temporal correlation.
By employing distributed CS, SCADA measurements are rebuilt in time instances when
they are unavailable. To maintain an observable power system at the interval between
two successive SCADA measurements, authors in [102] allocate pseudo-measurements
optimally within these gaps. Then, by employing a very short-term load forecasting
technique based on KF, pseudo-measurements are anticipated, which are used as inputs of
WLS along with PMU measurements to estimate the states of the system.

In order to estimate the status of variables in distribution systems, a mixed mea-
surement set made up of micro PMU and RTU measurements is employed in [103]. The
suggested estimator is based on the CKF, and this article proposed the Optimally Weighted
Average (OWA) method to interpolate asynchronous data to solve the asynchronous mea-
surement problem. In the work documented in [108], the authors employed the EKF
algorithm and introduced a new integrated SE method. Although KF is a widely used
tool in solving SE problems, it encounters some weaknesses. The standard KF is accurate
only in linear systems and cannot be used directly in non-linear systems such as power
systems. Hence, non-linear modifications of KF must be employed in non-linear systems.
In most of these modified KFs, the Taylor series is executed to create a linearized system
from a non-linear one in a limited area around the operating point. Consequently, the
filter’s effectiveness is limited to a small region surrounding the operating point, and its
accuracy declines when dealing with a broad operating range, resulting in significant errors
in outputs [109].

Since these methods are based on the systems model, any inaccuracy or unavailabil-
ity in the physical model can affect the estimation results. Hence, data-based methods
are introduced to extract historical measurements more precisely to make an accurate
forecasting [110–112]. Despite model-based approaches that require system information,
data-based methods rely on data to predict hidden (unknown) states of the system. For
example, using both PMU and SCADA measurements, a Linear Regression (LR) model is
trained in [113] to predict the hidden states. Although LR models are straightforward and
understandable, LR-based methods have limited capacity. To address this problem and
expand the capacity, improvements can be made by either (1) enhancing the non-linearity
of the single model to have a more accurate estimation or (2) by combining different models.
For instance, authors in [114] integrated several different LRs and proposed a Bagged
Averaging of Multiple Linear Regression model. Nevertheless, it is challenging for these
methods to fully capture the complicated temporal and spatial correlations of data found
in SCADA and PMU measurements.

To predict hidden states in the presence of complicated spatial–temporal correlations
effectively, deep learning techniques are proposed [115–117]. These techniques enable
learning complicated data patterns by artificial neural networks and capture spatial and/or



Energies 2024, 17, 4806 14 of 20

temporal features through feature learning. For example, authors in [115] captured tem-
poral correlation of data by applying Recurrent Neural networks (RNNs), which are able
to learn data patterns by creating a memory and predicting each state by considering its
past inputs and outputs and in [116], Convolutional Neural Networks (CNNs) employed
to obtain a spatial correlation of data using sliding windows. However, these methods
require comparative big datasets with a variety of information to be able to predict the
state of the system accurately. To address this issue, authors in [117] proposed a new Deep
Neural Network (DNN), which is combined with an expectation maximization method.
This heterogeneous data deep expectation maximization method (Hd-Deep-EM) can also
consider temporal–spatial correlations between SCADA and PMU measurements. This
iterative algorithm retrains the network to solve the problem of a limited number of SCADA
measurements for the training step and handles the need for large datasets for the training
step. To evaluate the method, it is tested on 200- and 500-bus systems and the results are
compared with a feed-forward DNN. The results represent that in comparison with the
feed-forward DNN, the proposed Hd-Deep-EM algorithm has an average testing MSE
reduction of 0.01 and 0.02 for 200 and 500 bus systems, respectively, and captures the
spatial–temporal correlation more effectively.

2.3.2. Static Hybrid State Estimation

Most of the hybrid methods focus on static estimation of variables, in which the fact of
the high sampling rate of PMUs is neglected, and the state of variables is estimated based
on the update rate of SCADA measurements [16,118,119]. Similar to the DHSE methods,
SHSE approaches can be divided into three categories: two-stage SE, parallel state fusion,
and one-stage SE.

In two-stage static estimation methods, similar to dynamic methodologies, two esti-
mators are working in a cascade architecture [120,121], as shown in Figure 10. For instance,
in [15] a two-stage HSE is introduced, in which a traditional SE based on SCADA measure-
ments is executed in the first stage, and then in the second stage, an LSE method based
on both PMU measurements and the outputs of the first stage is applied. In [122], a 2 × 2
block version of fast Givens rotations is introduced to handle the assigned weights for the
measurements. In this approach, traditional and linear estimators are working in sequence.

Like the previous category, there are two estimators in parallel SHSE approaches that
work in parallel, as illustrated in Figure 11. For example, authors in [123] proposed an
improved parallel SHSE methodology based on Hachtel’s augmented matrix and reduced
the requirement of parallel methods for pseudo-measurements.

As shown in Figure 12, in one-stage static estimation methods, both SCADA and
PMU measurements are processed by one estimator [106,124,125]. For instance, the authors
in [126] proposed a one-stage SE method where both SCADA and PMU measurements
are directly employed in the SE process directly without any transformation. Since data
transformation can increase errors, the proposed algorithm prevents the propagation
of uncertainties. The work documented in [127] employed a linear WLS framework to
estimate the state variables of the power system. Since the proposed methodology is
not iterative, traditional BD detection approaches can be employed as post-processing
approaches. Authors in [128], employed SCADA measurements and a limited number of
PMU measurements for the purpose of SE. In this method, instead of the Jacobian matrix,
current phasors are updated in each iteration based on the previously estimated states.

However, as previously stated, since static estimators are not capable of capturing the
dynamic changes in the system, they are not suitable for the analysis of the power system
dynamically [129]. Therefore, DHSE, which is able to track the dynamic behavior of the
power system, has received a lot of attention [130,131].
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3. Conclusions and Future Research Prospects

In this paper, a comprehensive review of power systems SE that covers different SE
problems, such as SSE, DSE, and HSE, is presented, and current approaches are properly
classified and examined based on the main challenges resolved. Some other concepts, such
as centralized DSE and decentralized DSE, are also investigated in detail. Despite various
research work in this field, there are still significant gaps that need further investigation,
which are suggested as follows.

Although data-driven SE approaches have achieved acceptable results, their pre-
dictions may be physically impossible or inconsistent due to extrapolation or biases in
observations. In other words, any biases, gaps, or errors in the training data, or any extrapo-
lation outside the scope of observed data, can result in impractical outputs. To address this
and design an accurate SE method that can estimate the state variables of the power system
as close as possible to their true values, it is imperative to consider the topology of the
system and integrate underlying physical rules into data-driven models. By incorporating
physical rules, such as power flow equations, states will be estimated based not only on
data but also on the physical aspects of the system, leading to reduced errors and improved
reliability of the estimated states.

In power systems, analog-to-digital converters (ADCs) are used to transform continu-
ous measurement signals measured by PMUs into digital formats that can be examined
and processed for the purpose of SE. However, the stability of the reference voltage, which
ADCs rely on, has a significant effect on their performance. If the reference voltage is not
stable, the quality of the ADCs’ output can degrade, leading to inaccurate or noisy data.
Therefore, considering this factor in SE models can enhance the accuracy of the estimation
results. Consequently, to improve the stability and accuracy of SE, it is essential to integrate
the performance and stability of ADCs, specifically, the characteristics of their reference
voltage, into the SE process.

As previously mentioned, due to the high cost of PMUs, only a limited number are
available in each power system. This shortage is even more critical in distribution systems,
which have a lower priority for monitoring and control compared to transmission systems.
Hence, to increase redundancy, it is imperative to integrate other data sources, such as
smart inverter technology, which is increasingly used in renewable energy resources. For
instance, rooftop solar systems can report data every five minutes, including power and
AC voltage. Furthermore, employing new methods to generate pseudo-measurements can
enhance SE accuracy. This data can be obtained from advanced metering infrastructure
(AMI), consumer billing data, or calculated based on daily load profiles.
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