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Abstract: The performance of heat pump systems for heating and cooling heavily relies on the
thermal conditions of their reservoirs. This study introduces a novel thermal reservoir, detailing a
2017 project where the Municipality of Stavanger installed a heat exchanger system on the wall of a
main wastewater tunnel beneath the city center. It provides a comprehensive account of the system’s
design, installation, and performance, and presents an Artificial Neural Network (ANN) model
that predicts heat pump capacity, electricity consumption, and outlet temperature across seasonal
variations in wastewater temperatures. By integrating domain knowledge with the ANN, this study
demonstrates the model’s capability to detect anomalies in heat pump operations effectively. The
network also confirms the consistent performance of the heat exchangers from 2020 to 2024, indicating
minimal fouling impacts. This study establishes wastewater heat exchangers as a safe, effective, and
virtually maintenance-free solution for heat extraction and rejection.

Keywords: wastewater heat pump; ANN; monitoring and fault detection; fouling; COP; SPF

1. Introduction

As urban populations grow, with projections indicating that nearly 70% of the world
will reside in cities by 2050, the impact of urban areas on global environmental challenges
becomes increasingly significant [1]. Cities account for about 70% of the global CO,
emissions and are major economic centers, contributing 80% of the world’s Gross Domestic
Product (GDP). This positions them as key players in efforts to reduce carbon footprints.

As global energy and climate targets highlight the need for energy efficiency and
renewable energy production [2], the International Energy Agency (IEA) identifies heat
pumps as a key technology for thermal energy production in buildings [3]. Heat pumps en-
able the simultaneous production of heating and cooling [4], meeting thermal demands with
minimal energy input [5]. However, compared to conventional heaters and chillers, heat
pump systems exhibit increased complexity, requiring careful planning and management
of multiple temperature settings. For building owners, acquiring a heat pump involves not
only understanding its advanced mechanisms but also integrating it successfully with the
heat sources and sinks [6].

In urban environments, identifying suitable thermal reservoirs for heat pumps presents
multiple challenges [7]. Ambient air, the most widely used option globally [8], is favored
for its cheap and simple installation. However, these systems often underperform during
peak demand periods, especially in cold climates [8], leading to both high electricity
consumption for the heat pump itself and costly peak load heating [9]. Alternatives such
as geothermal boreholes and seawater offer more reliable performance and efficiency [10]
but are significantly more expensive to install [11]. The installation can be complicated by
local geographical and environmental conditions, such as proximity to suitable seawater
depths [7] or the thermal properties of the ground [8]. Additionally, the land footprint
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requirement for boreholes makes them more difficult to install in retrofitting projects within
urban areas [10]. While geothermal boreholes and seawater serve as excellent thermal
reservoirs where available, exploring alternatives is essential as the urgency to meet climate
targets intensifies.

Acknowledging wastewater as a renewable heat source, the EU Directive 2018/2001
highlights its potential to significantly meet heating demands throughout Europe [12].
Wastewater systems, which are fundamental components of urban infrastructure [13], can
serve as stable thermal reservoirs for heat pump systems [14]. This approach is exemplified
by Norway’s largest heat pump system in Oslo, which utilizes wastewater to produce
district heating [15]. Recent advancements in heat exchanger technology simplify the
installation of new wastewater systems, featuring prefabricated pipes with integrated heat
exchangers and retrofitting existing wastewater tunnels with heat plate collectors [14].

In 2014, the Norwegian city of Stavanger joined the EU-funded Triangulum initiative
under the Horizon 2020 framework, designed to demonstrate future solutions through
the innovative integration of energy, mobility, and information technology [16]. This
lighthouse project aimed to address societal challenges and enhance the sustainability of
growing urban environments, marking the beginning of Stavanger’s exploration of smart
technology. As part of this initiative, the Municipality of Stavanger refurbished a thermal
energy plant, installing heat pumps connected to the main municipal wastewater tunnel
through heat exchanger plates. A brine solution circulates between the heat exchangers
and the heat pumps, transferring low-temperature heat between the reservoir and the
evaporator [17]. This paper offers valuable insights into the design and operational phases
of the energy plant and wastewater heat exchanger system, presenting knowledge on an
alternative to traditional thermal reservoirs such as air, geothermal, and seawater. Among
the 114 wastewater heat exchanger installations produced by UHRIG between 2007 and
2023, this 360 kW system is the only one installed in Norway and is the twelfth largest
in terms of capacity [18]. Figure 1 shows the number of installations from UHRIG sorted
by country, along with the minimum, maximum, and median design capacities for both
heating and cooling. Notably, while all systems are designed for heat extraction, 25 of them
are also utilized for cooling. The capacities range from 2 kW to 1200 kW for heating and
from 17 kW to 6000 kW for cooling, demonstrating the wide applicability and scalability of
these systems.

Number of

Type Country installations Minimum [kW] Median [kW] Maximum [kW]
Heating Austria 6 22 174 1200
Cooling Austria 3 275 530 6 000
Heating Belgium 1 177

Cooling Belgium 1 260

Heating Denmark 2 22 29 36
Cooling Denmark 0 = = =
Heating France 18 50 140 450
Cooling France 1 200

Heating Germany 81 2 108 1000
Cooling Germany 19 17 250 1000
Heating Netherlands 3 23 76 120
Cooling Netherlands 0 = = =
Heating Norway 1 360

Cooling Norway 1 440

Heating Switzerland 2 50 60 69
Cooling Switzerland 0 - - -

Figure 1. Key figures for the 114 systems installed by UHRIG from 2007 to 2023.
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Two review articles serve as foundational introductions to the knowledge of wastew-
ater heat exchanger technologies within urban energy frameworks. In 2015, Culha et al.
published a key review of wastewater heat exchangers, emphasizing their potential for
heating and cooling applications. They identify fouling and corrosion as significant chal-
lenges and recommend focusing on bio-fouling prevention and performance optimization
in future research [14]. In a comprehensive review, Nagpal et al. (2021) explored the
technological and economic benefits of wastewater heat recovery at scales ranging from
individual components to complete wastewater treatment plants. They discuss the temper-
ature and flow dynamics of wastewater systems, the environmental impacts, and the legal
complexities of wastewater heat recovery. Focusing on component, building, and wastewa-
ter network levels, they present the current technological landscape while calling for more
in-depth economic analyses and improved integration methods for these systems [12].

An ideal location for heat recovery from wastewater is at the wastewater treatment
plant itself. Bartnicki et al. (2022) performed an analysis of the potential for heat recovery
in wastewater treatment facilities and developed comprehensive guidelines for selecting
the optimal site and system for heat recovery [19]. Similarly, Kowalik et al. explored the
feasibility of heat extraction from wastewater at a small treatment plant in Swietokrzyskie,
Poland, examining monthly temperature fluctuations and the amount of heat that could
be extracted by a heat pump [20]. In addition, Lokietek investigated the integration of
heat pump systems at the Mokrawica wastewater treatment plant in Poland across various
stages of the treatment process [21]. Moreover, Cecconet et al. (2019) presented a study
assessing wastewater heat recovery for heating and cooling a building in Brno, Czech
Republic, showing the potential for a 59% energy reduction compared to a conventional
grid-connected heating and cooling system. A year-long study of historical wastewater
data revealed that the temperature changes from the heat recovery had a negligible impact
on downstream wastewater treatment biological processes [22].

While wastewater treatment plants offer clear opportunities for heat recovery, the
concept can also be applied across urban areas. Aprile et al. (2019) examined the efficiency
and economic feasibility of a district heating and cooling network in Milan that combines
sewage heat pumps with a photovoltaic system. Their study found a levelized cost of
79 €/MWh for the combined system, substantially lower than the 96 €/MWh for a compa-
rable system using independent reversible air-to-water heat pumps. They highlighted the
economic advantages of integrating photovoltaics-generated electricity with sewage heat
recovery, despite higher initial and maintenance costs [23]. Xu et al. investigated the use of
a sewage source heat pump and micro-cogeneration system in a large hotel, employing
TRNSYS simulations to devise an economical operation strategy tailored for hot water
loads. Their findings revealed a 37% decrease in peak power consumption, lower operating
costs with a six-year payback period, and significant emission reduction [24]. Chen et al.
developed a model to assess urban wastewater heat recovery by integrating sewage charac-
teristics and building heat demands. Tested in Osaka, the model recommended focusing
on larger buildings and clusters for effective heat recovery implementation [25].

Fouling in wastewater heat pump plants, frequently highlighted in academic research,
occurs when unwanted materials such as biological growths and scale accumulate on heat
exchanger surfaces. This accumulation can degrade the performance of the heat pumps,
leading to increased operational and maintenance costs and significant downtime [26].
Several factors influence fouling rates, including the properties and flow of the fluid,
the condition of the heat exchanger plates, temperature variations, and periods of non-
operation [27]. In a 2023 study, Zhuang et al. investigated a raw sewage source heat pump
system in Qingdao, China, implemented in a 28,000 m? office building. Over the year,
the sewage temperature fluctuated between 12 °C and 24 °C. The system demonstrated
substantial energy savings compared to traditional coal-fired boilers and conventional
chillers. However, fouling in the heat exchangers reduced their effectiveness by about 50%,
significantly impacting system performance and increasing maintenance requirements [28].
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A research initiative, based on data from a Danish district heating system, explored
predictive maintenance strategies for sewage heat exchangers in a two-stage ammonia
heat pump system [27]. Initially, fouling management depended on irregular chemical
cleanings based on operator experience rather than on systematic analysis. In this study,
machine learning methods, specifically linear regression and radial basis function networks,
were employed to predict the progression of fouling and its impact on system efficiency.
Integrating these predictive models with operational data and a thermodynamic model
allowed for more accurate maintenance scheduling [27]. Wang et al. utilized a two-layer
Long Short-Term Memory neural network, enhanced with an attention mechanism, to
predict fouling thickness in heat exchangers [29]. As in the study from Denmark, the goal
of this research was to facilitate maintenance by ensuring that fouling remains within safe
operational thresholds. Comparing thermal reservoirs, Kim et al. found that ground-source
heat pumps consistently outperformed sewage water-source heat pumps, primarily due
to fouling issues in the latter [30]. Their study also presented a predictive model from
long-term operational data, which indicated potential improvements in the sewage heat
pumps through targeted fouling reduction.

Contrary to the experience presented in the existing literature, fouling was not con-
sidered a major concern during the design and installation phase of the heat exchanger
system investigated in this study. This assumption was based on two key factors: (a) the
heat exchangers were designed with overcapacity, implying that a newly installed system
would have superior heat transfer capabilities compared to operational systems [31]; and
(b) historical observations by the wastewater tunnel operators suggested that the high flow
rates were effective in preventing significant accumulation of dirt on the tunnel walls at the
installation point.

Within the paradigm of smart cities and smart technologies, capturing and utiliz-
ing data are essential for technological advancement. The Organization for Economic
Co-operation and Development (OECD) defines smart cities as “cities that leverage digital-
ization and engage stakeholders to improve people’s well-being and build more inclusive,
sustainable, and resilient societies” [32]. In such cities, digitalization can significantly
enhance the energy efficiency of heating and cooling networks through optimized perfor-
mance and continuous monitoring [1]. The thermal energy plant in Stavanger is ideally
positioned within this framework, equipped with a comprehensive sensor setup for col-
lection of temperature and pressure, as well as thermal and electrical energy meters that
track all energy flows in the system. Consequently, this project is not just “smart” due to its
utilization of wastewater as a thermal reservoir but also through the strategic integration of
the measured data into the local academic community’s research on thermal energy and
data utilization [33].

Artificial Intelligence (AI) and Machine Learning (ML) are core concepts within the
smart technology framework. A review of recent advances in ML approaches for heat
exchanger modeling concluded that Artificial Neural Networks (ANNs) were predominant,
favored for their high prediction accuracy and robust processing capabilities. Notably,
ANNS’s have featured in 56% of the surveyed literature [34]. The versatility of ANNs makes
them ideal for modeling various thermodynamic properties and operational conditions
of heat exchangers. For instance, Starzec demonstrated that ANNSs effectively predict the
performance of greywater heat exchangers by leveraging data from experimental tests [35].

This study utilizes historical data collected from the Municipal Energy Plant in Sta-
vanger to conduct a comprehensive review of its wastewater heat exchanger plate system
and the heat pump operations. The paper adds to the field by presenting a detailed analysis
of advanced technology in a large-scale operational context. It introduces an ANN model
that evaluates the assumption of minimal fouling impact. The direct involvement of one
of the authors in the system’s planning and installation offers unique perspectives on the
technology’s benefits and challenges.

The paper is structured as follows: Section 2 introduces the energy plant case study,
focusing on the wastewater heat exchangers. It further outlines the methodologies used to
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evaluate the operation of the heat pumps and heat exchangers, defining key performance
parameters and relating them to the plant’s energy meters and sensors. Additionally,
the ANN modeling approach is detailed. Section 3 presents historical data on energy
production, consumption, and the calculated performance parameters, along with the
outcomes of applying the ANN model to a test dataset from the case study. The discussion
in Section 4 reflects on the findings and broadens the discussion to a general evaluation
of the use of wastewater as a thermal reservoir, drawing on experiences from this specific
project. Here, the temperature of the wastewater is compared to ambient air to clearly
illustrate the advantages of wastewater as a thermal reservoir. The paper concludes with a
summary of the findings and recommendations for future research.

2. Materials and Methods
2.1. Case Study Description

The case study plant and the Municipality of Stavanger’s contribution to Triangu-
lum project, detailed in a previous work [33], are highly ambitious EU-funded thermal
energy initiatives. Operational since 2017, the plant utilizes wastewater heat pumps and
biogas boilers to produce 1.5-2.5 GWh of thermal energy annually, serving three municipal
buildings with heating and cooling.

Wastewater was chosen as the most feasible thermal reservoir for the project after
a thorough evaluation that balanced investment and operational costs, CO; emission
reduction, and practical implementation. In the densely built urban areas, alternatives such
as geothermal boreholes and seawater were deemed unsuitable due to challenging local
conditions. Located approximately 100 m directly from the energy plant, a main municipal
storm and sewage water tunnel run through rock beneath Stavanger, Norway. This nearly
circular tunnel, about 4 km long and 3.3 m in diameter, was drilled through the bedrock in
the 1980s. The tunnel starts at an elevation of 2.4 m above sea level and ends at 1.6 m, with
the section near the plant being about 2.0 m high, located 7 m below the plant’s floor.

The wastewater plate heat exchanger system was identified through an internet-
based, non-academic search and subsequently developed in collaboration with a potential
technology supplier. Key design parameters of this system include the wastewater flow
rate and temperature, the geometry of the tunnel, and the specifications of the heat pump
and brine system, such as flow rate and design temperature levels.

To determine the design flow rate, historical measurements of the wastewater flow
rate were correlated with rainfall data, as illustrated in Figure 2. The figure represents
daily values averaged over 24 h for flow, rainfall, and the resulting water height in the
tunnel, based on data from 2015. From these historical data, the baseline wastewater
flow rate for the heat exchanger design was set to 250 L per second. However, the data
indicated that this flow rate can increase significantly following rainfall events. Historical
wastewater temperatures had been observed to vary between +7 °C and +16 °C, and the
design temperature levels for the brine system were set to +1 °C at the inlet and +5 °C at
the outlet of the heat exchangers in heating mode. To calculate the brine flow rate required
to achieve the 360 kW design heat extraction, the following formula was used [36]:

Q =m X Cp X (Tout - Tin)/ (1)

where Q (in kW) represents the net rate of heat transfer from the wastewater to the heat
pump brine, or vice versa, 11 (in kg/s) is the mass flow rate of the heat pump brine, ¢, (in
kJ /kg-K), is the specific heat capacity of the heat pump brine, here specified for MEG20 (a
20% solution of Monoethylene Glycol), and T}, and Ty (in K), are the temperatures of the
heat pump brine entering and exiting the heat exchangers, respectively.
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Figure 2. Daily averages of flow, rainfall, and water height in the tunnel (2015). Based on data
provided by the municipality of Stavanger.

Through a public procurement process, several European suppliers were invited to
submit their proposals and project costs based on the specified design parameters. Given
that the tunnel is sealed during wastewater operations and the installation point is far from
the nearest entry (see Section 4 for details), the municipality requested a maintenance-free
system. A team consisting of Dansk Kloak RenoveringsTeknik [37] and UHIRG [17] was
selected to install UHRIG’s custom-built stainless steel heat exchanger system, named
Therm-Liner, directly on the tunnel wall. The Therm-Liner system, characterized by its lack
of moving parts and absence of electrical components, minimizes maintenance needs.

The final configuration of the heat exchanger system, as shown in Figure 3, included
108 heat exchanger plates, each weighing 100 kg and measuring 1.0 m in length, shaped
according to the design sketch. To ensure equal distribution of the brine fluid across all
heat exchangers, the return pipe was reversed.
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Figure 3. (Top left) design sketch of the heat exchanger system showing a cross-sectional view. (Top
center and right) photographs taken during the system installation. (Bottom) overhead design sketch
of the system layout above the tunnel floor. Photos by Uhrig/Municipality of Stavanger.
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Three tunnels were drilled through the mountain to connect the energy plant with the
wastewater tunnel: two are used for the supply and return of energy brine pipes, and one
houses utilities such as fiber cables and a temperature sensor for monitoring wastewater
temperature.

Figure 4 presents an aerial view diagram of the energy plant building and its con-
nections to the wastewater tunnel. The red and blue lines show the heating and cooling
distribution pipes from the plant to neighboring buildings, while the brown line approxi-
mates the location of the wastewater tunnel. The solid green line indicates the tunnels and
pipes from the plant to the wastewater, and the dashed green line denotes the buildings
included in the project. In Section 4, further elaboration on challenges during the planning
and installation phases is given.

Figure 4. Thermal energy plant and surrounding buildings in relation to the wastewater tunnel.

The main design targets for the project related to wastewater heat pumps are presented
in Table 1 [33]:

Table 1. Annual design targets heat pump system in study case.

Indicator Target Value
Heat Production Heat Pumps [kWh/yr] 1,692,000
Electricity Consumption for Heating [kWh/yr] 483,000
Seasonal Coefficient of Performance Heating * 3.5
Heat Extraction at Evaporator [kWh/yr] 1,209,000
Cooling Production [kWh/yr] 187,000
Electricity Consumption for Cooling [kWh/yr] 18,700
Seasonal Coefficient of Performance Cooling * 10.0
Heat Rejection at Condenser [kWh/yr] 205,700
Gas Boiler Contribution Peak Load Heating [kWh/yr] 66,000

* Defined in next subchapter.

2.2. Methodology for Evaluating the Performance of the Heat Pumps and Wastewater
Heat Exchangers

The primary goal of this evaluation was to investigate the long-term performance of
the heat pumps and wastewater heat exchangers while identifying any short-term issues
that suggest opportunities for improvement.

Historical operational data were collected and processed to calculate the key perfor-
mance parameters. Tables summarizing several years of operational data were compared
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against the design of the targets. Duration curves were developed to detail the thermal
energy production, including contributions from wastewater heat, electricity used for com-
pressors, gas for boilers, and recovered heat from cooling production. Section 4 presents a
statistical analysis of key parameters, along with a series of scatter plots from the two heat
pumps, to visualize relationships and performance trends.

While cooling production and seasonal cooling parameters were calculated in this
study, the detailed analysis of heat pump operation excludes the cooling mode. This
exclusion is due to the relatively minor contribution of cooling to the overall thermal energy
production and the challenges presented by rapid ON-OFF operation cycles. For further
discussion on the cooling production, readers are referred to previous work [33].

2.2.1. System Design and Relevant Sensors

Figure 5 illustrates a schematic of the integrated system. The system consists of
two heat pumps, tagged as IK001 and IK002, connected in series on the condenser side
and in parallel on the evaporator side. Both heat pumps have a nominal heat capacity of
250 kW, with four semi-hermetic reciprocating compressors, two of which are equipped
with capacity control to manage load demands effectively. The design capacity allows for a
high base load heat contribution and meets the maximum cooling demand. The machines
have two operational modes to adapt to varying thermal demands.

320.01-RT902 - Ambient temperature sensor Gas boiler

T
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Figure 5. Schematic of the energy plant system with relevant sensors and meters.

In heating mode, the operation is controlled by outlet temperature setpoints on the
condenser water side, with the first heat pump in the series set to operate at a temperature
that is 5K lower than the second one. The heat pumps are connected to two accumulator
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tanks on the condenser side, serving as a zero-pressure junction between the heat pumps
and the heat distribution loop. A gas boiler acts as the peak load and backup heating unit.
Low-temperature heat is primarily extracted from the wastewater, while also utilizing any
excess heat from simultaneous cooling production.

Cooling mode is defined based on a general assumption, that there is no demand for
heating in this mode. The heat pumps are managed by outlet temperature setpoints at each
evaporator, normally set equal to 10 °C. Excess heat from the cooling production is rejected
to the wastewater via the condenser and a rejection heat exchanger. Despite the assumption
of no heating demand, the gas boiler can be activated to provide heating. In both modes,
the flow rates across each condenser and evaporator are close to constant.

All sensors utilized to monitor system performance are presented in Figure 5. Thermal
energy meters are installed at each condenser, at the gas boiler, and within the heat and
cooling distribution systems. Each thermal energy meter is equipped with a flow meter
and two calibrated temperature sensors. Additionally, three meters are installed for mea-
surement of electricity consumption: one at each heat pump condenser and one for other
electrical equipment, primarily circulation pumps.

2.2.2. Data Capture

Data for this analysis were obtained from the thermal energy plant’s control system,
Citech Scada [38], covering the period from September 2020 to May 2024. These data were
manually captured at varying points in time, with a resolution varying from 5 to 60 min.
To ensure analytical consistency, data recorded at five-minute intervals were aggregated
into 60 min mean values. For the performance evaluation, only data from two full years,
2022 and 2023, were available and used.

2.2.3. Performance Parameters

In this section, key evaluation parameters based on the energy meters shown in
Figure 5 are defined. These parameters establish the baseline for all evaluations conducted
in this work. In the analysis, both instantaneous values and accumulated data were
examined. Instantaneous values were represented by hourly averages.

The Coefficient of Performance (COP) is a primary performance measure for the heat
pump, indicating its performance by comparing the ratio of heating or cooling output to
electrical energy consumed [39]. The heat pump can operate in either heating or cooling
mode, each affecting the COP calculation. For heating and cooling, the COP is determined
as follows:

COPpes = Qeond )
Wiy
Qevap
COPyop = —2% — EER 3)
Wiy

where Qewp is the heat extracted at the evaporator, Qcond is the heat output at the condenser

and Whp is the electrical input to the heat pump, all measured in kWh/h. The cooling COP
is also known as the Energy Efficiency Ratio (EER). When the system operates in heating
mode, it may produce both heating and cooling simultaneously, utilizing low-temperature
excess heat from cooling as a heat source. If the cooling demand is lower than the heat
extracted at the evaporator, the total COP of the heat pump system is defined as follows:

COPyo; = Qcond + Qcool , 4)

Wip
where Q. is the actual cooling demand, measured within the cooling distribution system.
In cooling mode, all excess heat produced at the condenser is rejected to the wastewater.
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Since there is no thermal energy meter on the evaporator side of the system, the analysis
relies on the following well-known simplification to estimate the cooling production at
the evaporators:

Qevap = Qcond — Whp/ ®)

This formula is based on the premise that the heat removed at the evaporator can
be calculated by subtracting the work done by the heat pump from the heat rejected at
the condenser. This is a common practice in thermodynamic calculations where direct
measurements are not available [39].

The following energy meters are utilized to describe the system’s heating and cooling
production:

Heat production is measured by the heat distribution loop energy meter, Qpueat 320.01-OF005.
Cooling production is measured by the sum of the cooling distribution loop energy

meters, Q.o = 370.01-OE001 -+ 370.01-OE002.

To calculate the COP and EER for the heat pumps, the following configurations of
energy meters are utilized:

koo1 _ 320.01-OE001 ko1 320.01-OE001-432.100-XQ100

COPheat = 432.100-XQ100” EERcool - = 432.100-XQ100 ’

Kooz 320.01-OE002 Kooz 320.01-OE002-432.100-XQ101

COPheat = 432.100-XQ101’ EER ool = 432.100-XQ101 ’
copheat Pumps _ 320.01-OE001 + 320.01-OE002
heat 432.100-XQ100 + 432.100-XQ101"
ppRheat pumps _370.01-OE001 + 370.01-OE002
cooling 432.100-XQ100 + 432.100-XQ101"
copheat mode _ 320.01-OE001 + 320.01-OF002 -+ 370.01-OE001 + 370.01-OE002
total - 432.100-XQ100 + 432.100-XQ101 ’

The heat extracted at the evaporators is estimated using Equation (5) and the following
energy meter combinations:

QIK90! _ 320,01-OE001-432.100-XQ100

Qg§a°§2 = 320.01-OE002-432.100-XQ101

: IKO01 | ~IK002
Qevup = Qevap + Qevap (6)
In heat mode, the heat pumps operate to meet the temperature setpoints at the con-
densers. However, there may still be a demand for cooling, in which case any excess heat is
diverted to the evaporator. This process is known as free cooling. Free cooling is prioritized

over extracting heat from the wastewater; therefore, the wastewater heat extraction process
is calculated as follows:

wa = Qevup - Qcoolr )

and using the energy meters, the wastewater heat extraction is determined from:

wa = (320.01-OE001 + 320.01-OE002) —(432.100-XQ100 + 432.100-XQ101)
—(370.01-OE001 + 370.01-OE002)

In cooling mode, heat is rejected to the wastewater and calculated as follows:

wa = 320.01-OE001 + 320.01-OE002
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For assessing seasonal performance, the definitions of performance metrics align
with those used for momentary evaluations but rely on accumulated data collected over
a defined seasonal period instead of instantaneous values. The Seasonal Coefficient of
Performance (SCOP) measures the performance of a heat pump over one year or a specific
heating or cooling season. It takes into account variations in the COP under different
operating conditions encountered throughout the year [40]. Here, each ‘season’ is defined
as a year, consisting of 8760 h. For example, Seasonal Coefficient of Performance for heating
for the heat pump (SCOPy,y) is defined as follows:

SCOPpeqy = Scon ®)

4
Whp

where Q.4 is the total heat produced at the heat pump condenser over a season, and
Wi, is the total electricity input to the heat pump during the same season. The total plant
performance of a year, the Seasonal Performance Factor (SPF), is defined as follows:

Qheat + Qcool
Whp + Wgus + Wpumps

SPFtotal = ©)

where Q. represent the total heat production, Q. is the total cooling production,
Weas accounts for gas consumption and Wp,mps represents the electricity consumption

for circulation pumps. Using the energy meters, the SPF;,;; can be calculated from actual
readings as follows:

320.01-OE001 + 320.01-OE002 + 320.01-OE003 + 370.01-OE001 + 370.01-OE002
432.100-XQ100 + 432.100-XQ101 + 320.01-OE003 + 432.101-OE01

SPl::total =

Note that the heat pump system is connected to two thermal accumulators equipped
with internal heat exchanger coils for pre-heating Domestic Hot Water (DHW). In the
calculation of COP and the SPF above, the heat pump’s contribution to DHW is factored in.

To evaluate the efficiency of the heat pump process itself, the System Efficiency Index
(SEI) [40], sometimes known as the Carnot efficiency, is used. The SEI is calculated as the
ratio of the actual COP to the COP of an ideal, reversible Carnot process (COPc). This
ideal COP serves as a theoretical benchmark, rooted in the laws of thermodynamics, for a
process that transfers heat energy to a higher temperature level. For heating (h) and cooling
(c), the Carnot COP can be expressed as follows:

Th,re f
COPpeatc = m ’ (10)
T,
COPcooling,C = cref (11)

Th,ref - Tc,re f ’

where Ty, ¢ and T ;. are reference temperatures for the two reservoirs that the heat pump
operates between, represented by the average between the inlet and outlet temperatures on
the condenser and evaporator, respectively. The temperature difference, Tj, yor — Tt ref, is
defined as the heat pump temperature lift for future evaluations. The design or measured
COP is then divided by the ideal COP, and this ratio, less sensitive to changes in tempera-
tures and flow rates than the COP alone, equals the SEI. The SEI calculations for systems
supplying heat are as follows:

COPheat

EI = ——
5 heat COPheat,C’

(12)

According to the report Method and Guidelines to Establish System Efficiency Index
during Field Measurements on Air Conditioning and Heat Pump Systems [40], SEI values
for heat are categorized as follows for assessing performance quality:
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0-0.2: Unacceptable
0.2-0.35: Poor
0.35-0.45: Good
>0.45: Excellent

To evaluate the operational efficiency of heat pumps under varying load conditions,
a straightforward metric known as the Electrical Load Factor (ELF) is defined by the
following formula:

Actual Electricty Consumption of Heat Pump ) < 100 (13)

Maximum Elecrictiy Consumption of Heat Pump

ELF (%) = (

2.2.4. Limitations
The key limitations identified in the analysis are as follows:

e  Gas boiler contribution: The energy contribution from the gas boiler used in the
performance calculations is measured by the thermal energy meter 320.01-OE003,
which is positioned between the gas boiler and the heat distribution system. However,
actual gas consumption data from the gas company was unavailable due to data
capture errors. Previous studies have indicated that the boiler’s efficiency is below
expectations, but this error is not attributed to the heat pump system design, but rather
to the control strategy implemented in this specific part of the system. Consequently,
the SPF values reported here may be higher than the real values, as more gas was used
than measured at 320.01-OE003.

e  Reduced demand due to refurbishment: The plant was originally designed to supply
three buildings with thermal energy. During the data collection period, one of these
buildings had been temporarily removed from the system for refurbishment. Thus,
during the whole measurement period, the heat pumps have had an overcapacity
relative to the maximum demand. Consequently, the utilization rate of the heat pump
may appear disproportionately high when compared to typical systems designed to
balance both base and peak load units. Additionally, the design production numbers
presented in Table 1 are expected to be higher than those measured.

2.3. Statistical Evaluation Using Correlation Analysis

Correlation analysis was used to evaluate how the operational parameters affect the
heat pump. Pearson’s coefficient, r, was utilized to measure and quantify the strength and
direction of linear relationships between variables [41]:

r= E(xi —7)(3/1 _y) , (14)
VI -0 Sy - 5)?

where:

x; and y; are the individual sample points indexed i,

X and ¥ are the means of the x and y data sets.

The result, r, ranges from —1 to +1, where:

An r-value of +1 indicates a perfect positive linear relationship,

An r-value of —1 indicates a perfect negative linear relationship,

An r-value of 0 indicates no linear relationship between the variables.

All statistical analyses were performed using Python, utilizing libraries such as Pandas
for data manipulation, NumPy for numerical operations, and Statsmodels for performing
statistical tests and regression analyses [41].

2.4. Artificial Neural Networks for Evaluating the Heat Pump Performance

To evaluate the performance of heat exchangers over time, Artificial Neural Networks
(ANNSs), an ML method with substantial popularity in various fields such as mathematics
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and engineering [42], were utilized. ANNSs are favored for their ability to model complex
relationships and predict outcomes from large datasets. The methodology adopted for this
study is detailed in previous work [43]. Readers seeking a deeper understanding of the
specific technique are encouraged to consult the relevant literature in the field of ML [41].

2.4.1. Model Structure and Development

The ANN model was designed to predict heat pump performance based on inlet
conditions and setpoint temperatures. As shown in Figure 6, the model considers the two
heat pumps as a single production unit with one inlet and one outlet on the condenser
side. Model inputs include the water temperature entering the first condenser and the
production setpoint of the second heat pump, while the wastewater temperature serves as
the input for the evaporator side. The model outputs are total heat production, electricity
consumption, and the system’s outlet temperature.

= - —|
432.100-XQ100 @ @ 432.100-XQ101
f M
! - IK0O1 g
1 "
/: Qcmﬂ _YT1

|
|
|
|
320.61-0E001 |
|
|
|
|

A

z VY

at pump IKFD1

.y _YTZ
- IK002 =
& Ty 7
2 320.01-OE002

A Heat pump IKOO:

Y A

——
To cooling HX  (Heat Pump Production kW] -
'320.01-OE001 + 320.01-OE002

Wastewater Temperature
350.03-RT001

E

Inlet Temperature Heat Pump IK002
320.01-OE002 T1

Y

[ AU AN A

\Heat Pump Electricity Consumption [kW]
1432.100-XQ100+432.100-XQ101 g

Outlet Temperature Heat Pump IK001
[320.01-0E001 T2

Temperature setpoint HP.
350.01-1K001 SP

Figure 6. Model configuration of wastewater heat pump ANN.

2.4.2. Training, Validation, and Test Data with Emphasis on Fouling Assessment

Data from September 2020 to June 2024 were utilized to develop the ANN, organized
into distinct sets to specifically determine the impact of fouling on system performance:

e  Training Set: Data from 2020 to 2022 represented the training set, with 20% reserved
for validation during the training phase to fine-tune the model.

e  Data from 2023 were used for “visual validation,” evaluating the model configuration,
testing various input/output parameters, and adjusting hyperparameters. This stage
was important for identifying potential faulty operations and providing a practical
check against real-world conditions.

e  Test Set: Data from 2024, referred to as “unseen” data, were used for final testing to
confirm the model’s effectiveness. The test aimed to verify that the model, trained on
data from earlier years, could accurately predict system performance under current
conditions. A successful outcome would indicate that the system’s performance has
remained consistent over the years, free from significant deviations due to fouling
or other inefficiencies. Positive results could also suggest the model’s potential for
ongoing monitoring and diagnostic applications.
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2.4.3. Data Preparation

To ensure the quality and relevance of the training data, thorough data processing
was performed before developing the ANN. Initially, all rows with missing values were
removed to guarantee consistency in the dataset. Then, outlier detection was performed
using a Z-score approach, which measures how far each data point deviates from the mean
in terms of standard deviations [44]. Data points with a Z-score above 3 were considered
outliers and excluded. This removed 3223 rows of the dataset, initially consisting of
25,242 rows.

The dataset was further processed using a Savitzky-Golay filter, a method that involves
using a moving window to fit a polynomial among the points within that window [45].
A second-order polynomial was selected to smooth segments of eleven consecutive data
points, effectively capturing fluctuations throughout the day. This approach preserves
critical features such as peaks and minima through its polynomial fitting technique. A
visual representation of the filtering for heat production, electricity consumption, and
wastewater temperature is provided in Figure 7.

Original vs Smoothed Data Heat Pump Production

210

Heat Production IK001 [kWh/h]

— Original Data
—— Smoothed Data

2023-02-01 2023-02-02 2023-02-03 2023-02-04 2023-02-05 2023-02-06 2023-02-07 2023-02-08
ime

Original vs Smoothed Data Electricity Consumption

—— Original Data
~—— Smoothed Data

Electricity Consumption IK002 [kWh/h]

10

2023-02-01 2023-02-02 2023-02-03 2023-02-04 2023-02-05 2023-02-06 2023-02-07 2023-02-08
Time

Original vs Smoothed Data Wastewater Temperature [°C]

—— original Data
~—— Smoothed Data

Wastewater Temperature [°C]

2023-02-01 2023-02-02 2023-02-03 2023-02-04 2023-02-05 2023-02-06 2023-02-07 2023-02-08
Time

Figure 7. Examples of data smoothing using the Savitzky-Golay filter for Heat Production (top),
Electricity Consumption (middle) and Wastewater Temperature (bottom).
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Next, a more hands-on evaluation was conducted to ensure the dataset reflected
healthy operational conditions. Initially, rows where the COP exceeded a threshold of 5.0
were removed to filter out instances where a small amount of heat was recorded after the
heat pump had shut down, eliminating a total of 170 rows for the heat pump combined.

Then, erroneous operations of the heat pumps, initially identified through manual
examination of time series data and using the visual validation data actively, were excluded.
Note that this was a coarse manual procedure, and there may be erroneous instances within
the final data set. Specifically, instances where the temperature difference between the outlet
temperature and the setpoint was high while the power output was lower than a threshold
were filtered out. These situations indicated that one or several of the compressors were
out of order. Additionally, there were cases where heat pump IK002 was significantly
more active than IK001, which, due to active setpoint configurations, suggested operational
errors with IK001. These filtration steps led to the removal of 8515 rows.

The final filtration step involved excluding data from the peak summer months, June,
July, and August, to focus on the heating season. Through the filtration steps, the dataset
was reduced to 10,481 entries from an initial count of 25,242. Notably, the removal of 8515
rows due to erroneous operations is particularly significant as it represents almost a full
year’s worth of data where one or both heat pumps had faulty operation. This not only
underscores the importance of the data cleaning process but also highlights the critical
need for consistent monitoring and maintenance of these systems, given the frequency of
operational errors. This study was performed without access to maintenance logs. Had
these logs been available, they could have enabled more precise identification of operational
errors, thereby making the data cleaning more systematic than the current approach.

2.4.4. Model Construction and Training

After cleaning, the training dataset was separated into the features and labels as
defined in Figure 6. Both features and labels were scaled using a StandardScaler [41]
to normalize the data, ensuring no feature dominated the model due to its scale. The
model was structured using a sequential layout consisting of an input layer, three hidden
layers, and an output layer. Each layer employed a Rectified Linear Unit (ReLU) activation
function, except for the output layer, which used linear activation [41].

Training was conducted using the Adam optimizer and the Mean Squared Error loss
function. The model underwent training for 5000 epochs, with early stopping implemented
to prevent overfitting. Early stopping monitored the validation loss and halted training if
no improvement was seen for 50 consecutive epochs. Model checkpoints were utilized to
save the best-performing model based on validation loss [41].

The selected approach ensured a robust and thoroughly trained ANN, with specific
steps taken to prevent overfitting. Table 2 summarizes the hyperparameters and training
settings used in the model’s development.

Table 2. Summary of hyperparameters and training settings for ANN.

Parameter Value
Network Architecture (50, 75, 150)
Activation Functions [‘ReLu’, ‘ReLu’, ‘ReLu’, ‘linear’]

Loss Function Mean Squared Error

Optimizer Adam

Batch Size 150

Epochs 5000
Validation Split 0.2
Early Stopping Enabled
Patience 50
Batch Size 150

Save Best Model Yes
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2.4.5. Performance Metrics

The performance of the ANN was assessed using the 2024 test set, which was sepa-
rated from the training data to provide an unbiased evaluation of the model’s predictive
accuracy. The same performance metrics were used during the visual validation phase.
Mean Absolute Error (MAE) quantifies the average magnitude of errors in the model’s
predictions [41]. It is calculated as follows:

1 & .
MAE =13 1y~ 3l as)
i=1

where 1 represents the number of data points and y; and 1j; are actual and predicted values
of parameters. MAE provides a straightforward measure of error magnitude without
considering direction.

Root Mean Square Error (RSME) measures the overall magnitude of errors, emphasiz-
ing larger deviations due to the squaring of each error [41]. RMSE is particularly sensitive
to outliers and provides a more conservative estimate of model performance:

18
RSME = |-} (yi = )" (16)
i=1

Mean Absolute Percentage Error (MAPE) estimates the average percentage error
between the model’s predictions and observed data, giving a sense of error in relative
terms [46]. MAPE is especially useful when comparing the performance of models across
different scales or units. However, it should be used with caution when the actual values
are close to zero, as it can lead to disproportionately high errors and may distort the overall
performance assessment:

l n
MAPE = —
=

Yi — Y

Yi
Together, these metrics offer a comprehensive view of model accuracy, with MAE
providing a baseline average error, RMSE highlighting larger errors, and MAPE offering a
percentage-based evaluation. Additionally, the Maximum Absolute Error is reported, which
captures the single largest error across all predictions, helping to identify the worst-case
scenarios in model performance.

, (17)

2.5. Manuscript Preparation and Editorial Assistance

In addition to the technical methodologies, during the development of this manuscript,
the OpenAI GPT-4 model was employed for editorial assistance. Specifically, GPT-4 aided
in refining sentence structures and providing word choices, enhancing the clarity and
readability of the text. It also played a role in explaining and summarizing complex
sections from the referenced literature.

3. Results
3.1. Evaluation of Heat Pump Performance

The annual energy results for the plant are presented in Table 3 for the years 2022 and
2023. Additionally, duration curves for the gas boiler and the components contributing to
heat pump production for the same years are displayed in Figures 8 and 9. These duration
curves are based on sorted values of heat production from maximum to minimum, with
corresponding data for gas and electricity consumption, wastewater heat, and excess heat
from cooling, all linked to their contributions to the maximum production levels.
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Table 3. Accumulated values for plant thermal energy production and energy consumption.

2022 2023
Energy [kWh/yr] Power [kW] Energy [kWh/yr] Power [kW]
Heat production 1,342,000 450 1,372,000 430
Heat Production—IK001 1,159,000 244 1,041,000 242
Electricity Consumption—IK001 321,000 71 291,000 71
SCOP IK001 [-] 3.61 3.58
Heat Production—IK002 177,000 231 321,000 248
Electricity Consumption—IK002 52,000 66 91,000 67
SCOP IK002 [-] 3.40 3.52
Heat Pump Production 1,336,000 450 1,362,000 430
Electricity consumption 373,000 131 382,000 130
SCOP Heat [-] 3.58 3.57
Heat extracted at evaporator Qevap 963,000 320 980,000 302.0
Cooling to Heat 128,000 68 123,000 118.0
Wastewater Heat 835,000 304 858,000 283.0
Gas Boiler Load 5700 190 10,000 156.0
Cooling Production 34,000 270 44,000 233
Electricity Consumption Cooling 14,000 100 15,000 81
SEER [-] 243 2.93
Electricity Consumption Pumps 102,000 19 110,000 19
SPF Total [-] 2.78 2.74

Heat Production 2022

[ Cooling to Heat [kW]

I Wastewater Heat [kW]

[ Electricity Consumption Heat Pump [kW]
400 A Gas Boiler Peak [kW]
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Figure 8. Duration curve heat production 2022.
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Figure 9. Duration curve heat production 2023.
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From the accumulated energy results, the following can be observed:

The system for heating and cooling production, excluding peak heating for DHW,
has produced its energy with an SFP between 2.7 and 2.8, which is considered
highly satisfactory.

The heat pumps have met most of the thermal demand for the two operational build-
ings, with the gas boiler contributing minimally. This outcome aligns with expec-
tations and contrasts with the period of 2019 to 2020, when three buildings were
operational [33] and both the heat pump and gas boiler had significantly higher contri-
butions. It is important to note that data from 2019 to 2020 are not as detailed as those
presented in this study.

There have been no significant peaks in gas boiler usage, and the boiler has primarily
served as a backup unit during these years.

Wastewater heat has been the predominant low-temperature heat source, contributing
to more than 60% of the total heat produced in both evaluated years, indicating that
the heat exchangers are performing in line with expectations.

While the power contribution of excess heat from cooling is small, averaging about
14 kW, it has been consistent throughout the years. Though not as important in a
system where the heat extraction does not significantly influence the source tempera-
ture, a steady contribution of 14 kW, equivalent to 120,000 kWh/yr, could significantly
benefit a geothermal heat pump system.

The production from the two heat pumps has been highly uneven; IK001 has produced
87% and 75% of the heat in the respective years, while IK002 has produced 13% and
25%. The SCOP values for IK001 and IK002 were 3.6/3.6 and 3.4/3.5, respectively,
perfectly in line with design expectations. Given that IK001, as the second pump in the
series, has been set to produce a temperature 5K above that of IK002 and still achieved
a higher SCOP, this suggests that the operational strategy and set-point scheme for
IK002 should be re-evaluated.

3.2. Prediction of Heat Production, Electricity Consumption, and Outlet Temperature Using ANN

The results of the ANN model are detailed in the figures and tables that follow. The

model was initially trained on data from 2020 to 2022. During the training process, the
model results were continuously visually evaluated using data from 2023, which served
as an aid through data processing, alongside standard validation principles. Finally, data
from a month in 2024 were used to test the final model configuration.

Figure 10 illustrates an example of the input data used for the visual validation of the

final model configuration. Figures 11 and 12 display the model’s predictions alongside the
actual values for heat production and outlet temperature in the same period, respectively.
These figures also include the error, calculated as actual minus predicted values. The results
of the electricity consumption follow a similar pattern as the heat production.

Temperature [°C]

40 4

10

Inputs to visual validation

-~ e

W

—— Temperature setpoint IK001
Wastewater Temperature
—— Inlet temperature to K002

2023-11-06  2023-11-07 2023-11-08 2023-11-09  2023-11-10 2023-11-11  2023-11-12  2023-11-13

Date and Time

Figure 10. Input values used during visual validation.
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Figure 11. Results from visual validation, heat production both heat pumps.
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Figure 12. Results from visual validation, outlet temperature from IKO001.

During visual validation, the model exhibited significantly higher errors during spe-
cific periods. These included the initial days and a brief period on 12 November, as
highlighted in the figures. Notably, these instances coincided with the malfunctioning of
one of the compressors in heat pump IK001.

In Table 4, the error metrics are summarized for the visual validation. The table shows
results both for the complete week and after erroneous data were removed, demonstrating
that the model accurately predicted the final heat production and electricity consumption
within a 4% MAPE and outlet temperature within 0.3% when erroneous data were removed.

Table 4. Evaluation of visual validation—Error metrics with and without faulty operation.

Parameter MAE RMSE Max Absolute Error MAPE
Including Errors due to Faulty Operation of IK001
Heat Pump Production [kWh/h] 16.3 34.2 157.9 8.5%
Electricity Consumption [kWh/h] 4.3 9.6 45.0 8.5%
Outlet Temperature Heat Pump [°C] 04 0.8 3.5 5.3%
Excluding Errors due to Faulty Operation of IK001
Heat Pump Production [kWh/h] 6.2 9.2 24.8 3.7%
Electricity Consumption [kWh/h] 1.8 24 6.9 3.3%
Outlet Temperature Heat Pump [°C] 0.2 0.2 0.6 0.3%

Continuing with the final model configuration, the model was evaluated using
test data from 2024. The inputs for a month of this test are shown in Figure 13, while
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Figures 14-16 compare the model’s predictions against the actual values along with the er-
rors for heat production, electricity consumption, and outlet temperature. The error metrics
for this testing interval are presented in Table 5. From Figures 14-16, it is clear that there
are periods when the errors are significantly higher than during the rest of the operation.
Both these periods and periods without errors have been isolated in Table 5, documenting
that outside the erroneous periods, the model predicts very well. A discussion is provided

in Section 4.3.

Input Model Evaluation February and March 2024
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Figure 13. Input data for the ANN applied on 2024 test data.

400

100

Heat Production [kWh/h]

—-100

—200

—-300

Analysis of Real vs Predicted Values Heat Pump Production

—— Real
~—— Prediction
— Error

® o P it i AN g g ~
v v v N v NN N Ny 1N
al v o 2l ol iatod o 4l o
o S ~» ® 3 0 > 0 ®

Date and Time

Figure 14. Predicted vs. actual heat production for 2024 test data.
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Figure 15. Predicted vs. actual electricity consumption for 2024 test data.
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Real vs Predicted Values Heat Pump Outlet Temperature
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Figure 16. Predicted vs. actual outlet temperature for 2024 test data.

Table 5. Error metrics for 2024 testing interval, complete and segregated by operational status
(without and with faulty operation).

Parameter MAE RMSE Max Absolute Error MAPE
Complete results including period with significant error.
7 February 2024 to 14 March 2024
Heat Pump Production [kWh/h] 33.7 63.6 260.1 25.8%
Electricity Consumption [kWh/h] 9.7 18.3 72.6 26.3%
Outlet Temperature Heat Pump [°C] 0.8 15 6.1 1.6%
Result excluding period with significant error.
7 February 2024 to 21 February 2024 and 27 February 2024 to 14 March 2024
Heat Pump Production [kWh/h] 12.2 17.0 111.6 5.0%
Electricity Consumption [kWh/h] 3.6 5.1 38.2 5.1%
Outlet Temperature Heat Pump [°C] 0.3 04 24 0.5%
Results period with significant error.
21 February 2024 to 27 February 2024
Heat Pump Production [kWh/h] 140.4 150.7 260.1 129.4%
Electricity Consumption [kWh/h] 40.0 43.1 72.6 132.2%
Outlet Temperature Heat Pump [°C] 3.3 3.5 6.1 7.0%

4. Discussion
4.1. Wastewater as a Thermal Reservoir: Evaluating Temperature and Other Influences on Heat
Pump Performance

The results show that the operational SCOP of the heat pump system met the initial
design targets in both evaluated years, indicating that the system is functioning as intended.
This section delves deeper into the factors influencing the efficiency of the heat pump
system, focusing on both the Coefficient of Performance (COP) and System Efficiency
Indicator (SEI). The aim is to identify which parameters most significantly affect the COP
and to assess the resulting SEI, determining if, despite satisfactory COP figures on paper,
there is room for improvement or specific operational conditions that notably improve or
weaken the SEI

The most significant factors influencing the COP of a building heat pump system are
the temperature lift between the heat source and sink and performance variations during
part-load conditions, both of which fluctuate with seasonal and ambient temperature
changes [47]. To analyze these influences, correlation matrices for relevant parameters were
developed using Pearson’s correlation [41]. The parameters analyzed include Wastewater
Temperature, Electrical Load Factor (ELF), Temperature Lift, COP, and SEI The correlation
matrices in Figure 17 provide detailed insights into the operations of heat pump systems
IK001 and IK002. Specifically:
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Correlation Matrix for IKOO1
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Figure 17. Correlation Matrices for IK001 (top) and IK002 (bottom).

IKO001: A weak correlation (—0.08) between COP and SEI indicates that COP alone
does not fully reflect the system’s efficiency. It is a well-established principle in heat
pump theory that an increase in temperature lift leads to a decrease in COP. When the
ambient temperatures are low, the wastewater temperature generally decreases as well (see
Section 4.4 for further details). Under colder ambient conditions, the setpoint temperature
for heat distribution is typically at its highest. This scenario, coupled with low source
temperature, results in a greater temperature lift between the condenser and evaporator.
The inverse relationship between COP and temperature lift is demonstrated in practice by
a correlation of —0.84.

Additionally, a negative correlation between the ELF and wastewater temperature
indicates that the heat pump operated at higher capacities at lower source temperatures,
consuming more energy. This expected behavior reflects how the heat pumps typically
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respond to increased heating demands during colder periods. Despite higher energy usage
and lower COP when the ELF was high, a positive correlation between the ELF and SEI
suggests that the heat pump may still achieve higher efficiency when operating close to
maximum capacity.

IK002: The correlation matrix for heat pump IK002 requires careful interpretation,
as this unit has been significantly less active compared to IK001, often serving primarily
as a peak heater with brief periods of operation. To prevent bias in the analysis from the
unit’s frequent start-stop cycles, all data points with energy consumption below 10 kW
were removed, leaving a dataset of 6566 rows for analysis. This filtering process affects the
robustness of data correlations.

For this heat pump, SEI and COP were strongly correlated, with a coefficient of 0.84,
contrasting sharply with IK001. This unit’s COP showed less sensitivity to variations in
temperature lift, wastewater temperature, and ELF compared to IK001.

To provide a deeper understanding of how each heat pump operates, scatter plots
between relevant parameters have been created, with a color index highlighting key trends.
These are presented for heat pumps IK001 and IK002 in Figures 18 and 19, respectively.
These visuals help illustrate the correlations discussed earlier, demonstrating the dynamic
relationships between variables such as COP, ELF, and wastewater temperature at various
operational conditions of the heat pumps.
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Figure 18. Comprehensive visualization of heat pump performance metrics for IK001, based on
21,800 rows of data. (Top Left) heat production vs. electricity consumption, depicted with a color
index representing SEI. (Top Right) COP vs. electrical load factor, with SEI as the color index. (Middle
Left) SEI plotted against COP, with heat production serving as the color index. (Middle Right) COP
in relation to wastewater temperature, colored by heat production. (Bottom Left) heat production vs.
temperature lift with SEI as the color index. (Bottom Right) heat production vs. temperature lift with
COP as the color index.
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Figure 19. Comprehensive visualization of heat pump performance metrics for IK002, based on
6566 rows of data. Visualizations: same as Figure 18, with datasets corresponding to IK002.

Observations from the correlation matrix and scatter plots provide detailed insights
into the operational dynamics of the heat pumps. Since IK001 has significantly more
stable operation data, it serves as a more reliable benchmark for evaluating overall system
performance and identifying optimal operational strategies.

For both heat pumps, the relationship between heat production and electricity con-
sumption is represented as a near-linear line, seen in the upper left figure, with the slope of
the line indicating COP. A slight change in the slope, as heat production increases, suggests
a minor decrease in COP at higher production levels.

In the case of IK001, plotting COP against the ELF with SEI as the color index reveals
that, while COP decreases with increasing Electrical Load Factor, the SEI remains above
0.45, indicating excellent operation when the ELF is above 40%. Even at 20-40% ELF, the
SEI stays within the ‘good” range most of the time.

This trend is further confirmed in the middle-left figure, which plots SEI vs. COP, with
heat production as the color index. For IK001, two distinct patterns emerge: a linear-shaped
relationship, represented by a blue line at lower heat production, and a concentrated cluster
of red dots at higher heat production levels. This suggests that the heat pump performs
more efficiently at higher capacity. Both heat pumps are equipped with four semi-hermetic
stable compressors: two are controlled by inverters and two operate on an on/ off basis.
When the capacity exceeds a certain threshold, both on/off compressors are activated,
and the inverter-controlled compressors adjust to fine-tune the production. The blue line
likely represents periods when only the inverter-controlled compressors are operating,
while the red dots indicate periods where at least one of the on/off compressors is running,
consistently achieving excellent SEI values. For IK002, this pattern is less obvious due to
fewer data points. However, when energy production is high, both COP and SEI remain
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above the thresholds for optimal operation. The SEI vs. COP scatter plots illustrate different
correlation patterns for the two heat pumps. IK001 displays a more complex pattern, with
a linear relationship at lower capacities and a more stable pattern at higher capacities. In
contrast, IK002, having fewer data points at high capacity, shows a trend closer to linear.
This simpler pattern explains why the correlation between SEI and COP is stronger for this
heat pump.

The right-side middle figures plot COP against wastewater temperature, with heat
production serving as the color code. The chart consistently shows COP values above 3.0,
confirming that the system has operated within expected levels. For IK001, the parts of the
data form a red pattern resembling a rotated ellipse, highlighting high-capacity operations.
At lower temperatures around 5 °C, COP is about 3.2-3.3. As wastewater temperature
increases to around 13 °C, COP peaks at 3.6. Beyond this temperature, as capacities
decrease, COP varies more. The plot suggests that lower wastewater temperatures, while
significant, do not directly correlate with the lowest COP values, likely because these figures
do not account for temperature lift. The bottom figures, which plot Energy Production
against Temperature Lift with SEI and COP as color indices, show that temperature lift
significantly influences COP: higher production with lower temperature lift results in
higher COP. Additionally, these figures demonstrate the differences between SEI and COP,
indicating that while COP decreases, SEI values generally increase with higher temperature
lifts, signaling more efficient operation at higher lifts.

Overall, with COP values mostly above 3.0 and SEI values above 0.4, the system’s
operation ranges from good to excellent. Even though COP decreases at high production
levels, this is expected due to the higher temperature lifts involved. The main challenge
appears to be the uneven operation between IK001 and IK002, where IK002 is less efficient
than IK001, mainly due to its frequent starts and stops. Adjusting the operational hours
of the machines, with IK001 operating less and IK002 more, could potentially extend the
system’s lifespan and improve overall efficiency. This adjustment can be explored manually
by changing the setpoint in the control system or as part of an academic modeling exercise.
The wastewater heat exchanger system performs as anticipated, contributing to the strong
COP and SEI values, even at the lowest wastewater temperatures.

4.2. Comparing Wastewater and Ambient Air as Thermal Reservoirs

To evaluate wastewater as a thermal reservoir, its temperature is compared to the
corresponding ambient air temperatures. Historical data for wastewater temperature from
2021 to 2023 is shown on the top in Figure 20, displaying a clear seasonal pattern. The
lowest temperatures occur in winter and the highest in summer, aligning with the estimated
temperature ranges used for system design.

In the bottom, Figure 20 presents a time series from January 2021 to December 2023,
showcasing both wastewater and ambient temperatures. Figure 21 plots the duration curve
for each year’s ambient temperature alongside the corresponding wastewater tempera-
ture for the same hours. These visualizations clearly demonstrate that the wastewater
temperature is generally more stable than the ambient temperature.

A correlation analysis between wastewater and ambient air temperatures reveals a
strong positive relationship, with correlations of 0.79 for 2021, 0.73 for 2022, and 0.80 for
2023. These values suggest that as ambient temperatures rise or fall, wastewater tempera-
tures generally follow. Despite the clear correlation, Figure 21 shows the significant stability
of wastewater temperatures. For instance, even as the ambient temperature drops to nearly
—10 °C, the wastewater temperature never falls below +5 °C. The wastewater tempera-
ture remains stable because it mixes stormwater with warmer household wastewater and
continuously flows through an underground tunnel insulated by surrounding rocks. The
duration curves further highlight the advantage of wastewater compared to ambient air,
consistently showing that wastewater temperatures remain higher than ambient air when
there is a demand for heat and lower when cooling is required.
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4.3. ANN for Monitoring and Evaluating the Heat Pump System and Fouling

Previously, results from both visual validation and test data analysis of the ANN
representing the heat pump system were reported. The visual validation identified periods
of high error, particularly in the initial days and notably on 12 November. Closer exami-
nation during these times indicated that the errors originated from a malfunction in one
of the compressors of heat pump IK001. This discovery led to refining the data cleaning
criteria, removing similar erroneous data points from the final training dataset. Utilizing
a dataset that extends beyond standard validation or test sets, an approach not typical in
conventional machine learning practices, provided the flexibility to adjust the dataset based
on domain knowledge.

In the unseen test set, the results of the ANN model demonstrate a MAPE of about
5% for heat production and electricity consumption and 0.5% for the outlet temperature
for most of the test period, which is considered satisfactory. However, an exception occurs
during a four-day period, 21 February 2024 to 25 February 2024, where the errors are
significantly higher. A potential issue can be assumed by investigating the input data
in Figure 13, which shows that the inlet temperature is noticeably lower than during
other periods.

The ANN model was designed to correlate wastewater temperature and inlet condi-
tions with the combined production and consumption of the two heat pumps. By plotting
a time series of the output from each heat pump separately, along with the gas boiler
contribution, as shown in Figure 22, the source of these errors in predictions becomes
clearer. Normally, heat pump IK001 operates as the base load unit, while IK002 has a peak
load functionality. However, during the specific four-day period, IK001 was shut off, likely
due to a malfunction or scheduled maintenance. Consequently, IK0O02 automatically took
over as the base load unit. Since IK002 is set to produce a temperature 5 K lower than
that of IK0O01, the resulting outlet temperature was lower than normal. This affected the
inlet temperature of the heat pumps and caused the gas boiler to compensate. This led
to increased usage of expensive gas, even though IK002 had the capacity to meet a larger
share of the demand.
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Figure 22. Evaluation of heat pump operation during test interval 2024.

A significantly higher prediction error during faulty operation is expected since similar
data were excluded from the training dataset. This scenario demonstrates the model’s abil-
ity to detect operations that deviate from expected behavior, highlighting potential issues.
Had there been an actual malfunction, the system would have triggered an immediate
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alarm, and while a model trained on hourly data does not support real-time monitoring,
the model is robust enough to identify unusual operational patterns, which enhances
the data cleaning beyond manual methods. This is particularly useful when retraining
the model with a larger dataset, making it a practical tool for proactive maintenance and
efficient management.

When assessing whether any significant fouling has occurred between the training
data from 2020 to 2022 and the testing data from 2024, the low error rates on the healthy
operational data suggest that the system’s capability of extracting heat from the wastewater
has remained stable. Despite the test data being from the period of typically low wastew-
ater temperatures, the model’s performance in 2024 reflects similar patterns observed in
previous years. It should be noted that the error rates for the test set are higher than those
from the visual validation but still fall within an acceptable range, indicating no significant
fouling issues. Since the visual validation set was actively used to refine the model and
dataset, lower error rates in this set, compared to the test set, are expected.

The ANN is specifically trained on fixed operational conditions. Significant changes
in this study case system, such as variations in the setpoint regime of the heat pumps
or modifications to the circulation pump control, would affect the model’s reliability.
The robustness of the ANN validated between 2020 and 2024 depends on its training
under stable operational conditions. While ANNs and deep learning systems are capable
of processing and learning from large datasets, they require ongoing monitoring and
retraining to adapt to new operational conditions.

Furthermore, in a scenario where fouling does occur in the heat exchangers, the
ANN's predictions would likely deviate as heat extraction efficiency decreases. Rather than
training the model on fouling data, it would be preferable to initiate actions to improve
operation and prevent or address fouling effectively.

4.4. Assessing Wastewater as a Thermal Reservoir from the Perspective of the Municipal Energy
Plant Project

The evaluation of temperature conditions within the wastewater system and its signif-
icant contribution to heat pump production demonstrate that wastewater is a stable and
predictable low-temperature reservoir suitable for both heating and cooling. The ANN
modeling suggests minimal impact from fouling over the years, confirming the supplier’s
claims from the design and installation phases.

The major challenges in replicating a similar project involve accessing the wastewater,
both physically and through regulatory means. The regulatory issues include ownership
rights, permissions for installation, and requirements from the wastewater treatment
company. In this project, the wastewater tunnel is owned by the municipality, simplifying
ownership discussions compared to many other projects. If a private building were to
use a public wastewater tunnel, there is potential for a charge for accessing the low-
temperature energy, making the system less appealing. A significant challenge was the need
to reroute the wastewater flow during installation, which involved temporarily discharging
it untreated into the sea. This action required approval from county management, which
was granted without major objections but required a detailed plan outlining the duration
of the installation phases. The project calculations indicated a maximum temperature drop
in the wastewater of about 0.5 K, a change considered negligible from the perspective of
wastewater operators. However, the temperature of the wastewater entering the treatment
plant remains a critical factor, potentially a dealbreaker for larger implementations.

Accessing the installation site within the wastewater system was challenging, as the
nearest entry point was about 1 km from the actual installation site. A small electric
vehicle was employed to transport the 108 plates, each weighing 100 kg, through the tunnel.
Before transportation could begin, approximately 75,000 kg of accumulated dirt at the
entry point of the tunnel had to be cleared, delaying installation by a week, increasing
costs, and extending the period of untreated wastewater discharge. Working far away from
the nearest exit in a confined and isolated space significantly heightened safety concerns,
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leading to strict evacuation procedures, gas detection measures, and the provision of a
small rubber boat for emergency use.

The transportation and installation of the heat exchangers began on a Monday morning
and concluded by Thursday evening. The highly trained team worked 15-16 h per day to
speed up the process and minimize the untreated wastewater discharge period, likely also
motivated by a desire to reduce their time at the site.

The drilling process was challenging, requiring precise alignment of three tunnels to
hit the wall of the wastewater tunnel, 100 m away. This phase of the project received bids
from only one drilling company, resulting in significantly higher costs than anticipated and
impacting the overall budget.

A preliminary life-cost analysis compared the Levelized Cost of Energy (LCOE) for this
wastewater system with those of geothermal and seawater heat pump systems. While the
performance of the wastewater system was comparable to these alternatives, the significant
costs associated with drilling and dirt removal did raise the overall installation costs.
Nevertheless, the project is regarded as a success by the Municipality of Stavanger. It met
the objectives of the EU project within the estimated budget, and importantly, the most
uncertain aspect, utilizing wastewater as a heat source, has operated flawlessly.

A significant challenge for the long-term performance and reliability of the system is
accessing the heat exchangers. As humorously highlighted in Figure 23 with a “see you
later” sign left at the tunnel exit by the installers, the system is located 1000 m away, sealed
within the wastewater tunnel. There is no straightforward means for re-access. Although
the system is designed to be maintenance-free on paper, the difficulty of accessing it poses
real challenges in the event of a malfunction. Accessing the system would require shutting
down the wastewater tunnel again, disrupting water transportation and releasing the
untreated wastewater into the sea.

Figure 23. A sign mounted on the door entry to the wastewater tunnel by Uhrig, reading “Careful!
Heat Exchangers” in Danish.

Moreover, the custom design of the heat exchangers and the challenging conditions at
the installation site significantly complicate the replacement or repair of malfunctioning
elements. The energy plant is equipped with full backup options for heat production,
allowing for potential shutdowns during the winter season, if necessary. However, these
interventions are complex and require careful planning and consideration, with increased
operational costs as well as the cost of the new equipment. Notably, if there is no backup for
cooling and a malfunction occurs in the heat exchanger system, it could lead to significant
comfort issues during the summer.

5. Conclusions

This study has presented a detailed description and analysis of an advanced wastewa-
ter heat pump system for heating and cooling production. The system’s performance was
evaluated, and an ANN was employed to model the heat pump operations, confirming
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minimal deterioration due to fouling over the last four years. Key conclusions from this
study include the following:

e  The project is considered successful by those responsible for its specification, design,
and operation, despite substantial challenges. The wastewater system has proven
to be an effective thermal reservoir, maintaining higher temperatures than ambient
air during winter for heating operations and colder temperatures during summer for
cooling. The consistent temperature stability, never dropping below +5 °C, ensures
a reliable heat source during the coldest days. Additionally, the innovative design
of the wastewater heat exchanger plates, which are flexible and adaptable to various
configurations, makes them ideal for both new and existing wastewater systems.

e  There is room to improve the control strategy of the two heat pumps. Notably, heat
pump IK001, which operates more frequently than IK002, achieves a higher SCOP
despite being set to produce heat at a higher temperature. Re-evaluating the setpoint
scheme is recommended, possibly through manual adjustments or by using the ANN
model for optimization.

e The ANN has confirmed that the heat exchangers have not experienced degradation
due to fouling. Moreover, it has effectively identified operational errors, pinpointing
areas for improvement in heat pump management. This demonstrates the model’s
utility in guiding operational adjustments. Integrating physics-based modeling with
the ANN could further enhance the model’s operational range.

e  The main challenges associated with the technology involve accessing the wastewater,
addressing issues of ownership, tariffs, and wastewater temperature before it reaches
the treatment plant, in addition to the physical installation and establishment of the
wastewater heat pump system.

e  Future work on this project could aim to refine the control systems of the heat pumps
and develop an enhanced fault detection mechanism. Using information from the
current manual maintenance logs, more detailed information on the sources of heat
pump faults could be extracted and utilized within the machine learning framework.
The analysis clearly indicates that the system lacks an automatic response to correct
errors as they occur, leading to subsequent issues in other parts of the plant. Therefore,
developing a methodology that combines practical knowledge with ML could be a
valuable direction for future research.

e  Looking ahead more broadly, future studies could investigate the utilization of wastew-
ater as a thermal resource within urban planning, promoting the development of larger
integrated systems that utilize this sustainable energy source.
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Abbreviations

Al Artificial Intelligence

ANN Artificial Neural Network

(€(0) Coefficient of Performance

DHW Domestic Hot Water

EER Energy Efficiency Ratio

ELF Electrical Load Factor

IEA International Energy Agency

1K001 Identifier for the first heat pump in the system
IK002 Identifier for the second heat pump in the system
LCOE Levelized Cost of Energy

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MEG20 20% Monoethylene Glycol solution

OECD Organization for Economic Co-operation and Development
ReLU Rectified Linear Unit

RSME Root Mean Square Error

SCADA Supervisory Control and Data Acquisition
SCOP Seasonal Coefficient of Performance

SEI System Efficiency Index

SPF Seasonal Performance Factor

Symbols and Variables

Cp Specific Heat Capacity (in kJ/kgK)
m Mass flow rate (in kg/s)
Q Rate of heat transfer (in kW)
r Pearson’s correlation coefficient
T Temperature
Whp Electrical input to the heat pump (in kWh/h)
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