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Abstract: The power consumption data in buildings can be viewed as a time series, where outliers
indicate unreasonable energy usage patterns. Accurately detecting these outliers and improving
energy management methods based on the findings can lead to energy savings. To detect outliers, an
anomaly detection model based on time-series reconstruction, AF-GS-RandomForest, is proposed.
This model comprises two modules: prediction and detection. The prediction module uses the Auto-
former algorithm to build an accurate and robust predictive model for unstable nonlinear sequences,
and calculates the model residuals based on the prediction results. Points with large residuals are
considered outliers, as they significantly differ from the normal pattern. The detection module
employs a random forest algorithm optimized by grid search to detect residuals and ultimately
identify outliers. The algorithm’s accuracy and robustness were tested on public datasets, and it
was applied to a power consumption dataset of an office building. Compared with commonly used
algorithms, the proposed algorithm improved precision by 2.2%, recall by 12.1%, and F1 score by
7.7%, outperforming conventional anomaly detection algorithms.

Keywords: time series; deep learning; outliers; anomaly detection; energy-saving potential

1. Introduction

At present, the large-scale collection and storage of data has become a reality. Time-
series data are widely prevalent in fields such as finance, weather forecasting, and health
monitoring. However, within time-series data, there are often anomalies—data points that
significantly deviate from the main pattern. These anomalies may be caused by various
factors, such as sensor malfunctions or unexpected events. Consequently, the detection of
outliers in time-series data is important.

Energy consumption data can be viewed as time series. Equipment failures or ineffi-
cient energy usage patterns can lead to abnormal energy consumption data. Implementing
appropriate energy management measures to reduce the occurrence of such anomalies can
effectively achieve energy savings. With the advancement in data collection and analysis
technologies, algorithms for detecting anomalies in energy consumption data have rapidly
evolved. From traditional statistical methods to machine learning-based approaches, vari-
ous techniques have been proposed and applied specifically to anomaly detection in energy
consumption data, providing support for energy management and optimization.

Classical time-series anomaly detection methods primarily include statistical-based
anomaly detection algorithms, clustering and classification-based anomaly detection algo-
rithms, and proximity-based anomaly detection algorithms. Statistical-based time-series
anomaly detection algorithms encompass techniques such as the 3-sigma rule, quartile
method, and other statistical measures. For instance, in Reference [1], a hyperspectral
anomaly detection problem in remote sensing was addressed by treating third- and fourth-
order matrices as statistical features to highlight anomalous peaks, making anomalies
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easier to detect. Reference [2] successfully employed the quartile method to identify
wind-power anomaly data. Clustering-based anomaly detection methods are considered
unsupervised learning techniques. For example, Reference [3] introduced an improved
streaming K-means clustering algorithm designed for detecting abnormal electricity con-
sumption behavior in large-scale power data streams, drawing inspiration from the CluS-
tream streaming-data clustering algorithm. In Reference [4], model normality scores were
first used to determine model clustering indices, with outliers identified based on these
indices. Classification-based anomaly detection algorithms, on the other hand, can be
viewed as supervised learning techniques. Reference [5], for example, proposed a method
to measure the confidence of classification results, identifying outliers by constructing
classifiers. Proximity-based anomaly detection methods mainly include density-based and
distance-based approaches. Reference [6] preprocessed aggregated active power output
and corresponding wind speed values, and then calculated weighted distances based on
the similarity between each object in the data and the local outlier factor (LOF), to identify
anomalies. Reference [7] proposed an improved LOF algorithm for detecting abnormal
electricity consumption behavior in users.

Classical time-series anomaly detection methods are widely applied, but their effective-
ness is limited when used on unstable, nonlinear, or multivariate time series. Energy con-
sumption sequences are generally unstable and nonlinear [8]. In recent years, researchers
have begun exploring deep learning-based methods for time-series anomaly detection, with
significant attention given to methods based on prediction residuals (Residual = Actual
Value − Predicted Value). For instance, in Reference [9], a study was conducted on a
method that combines random forests with statistical algorithms for anomaly detection.
The study first utilized a random forest algorithm to predict building energy consumption,
followed by the application of an improved statistical algorithm to the prediction residu-
als for anomaly detection, demonstrating high detection accuracy. In Reference [10], the
long short-term memory (LSTM) algorithm was used to predict energy consumption data,
and anomaly scores were calculated based on the prediction results to ultimately identify
anomalies. In reference [11], the GNN-GRU–Attention algorithm was used to model and
predict energy-consumption time series, and an improved random forest algorithm was
subsequently employed to detect anomalies in the residuals. Experimental results indicated
that this approach outperformed other anomaly detection algorithms based on prediction
residuals, as well as classical time-series anomaly detection methods. In Reference [12], a
seasonal threshold approach was introduced to improve the accuracy of prediction-based
outlier detection systems, especially for energy management systems in buildings. Refer-
ence [13] presents an AI-based anomaly detection method for electricity consumption in
smart cities, using data from households in northeastern Mexico. It first predicts energy
consumption with deep learning algorithms and then detects outliers by analyzing the
residuals with the Isolation Forest algorithm.

The method of using deep learning algorithms to predict sequences, calculate residuals,
and then analyze these residuals to identify anomalies can be considered a hybrid approach.
The foundation of this approach lies in establishing highly accurate time-series prediction
models. The data that significantly deviate from the predicted values can be identified
as outliers. The advancement in deep learning technology has significantly enhanced the
accuracy of prediction models, laying a solid foundation for the implementation of time-
series anomaly detection algorithms based on prediction errors. In recent years, with the
introduction of the Transformer algorithm [14], the accuracy and generalization capabilities
of time-series prediction models have greatly improved. Building on this, the Informer [15]
and Autoformer [16] algorithms have been proposed, making the model architecture more
suitable for unstable and nonlinear time series.

This paper proposes a time-series anomaly detection model, AF-GS–RandomForest,
based on the Autoformer algorithm. The model first employs the Autoformer algorithm
to predict the time series, and then the residuals are analyzed using a random forest
algorithm optimized through Grid Search (Grid Search, GS) parameter tuning. The accuracy



Energies 2024, 17, 4810 3 of 12

and robustness of the algorithm were validated on public datasets, and the model was
subsequently applied to detect abnormal energy consumption in an office building. The
results demonstrated that the F1 score of the detection model reached 0.998, outperforming
existing commonly used anomaly detection algorithms.

2. Algorithm Design

The structure of the AF-GS–RandomForest model consists of two components. The
first component is the prediction module, which includes the sequence prediction and
reconstruction module. This module employs the Autoformer algorithm to predict the
time series and obtain the residuals. The second component detects anomalies in the
residual sequence using the random forest algorithm optimized through Grid Search.
The overall structure and workflow of the algorithm are illustrated in Figure 1, where
a simple, univariate sequence without trends is used as an example to demonstrate the
detection process.
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2.1. Autoformer Algorithm

The structure of the time-series prediction model based on Autoformer is shown in
Figure 2. As can be seen from the figure, the Autoformer algorithm is built around the
encoder–decoder architecture, which integrates the processes of decomposition and auto-
correlation for more accurate time-series predictions. The Decomposition Block gradually
separates long-term trend information, while the auto-correlation mechanism identifies the
similarity of subsequences based on the periodicity of the sequence, and aggregates similar
subsequences. Since energy consumption sequences are typically long, often exhibit sea-
sonal trends, and are closely related to human activity patterns, they possess subsequence
similarity. Therefore, these modules of Autoformer enable the algorithm to achieve higher
accuracy when predicting such sequences [16,17].
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In detail, the input to the algorithm is a time-series sequence, which is first fed into
the encoder. The encoder processes the input sequence N (the length of the input time
series), decomposing it into trend and seasonal components. The Decomposition Block
(SD) is responsible for this process, which is further enhanced by the auto-correlation (AC)
mechanism that identifies and aggregates similar subsequences from different periods. This
mechanism is crucial for handling periodic patterns in energy consumption data.

The processed output from the encoder is then passed to the decoder, which recon-
structs the sequence into the final predicted output M (the length of the output sequence).
The decoder applies similar steps by modeling the trend and seasonal components sepa-
rately and combining them to produce the final predictions. The FeedForward (FF) layer
further enhances the model’s ability to process the time series efficiently.

The encoder and decoder are connected by the decomposition and auto-correlation
processes. After the encoder extracts meaningful representations, the decoder reconstructs
them into the final prediction. The auto-correlation mechanism ensures that both encoder
and decoder are able to capture long-term dependencies and periodicities, enhancing
prediction accuracy.

2.1.1. Decomposition Block

Based on the concept of moving averages, the original sequence is decomposed into a
seasonal component (1) and a trend component (2):

xs = x − xt (1)

xt = Avgpool(padding(x)) (2)

where x represents the original sequence, xs represents the seasonal component, and xt
represents the trend component. Equations (1) and (2) are combined into Equation (3).

xs, xt = SD(x) (3)

2.1.2. Auto-Correlation Mechanism

Typically, similar phases within different periods exhibit similar sub-processes. The
model employs an auto-correlation mechanism to achieve efficient sequence-level connec-
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tions, which includes two main components: period-based dependencies discovery and
time-delay aggregation.

In the period-based dependencies module, based on the theory of random processes,
the auto-correlation coefficient Rxx(τ) for a real discrete-time process {x} can be calculated
as shown in Equation (4).

Rxx(τ) = lim
L→∞

1
L∑L

t=1 xtxt−τ (4)

where the auto-correlation coefficient Rxx(τ) represents the similarity between the sequence
{xt} and its τ-lagged version {xt−τ}. We regard this time-lagged similarity as the unnormal-
ized confidence of the period estimate, that is to say, the confidence R(τ) for a period length
of τ.

The purpose of time-delay aggregation is to aggregate similar subsequence information
to achieve sequence-level connections. To accomplish this, the Roll() operation is first used
to align the information based on the estimated period length, followed by information
aggregation. This process utilizes the parameters query (Q), key (K), and value (V), where
Q and K are used to calculate the weights. Specifically, the auto-correlation coefficients of
Q and K are first calculated using Equation (4), and then they are combined with V and
weighted to obtain the final encoded output. This auto-correlation process is described by
Equations (5)–(7).

τ1, · · · , τk = arg Topk
(

RQ,K(τ)
)

(5)

R̂Q,K(τi) = so f tMax
(

RQ,K(τi)
)
, i = 1, 2, · · · , k (6)

AutoCorrelation(Q, K, V) = ∑k
i=1 Roll(v, τi)R̂Q,K(τi) (7)

where k = c × logL, L represents the length of the sequence and c is a hyperparameter.

2.1.3. Encoder–Decoder Framework

In the encoder part, the original sequence xen to be predicted is first vectorized to
obtain x0

en, which is then used as input. The trend components are gradually removed,
resulting in the seasonal components Sl,1

en and Sl,2
en . This periodic characteristic is utilized to

construct the auto-correlation mechanism, allowing the aggregation of similar sub-prcesses
across different periods, thereby achieving information integration.

In the decoder part, models for the trend and seasonal components are established
separately. For the seasonal component, modeling is performed based on the periodic
properties of the sequence, with the auto-correlation mechanism aggregating subsequences
that exhibit similar processes across different periods. For the trend component, a step-by-
step accumulation method is employed to extract trend information from the predicted
original sequence.

The latter half of the original sequence xen of length L is first decomposed into the
seasonal component xens and the trend component xent. Then, xens and xent are concatenated
with the all-zero sequence (x0) and the mean value sequence of the original sequence (xMean),
respectively, to obtain the input sequences xdes and xdet for the decoder. The seasonal and
trend components are modeled separately, ultimately yielding the model’s predicted values.

2.2. GS–RandomForest Algrithm

Random forest is an ensemble learning method constructed by combining multiple
decision trees. Each decision tree in a random forest is built based on training data, and is
used for prediction and classification. The advantage of random forests is that they mitigate
the overfitting tendency of decision trees during classification, reducing the probability
of overfitting by using multiple trees, which introduces randomness in variable selection,
further increasing the model’s robustness and prediction accuracy.

To further enhance the performance of the random forest algorithm, a grid search
algorithm is introduced to optimize the parameters of the random forest. Essentially, grid
search is an exhaustive method that examines all possible combinations of parameters
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required in the model, comparing, analyzing, and validating each combination to select the
optimal model and hyperparameter configuration.

The grid search algorithm assumes that the model has two hyperparameters, with each
hyperparameter having a set of candidate parameters, which are considered in parallel.
The algorithm then arranges all combinations into a two-dimensional grid or a grid in
higher-dimensional space. The model traverses all nodes in the grid to select the optimal
solution, which is the grid search process [18].

Overall, the prediction module of the algorithm reconstructs the original sequence
into a residual sequence, which can eliminate potential trend components in the original
sequence, making outliers easier to detect using the grid search-optimized random forest
algorithm. The improved random forest algorithm, through parameter optimization and
the combination of multiple decision trees, effectively enhances the accuracy and stability
of outlier detection [19].

2.3. Model Evaluation Criteria
2.3.1. Evaluation Criteria for the Algorithm’s Prediction Module

The expressions for Mean Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and the Coefficient of Determination (R2) are provided in
Equations (8)–(11). Among them, the smaller the MAE, MSE, and RMSE, the higher the
prediction accuracy of the model. And the closer R2 is to 1, the higher the prediction
accuracy of the model. These metrics can be used to evaluate the prediction accuracy of the
prediction module.

MAE =
1
n∑n

i=1|ŷi + yi

∣∣∣∣ (8)

MSE =
1
n∑n

i=1(ŷi − yi)
2 (9)

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2 (10)

R2 = 1 − ∑i(ŷi − yi)
2

∑i(y − yi)
2 (11)

where n is the number of data points in the sequence, ŷi is the i-th predicted value of the
sequence, and yi is the i-th actual value in the sequence.

2.3.2. Module Evaluation Criteria for the Algorithm’s Detection Module

Outlier detection can essentially be viewed as a binary classification problem. There-
fore, precision, recall, and F1 score can be used to evaluate the accuracy of outlier detection.
Their expressions are provided in Equations (12)–(14).

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 = 2 ∗
(

Precision ∗ Recall
Precision + Recall

)
(14)

where TP (True Positive) represents the positive samples correctly predicted by the model,
FP (False Positive) represents the negative samples incorrectly predicted as positive by the
model, and FN (False Negative) represents the positive samples incorrectly predicted as
negative by the model.
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3. Results
3.1. Experimental Design and Environment

The model’s main modules consist of prediction and detection components. The
accuracy and robustness of the prediction module impact the accuracy of outlier detection.
Based on this, the accuracy and robustness of the prediction module are first tested using
standard time-series datasets. Then, the detection module’s accuracy is validated using
standard outlier-detection datasets. Finally, the overall performance and effectiveness of
the model are tested on a power consumption dataset from an office building.

The experimental environment used in this study includes a Windows 10 Professional
operating system, an i7-11700 CPU (Intel Corporation, Santa Clara, California, USA), and
an RTX3060 (12 GB) GPU (NVIDIA, Santa Clara, California, USA). The experimental code
was written in Python 3.6, with the development environment in Anaconda 3. The primary
third-party libraries used include PyTorch 1.0.2, scikit-learn, pandas, and numpy.

3.2. Model Performance Analysis
3.2.1. Performance of the Prediction Module on Standard Datasets

In this experiment, the hyperparameters of the comparison models are as follows: the
LSTM model uses 800 hidden units, 1 layer, a learning rate of 0.001, a batch size of 64, and
100 training epochs. The Informer model has a model dimension of 512, a feedforward
dimension of 2048, dropout of 0.2, 2 encoder layers, 8 attention heads, and a learning rate
of 0.001. The Autoformer model has a model dimension of 512, dropout of 0.05, 2 encoder
layers, 8 attention heads, and a learning rate of 0.001.

The performance of the prediction module was tested using standard datasets, in-
cluding the ETT1 dataset for power transformer oil temperature from the State Grid, the
Electricity dataset, and the exchange-rate dataset [14]. The ETT1 dataset contains data span-
ning over two years and is collected at 15 min intervals, making it suitable for long-term
forecasting; the Electricity dataset contains four years of hourly electricity consumption
data for different households and regions; and the exchange-rate dataset covers eight years
and is typically collected daily. The three datasets have different data acquisition intervals
and represent different levels of sequence granularity. The test results are shown in Ta-
bles 1–3. As indicated by the results, the Autoformer algorithm consistently demonstrated
strong performance across time-series datasets from different domains. Figure 3 shows
the prediction results for a randomly selected segment of the Electricity dataset. As illus-
trated, compared to the Transformer algorithm and its variants, the Autoformer algorithm’s
prediction results were closest to the original sequence, yielding the best performance.

Table 1. Comparison of the performance of the prediction algorithms on the ETT dataset.

Model
Evaluation Metrics

RMSE MSE MAE R2

Transformer 0.543 0.553 0.737 0.511
Informer 0.738 0.651 0.859 0.334

Autoformer 0.388 0.428 0.623 0.65

Table 2. Comparison of the performance of the prediction algorithms on the Electricity dataset.

Model
Evaluation Metrics

RMSE MSE MAE R2

Transformer 0.312 0.403 0.558 0.702
Informer 0.261 0.366 0.511 0.75

Autoformer 0.201 0.315 0.448 0.801
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Table 3. Comparison of the performance of the prediction algorithms on the exchange rate dataset.

Model
Evaluation Metrics

RMSE MSE MAE R2

Transformer 0.351 0.458 0.592 0.801
Informer 0.657 0.643 0.81 0.627

Autoformer 0.064 0.183 0.253 0.964
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The robustness of the algorithm was further tested by selecting the exchange rate
dataset, which had an R2 value closest to 1. The dataset was randomly injected with 3%,
5%, and 10% outliers, where each outlier was 1.5 times its original value. The prediction
performance of the algorithm was then tested under the influence of these different pro-
portions of outliers. The prediction results of the models built on the outlier-containing
datasets for normal data points are shown in Table 4. As the table indicates, despite the
interference from different proportions of outliers, the Autoformer algorithm maintained
high prediction accuracy and demonstrated the best performance. This result also indicates
that the algorithm has strong robustness, meeting the requirements for the next step of
outlier detection.

Table 4. Comparison of predictive results on sequences that contain different proportions of outliers.

Model Outliers
Evaluation Metrics

MSE MAE RMSE R2

Autoformer
3%_outlier 0.212 0.243 0.461 0.883
5%_outlier 0.204 0.228 0.452 0.888

10%_outlier 0.225 0.255 0.475 0.876

Informer
3%_outlier 0.63 0.564 0.793 0.654
5%_outlier 0.646 0.577 0.804 0.644

10%_outlier 0.656 0.586 0.812 0.639

Transformer
3%_outlier 0.404 0.437 0.635 0.778
5%_outlier 0.393 0.425 0.627 0.784

10%_outlier 0.467 0.475 0.683 0.744
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3.2.2. Performance of the Detection Module on Standard Datasets

The detection performance of the detection module was tested using several typical outlier
detection datasets: the Kaggle Electric Faults Detection and Classification dataset (https://www.
kaggle.com/code/sahillyraina/electric-faults-detection-classification/comments, accessed on
5 September 2023; this dataset focuses on the detection and classification of electrical
faults, and the proportion of outliers is estimated to be around 10–15% of the total dataset),
the UCI Appliances Energy Prediction dataset (https://archive.ics.uci.edu/dataset/374/
appliances+energy+prediction, accessed on 6 September 2023; this dataset includes energy
usage data from household appliances, collected from a single household over a period
of time with an estimated 5–7% of the data representing such anomalies), the Occupancy
Detection (room occupancy) dataset (https://archive.ics.uci.edu/dataset/357/occupancy+
detection, accessed on 6 September 2023; this dataset is used to detect room occupancy
based on environmental conditions, such as temperature, humidity, and light levels, and the
proportion of outliers is around 3–5%), and the Steel Industry Energy Consumption dataset
https://archive.ics.uci.edu/dataset/851/steel+industry+energy+consumption, accessed
on 6 September 2023; this dataset captures energy consumption data in the steel industry,
focusing on various production processes and comprising around 8–10% of the dataset).
These four datasets are numbered 1 through 4, respectively. The test results are presented
in Table 5. For GS–RandomForest, the optimal parameters selected by Grid Search were
150 trees and a maximum depth of 12. For RandomForest, 100 trees and a maximum depth
of 10 were used. For K-Nearest Neighbors (KNN), the number of neighbors was set to 5,
using the Euclidean distance metric for nearest-neighbor calculation. For Decision Tree,
the maximum depth was limited to 8, to prevent overfitting, with a minimum sample split
of 2. Compared with other commonly used algorithms, the GS–RandomForest algorithm
achieved higher recall and F1 scores across various datasets, demonstrating superior outlier
detection performance across different types of datasets.

Table 5. Comparison of detection results on typical datasets.

Model Dateset Number
Evaluation Metrics

Precision Recall F1

GS–RandomForest

1 0.9763 0.9812 0.9787
2 0.999 0.999 0.9999
3 0.9521 0.9705 0.9612
4 0.7824 0.7819 0.7822

RandomForest

1 0.9638 0.9761 0.9691
2 0.999 0.999 0.9999
3 0.9457 0.9689 0.9411
4 0.7639 0.7648 0.7642

KNN

1 0.957 0.949 0.9533
2 0.9998 0.9988 0.9993
3 0.9349 0.9006 0.9139
4 0.7559 0.7634 0.7596

Decision Tree

1 0.9229 0.9135 0.9178
2 0.9998 0.9988 0.9993
3 0.8557 0.7266 0.7435
4 0.7591 0.7616 0.7603

3.3. Test Results of the Model Applied to a Real Dataset

As summarized above, the performance of the prediction and detection modules of
the AF-GS–RandomForest model has been validated on typical datasets. Furthermore,
the model was applied to detect outliers in a real dataset, which is a power consumption
dataset from an office building. This dataset was collected in 2021, with a sampling interval
of 15 min, covering a period of one year. The training module was split into a 7:3 ratio of
training and test sets. The AF-GS–RandomForest model was used to detect outliers in this

https://www.kaggle.com/code/sahillyraina/electric-faults-detection-classification/comments
https://www.kaggle.com/code/sahillyraina/electric-faults-detection-classification/comments
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
https://archive.ics.uci.edu/dataset/357/occupancy+detection
https://archive.ics.uci.edu/dataset/357/occupancy+detection
https://archive.ics.uci.edu/dataset/851/steel+industry+energy+consumption
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real dataset. Building managers can determine the energy-saving potential of the building
by analyzing the causes of outliers in the office building’s power consumption data. Based
on the analysis results, the building’s energy management plan can be optimized to reduce
abnormal usage patterns, ultimately achieving energy savings.

3.3.1. Prediction Module

A time-series prediction model based on the Autoformer algorithm was established,
and the prediction results are shown in Figure 4. Figure 4 illustrates a segment of the
sequence without outliers, and it can be seen that the prediction results are relatively
accurate. The comparison of this model with other time-series prediction models is shown
in Table 6. From this table, it is evident that the time-series prediction model based on the
Autoformer algorithm demonstrates the highest prediction accuracy. Compared to other
algorithms, the RMSE, MSE, and MAE metrics are significantly reduced, while the R2 value
increased to 0.922, indicating a better fit of the model to the data. The residual sequence
can be used for outlier detection.
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Table 6. Performance Comparison of the Prediction Module.

Model
Evaluation Metrics

RMSE MSE MAE R2

Autoformer 21.064 443.712 16.059 0.922

Informer 24.806 615.339 19.278 0.892

Transformer 22.824 520.965 17.773 0.907

3.3.2. Detection Module

Outlier detection was performed on the residual sequence, and the detection results
are shown in Table 7. In this study, precision, recall, and F1 score were selected as the
evaluation metrics for the effectiveness of the outlier detection algorithm. The results
show that the grid search-based RandomForest algorithm achieved the highest recall rate
of 0.9974, indicating that it detected relatively more outliers. The F1 score was also the
highest, reaching 0.9984, which represents a 15.4% improvement over the Decision Tree
algorithm, a 6.7% improvement over the K-means algorithm, and a 1.1% improvement over
the standard RandomForest algorithm. These results highlight the significant detection
advantage of this approach, accurately identifying a greater number of outliers.
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Table 7. Outlier Detection Result Comparison of the Detection Module.

Model
Evaluation Metrics

Precision Recall F1

DecisionTree 0.9878 0.7375 0.8445

K-means 0.9562 0.9076 0.9313

RandomForest 0.9885 0.9866 0.9875

GS–RandomForest 0.9994 0.9974 0.9984

4. Conclusions

This study proposes a time-series anomaly detection model, AF-GS–RandomForest, for
detecting anomalies in the time series of power consumption data. The main contributions
of this work include the following: (1) the prediction component of the model, based
on the Autoformer algorithm, effectively utilizes the sequence decomposition module,
auto-correlation mechanism, and encoder–decoder modules to extract feature vectors
from energy consumption data, enhancing the selection of critical information and fully
leveraging historical data to predict energy consumption, thereby accurately reconstructing
the residual sequence; and (2) an empirical analysis of the AF-GS–RandomForest algorithm
was conducted, validating its effectiveness on typical datasets, and was successfully applied
to a real dataset for detecting anomalies in energy consumption data.

This research primarily focuses on the detection of point anomalies. In future studies,
methods for detecting and identifying anomalous time periods could be further explored.
Additionally, as the methods chosen in this study rely heavily on high-accuracy prediction
models, future research could focus on improving the structure of the prediction module to
further enhance the algorithm’s prediction accuracy and robustness.
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