Advanced Optimal System for Electricity Price Forecasting Based on Hybrid Techniques
Abstract
:1. Introduction
2. Basic Concepts of Model Preparation
2.1. Trend Decomposition Technique
2.2. Multi-Objective Wild Horse Optimization Algorithm
- (1)
- Creating an initial population.
- (2)
- Grazing behavior.
- (3)
- Improved nonlinear update strategy.
- (4)
- Horse mating behavior.
- (5)
- Group leadership.
- (6)
- Adaptive T-distribution variation strategy.
- (7)
- Multi-objective version introduction.
3. The Main Structure
4. Case Study and Evaluations
4.1. Datasets and Preprocessing
4.2. Evaluation Metrics
4.3. Experimental Setup
4.3.1. Operational Settings
4.3.2. Case I: Comparison with Predictive Classical Models
4.3.3. Case ΙΙ: Comparison with Other Data Decomposition Methods
4.3.4. Case ΙΙΙ: Comparison with Other Combinatorial Weighting Methods
5. Discussion
5.1. DM Test
5.2. Performance Improvement Analysis
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, H.; Dong, Y.; Wang, J. Electricity Price Forecasting Using Quantile Regression Averaging with Nonconvex Regularization. J. Forecast. 2024, 43, 1859–1879. [Google Scholar] [CrossRef]
- Indira, G.; Bhavani, M.; Brinda, R.; Zahira, R. Electricity Load Demand Prediction for Microgrid Energy Management System Using Hybrid Adaptive Barnacle-Mating Optimizer with Artificial Neural Network Algorithm. Energy Technol. 2024, 12, 2301091. [Google Scholar] [CrossRef]
- Iftikhar, H.; Turpo-Chaparro, J.E.; Canas Rodrigues, P.; López-Gonzales, J.L. Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique. Energies 2023, 16, 6669. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Shen, Y.X.; Yu, X.Y.; Lu, X. Day-Ahead Electricity Price Forecasting Employing a Novel Hybrid Frame of Deep Learning Methods: A Case Study in NSW, Australia. Electr. Power Syst. Res. 2023, 220, 109300. [Google Scholar] [CrossRef]
- Sai, W.; Pan, Z.; Liu, S.; Jiao, Z.; Zhong, Z.; Miao, B.; Chan, S.H. Event-Driven Forecasting of Wholesale Electricity Price and Frequency Regulation Price Using Machine Learning Algorithms. Appl. Energy 2023, 352, 121989. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Z.; Wu, J.; Du, X.; Chen, K. Short Term Electricity Price Forecasting Using a New Hybrid Model Based on Two-Layer Decomposition Technique and Ensemble Learning. Electr. Power Syst. Res. 2022, 205, 107762. [Google Scholar] [CrossRef]
- Liu, D.; Wei, Y.; Yang, S.; Guan, Z. Electricity Price Forecast Using Combined Models with Adaptive Weights Selected and Errors Calibrated by Hidden Markov Model. Math. Probl. Eng. 2013, 2013, 648101. [Google Scholar] [CrossRef]
- Girish, G.P. Spot Electricity Price Forecasting in Indian Electricity Market Using Autoregressive-GARCH Models. Energy Strategy Rev. 2016, 11–12, 52–57. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, C.; Nokleby, M.; Miller, C.J. Improving Short-Term Electricity Price Forecasting Using Day-Ahead LMP with ARIMA Models. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Imani, M.H.; Bompard, E.; Colella, P.; Huang, T. Forecasting Electricity Price in Different Time Horizons: An Application to the Italian Electricity Market. IEEE Trans. Ind. Appl. 2021, 57, 5726–5736. [Google Scholar] [CrossRef]
- Singh, A.; Sahay, K.B. Short-Term Demand Forecasting by Using ANN Algorithms. In Proceedings of the 2018 International Electrical Engineering Congress, Krabi, Thailand, 7–9 March 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Wu, S.; He, L.; Zhang, Z.; Du, Y. Forecast of Short-Term Electricity Price Based on Data Analysis. Math. Probl. Eng. 2021, 2021, 6637183. [Google Scholar] [CrossRef]
- Wang, P.; Xu, K.; Ding, Z.; Du, Y.; Liu, W.; Sun, B.; Zhu, Z.; Tang, H. An Online Electricity Market Price Forecasting Method Via Random Forest. IEEE Trans. Ind. Appl. 2022, 58, 7013–7021. [Google Scholar] [CrossRef]
- Huang, S.; Shi, J.; Wang, B.; Lyu, J.; Nie, N.; Dong, X.; Li, H.; Zhang, S.; Ren, X. A Meta-Learning Based Method for Day Ahead Electricity Price Forecasting in Markets with Renewable Energy Resources. In Proceedings of the 2023 IEEE 12th Global Conference on Consumer Electronics, Nara, Japan, 10–13 October 2023; pp. 288–290. [Google Scholar] [CrossRef]
- Rezaei, N.; Rajabi, R.; Estebsari, A. Electricity Price Forecasting Model Based on Gated Recurrent Units. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, Prague, Czech Republic, 28 June–1 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, B.; Wei, W.; Su, W. Short-Term Electricity Price Forecasting Based on Data Mining. In Proceedings of the 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence, Guangzhou, China, 21–23 October 2022; pp. 394–397. [Google Scholar] [CrossRef]
- Yorat, E.; Ozbek, N.S.; Zor, K.; Saribulut, L. Day-Ahead Electricity Price Forecasting Using Artificial Intelligence-Based Algorithms. In Proceedings of the 2023 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, Sakheer, Bahrain, 20–21 November 2023; pp. 121–126. [Google Scholar] [CrossRef]
- Xu, H.; Hu, F.; Liang, X.; Gunmi, M.A. Attention Mechanism Multi-Size Depthwise Convolutional Long Short-Term Memory Neural Network for Forecasting Real-Time Electricity Prices. IEEE Trans. Power Syst. 2024, 39, 6277–6289. [Google Scholar] [CrossRef]
- Yang, W.; Sun, S.; Hao, Y.; Wang, S. A Novel Machine Learning-Based Electricity Price Forecasting Model Based on Optimal Model Selection Strategy. Energy 2022, 238, 121989. [Google Scholar] [CrossRef]
- Bozlak, Ç.B.; Yaşar, C.F. An Optimized Deep Learning Approach for Forecasting Day-Ahead Electricity Prices. Electr. Power Syst. Res. 2024, 229, 110129. [Google Scholar] [CrossRef]
- Najafi, A.; Homaee, O.; Jasinski, M.; Golshan, M.; Leonowicz, Z. Application of Extreme Learning Machine-Autoencoder to Medium Term Electricity Price Forecasting. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, Prague, Czech Republic, 28 June–1 July 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Qu, Z.; He, L.; Ge, X.; Wang, F.; Xu, F.; Lu, J. A Two-Stage Forecasting Approach for Day-Ahead Electricity Price Based on Improved Wavelet Neural Network with ELM Initialization. IEEE Trans. Ind. Appl. 2024, 60, 5061–5073. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.; Song, Y.; Zhao, J. A Novel Model: Dynamic Choice Artificial Neural Network (DCANN) for an Electricity Price Forecasting System. Appl. Soft Comput. J. 2016, 48, 281–297. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, W.; Member, S.; Cao, D.; Member, S.; Huang, Q.; Chen, Z.; Blaabjerg, F. A Temporal Convolutional Network Based Hybrid Model of Short-Term Electricity Price Forecasting. CSEE J. Power Energy Syst. 2021, 10, 1119–1130. [Google Scholar] [CrossRef]
- Jiang, P.; Nie, Y.; Wang, J.; Huang, X. Multivariable Short-Term Electricity Price Forecasting Using Artificial Intelligence and Multi-Input Multi-Output Scheme. Energy Econ. 2023, 117, 106471. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Du, P.; Niu, T. Outlier-Robust Hybrid Electricity Price Forecasting Model for Electricity Market Management. J. Clean. Prod. 2020, 249, 119318. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Z.; Wei, Y. An Adaptive Hybrid Model for Short Term Electricity Price Forecasting. Appl. Energy 2020, 258, 114087. [Google Scholar] [CrossRef]
- Huang, C.J.; Shen, Y.; Chen, Y.H.; Chen, H.C. A Novel Hybrid Deep Neural Network Model for Short-Term Electricity Price Forecasting. Int. J. Energy Res. 2021, 45, 2511–2532. [Google Scholar] [CrossRef]
- Yang, Z.; Ce, L.; Lian, L. Electricity Price Forecasting by a Hybrid Model, Combining Wavelet Transform, ARMA and Kernel-Based Extreme Learning Machine Methods. Appl. Energy 2017, 190, 291–305. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Gao, Y. A Hybrid Short-Term Electricity Price Forecasting Framework: Cuckoo Search-Based Feature Selection with Singular Spectrum Analysis and SVM. Energy Econ. 2019, 81, 899–913. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Wang, H.; Du, P. A Novel Probabilistic Forecasting System Based on Quantile Combination in Electricity Price. Comput. Ind. Eng. 2024, 187, 109834. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Niu, T.; Du, P. A Novel System for Multi-Step Electricity Price Forecasting for Electricity Market Management. Appl. Soft Comput. J. 2020, 88, 106029. [Google Scholar] [CrossRef]
- Kavakci, G.; Cicekdag, B.; Ertekin, S. Time Series Prediction of Solar Power Generation Using Trend Decomposition. Energy Technol. 2024, 12, 2300914. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, Y.; Gong, L. Short-Term Electricity Price Forecast Using Frequency Analysis and Price Spikes Oversampling. IEEE Trans. Power Syst. 2023, 38, 4739–4751. [Google Scholar] [CrossRef]
- Rockafellar, R.T. A Dual Approach to Solving Nonlinear Programming Problems by Unconstrained Optimization. Math. Program. 1973, 5, 354–373. [Google Scholar] [CrossRef]
- Shi, C.; Wei, B.; Wei, S.; Wang, W.; Liu, H.; Liu, J. A Quantitative Discriminant Method of Elbow Point for the Optimal Number of Clusters in Clustering Algorithm. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 31. [Google Scholar] [CrossRef]
- Naruei, I.; Keynia, F. Wild Horse Optimizer: A New Meta-Heuristic Algorithm for Solving Engineering Optimization Problems; Springer: London, UK, 2022; Volume 38, ISBN 0123456789. [Google Scholar]
- Wang, X.; An, Y.; Wang, J.; Shao, Y. A Novel Prediction-Integration Forecasting System for Short Wind Speed Based on Combined Data Preprocessing Technique and Weight Determination Strategy. Energy Technol. 2024, 12, 2300889. [Google Scholar] [CrossRef]
- Zhang, W.; Kou, M.; Lv, M.; Shao, Y. Improved Combined System and Application to Precipitation Forecasting Model. Alex. Eng. J. 2022, 61, 12739–12757. [Google Scholar] [CrossRef]
- Wang, J.; Guo, H.; Song, A. Photovoltaic Power Combination Prediction System Based on Improved Multi-Objective Optimization Algorithm and Nonlinear Weighting Strategy. Expert Syst. 2023, 40, e13209. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [Google Scholar] [CrossRef]
Categorization | Related Studies | Main Technology | Discovery |
---|---|---|---|
Statistical analysis-based categorization | Liu, Wei, Yang, & Guan, 2013 [7] | HMM | Using the firing matrix of the HMM to correct the residuals of the combined prediction. |
Girish, 2016 [8] | Autoregressive-GARCH | A study on modeling and forecasting prices in a market with demand exceeding supply. | |
Zhao, Wang, Nokleby, & Miller, 2017 [9] | ARIMA | Incorporating an exogenous time series into the model enhances precision. | |
Machine learning models | Singh & Sahay, 2018 [11] | ANN | Accuracy can be maintained even in the presence of high volatility in the raw data. |
Wu, He, Zhang, & Du, 2021 [12] | DE-SVM | The differential evolutionary (DE) enhanced the precision of the SVM model while concurrently diminishing the computational time required. | |
P. Wang et al., 2022 [13] | RF | An adaptive online prediction methodology that employed RF algorithms was designed to dynamically adjust the sizes of its training datasets. | |
Deep learning models | Rezaei, Rajabi, & Estebsari, 2022 [15] | GRU | This approach resulted in stable and robust forecasting performance. |
B. Wang, Wei, & Su, 2022 [16] | LSTM | LSTM networks led to the selection of more accurate forecast samples. | |
Yorat, Ozbek, Zor, & Saribulut, 2023 [17]. | XGBoost | The test results indicated that the XGBoost model outperformed the others in terms of error metrics. | |
Hybrid models | Qu et al., 2024 [22] | ELM-WNN (IWNN) | A two-stage forecasting algorithm that integrates pattern recognition and classification-based forecasting was proposed. |
P. Jiang, Nie, Wang, & Huang, 2023 [25] | ICEEMDAN-MSSA | Anchoring electricity price forecasts to a loading series marked by minimal variability. | |
Y. Xu, Li, Wang, & Du, 2024 [31] | IMOTSO | This approach yields probability density estimation curves that closely align with the actual values, demonstrating minimal deviation. |
Dataset | Samples | Numbers | Statistical Indicator (USD/MWh) | ||||
---|---|---|---|---|---|---|---|
Max | Min | Median | MEAN | Std. | |||
AUS-EP | All samples | 1488 | 127.83 | 4.15 | 59.98 | 61.54 | 25.03 |
Training set | 912 | 127.83 | 4.15 | 58.00 | 60.10 | 26.53 | |
Validation set | 288 | 125.72 | 10.00 | 61.02 | 65.93 | 21.83 | |
Testing set | 288 | 127.81 | 9.54 | 60.77 | 61.69 | 22.55 | |
SGP-EP | All samples | 1488 | 183.62 | 47.48 | 112.17 | 109.23 | 25.75 |
Training set | 912 | 183.54 | 29.08 | 107.68 | 101.38 | 33.22 | |
Validation set | 288 | 177.17 | 49.43 | 116.27 | 107.55 | 26.19 | |
Testing set | 288 | 183.62 | 29.08 | 113.12 | 107.38 | 27.58 |
Equation | Strengths |
The average difference between predicted and actual values is directly provided, relatively unaffected by extreme values. | |
Expression of the error as a percentage allows for fair comparisons between datasets of different scales. | |
As the error is squared and then averaged, a larger penalty is given to large prediction errors. |
Model | Parameter | Symbol | Value | Reason |
---|---|---|---|---|
ELM | Input-layer nodes | 5 | Trial and error | |
Hidden-layer nodes | 15 | Trial and error | ||
Output-layer nodes | 1 | Target outcome | ||
Transfer function | sigmoid | Common preset | ||
LSTM | Input-layer nodes | 5 | Trial and error | |
Hidden-layer nodes | 150 | Trial and error | ||
Output-layer nodes | 1 | Target outcome | ||
Gradient threshold | 2 | Common preset | ||
Maximum iteration | 500 | Trial and error | ||
RF | Max_depth | 50 | Trial and error | |
Min_samples_leaf | 5 | Trial and error | ||
tVMD | Moderate bandwidth constraint | 2000 | Trial and error | |
Modes K | 5 | Trial and error | ||
categories | 3 | outcome | ||
MOWHO | Population number | 100 | Trial and error | |
Maximum iteration | 100 | Trial and error | ||
MODA | Population number | 100 | Parameter consistency | |
Maximum iteration | 100 | Parameter consistency |
Electricity Markets | Model | 1-Step | 2-Step | 3-Step | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | ||
AUS-EP | ARIMA | 11.3460 | 21.8877 | 16.0503 | 15.1869 | 30.1169 | 20.3130 | 17.0614 | 34.3129 | 22.6320 |
BP | 11.6282 | 26.0983 | 15.8673 | 14.8692 | 32.6167 | 19.6171 | 15.6677 | 37.4229 | 20.5253 | |
ELM | 10.8203 | 22.6797 | 15.4311 | 13.8873 | 30.9370 | 18.9472 | 14.8129 | 34.4319 | 19.7708 | |
LSTM | 10.7900 | 22.5088 | 15.4000 | 13.9089 | 30.9113 | 18.9242 | 14.6578 | 34.2829 | 19.5256 | |
RF | 11.1553 | 24.9916 | 15.4319 | 14.4085 | 32.7613 | 18.7385 | 15.2152 | 36.8230 | 19.5678 | |
tVMD-ELM | 7.3713 | 15.3919 | 9.9353 | 9.9147 | 20.8753 | 12.9356 | 10.4908 | 22.4343 | 13.5512 | |
tVMD-LSTM | 7.5255 | 15.6030 | 10.2262 | 9.8997 | 20.7652 | 13.0770 | 10.2958 | 22.0460 | 13.2776 | |
tVMD-RF | 8.8530 | 18.8079 | 11.8251 | 10.1543 | 21.7829 | 13.3063 | 10.7188 | 23.1796 | 13.5515 | |
Proposed HSEPF | 7.3362 | 14.9100 | 9.7486 | 9.8568 | 20.9750 | 12.9024 | 10.2954 | 21.9254 | 13.2731 | |
SGP-EP | ARIMA | 6.5799 | 6.6092 | 10.3703 | 10.5916 | 10.6513 | 15.5312 | 13.9822 | 14.2917 | 19.7375 |
BP | 6.2245 | 6.3944 | 9.5537 | 9.3644 | 9.5499 | 13.0753 | 11.4359 | 11.9542 | 15.4864 | |
ELM | 5.9693 | 6.0769 | 9.3607 | 8.9450 | 9.0558 | 12.7482 | 11.1910 | 11.5506 | 15.3115 | |
LSTM | 6.0180 | 6.0780 | 9.4193 | 9.1182 | 9.2607 | 12.9609 | 11.1937 | 11.6502 | 15.4007 | |
RF | 6.3716 | 6.2949 | 9.4881 | 9.3393 | 9.4269 | 12.6135 | 10.9317 | 11.4619 | 14.7077 | |
tVMD-ELM | 4.3112 | 4.2667 | 5.9489 | 5.2712 | 5.1873 | 6.9389 | 6.8767 | 6.8401 | 9.0130 | |
tVMD-LSTM | 4.5092 | 4.4401 | 6.2313 | 5.1233 | 5.0226 | 6.8330 | 6.7955 | 6.7179 | 8.8900 | |
tVMD-RF | 5.4662 | 5.5410 | 7.3617 | 6.3240 | 6.4909 | 8.2456 | 7.8141 | 8.1212 | 9.9183 | |
Proposed HSEPF | 4.2784 | 4.1918 | 5.9268 | 5.0703 | 4.8966 | 6.7367 | 6.7639 | 6.5111 | 9.1110 |
Electricity Markets | Model | 1-Step | 2-Step | 3-Step | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | ||
AUS-EP | ELsR | 10.7941 | 22.4224 | 15.3988 | 13.8730 | 31.1126 | 18.7547 | 14.6527 | 34.2981 | 19.3794 |
EMD-ELsR | 8.1432 | 17.3928 | 10.2257 | 10.8504 | 23.2847 | 14.1286 | 13.9258 | 30.5456 | 18.3599 | |
EEMD-ELsR | 9.6894 | 20.2068 | 13.2696 | 11.2209 | 23.7322 | 15.3640 | 11.6149 | 24.7575 | 15.7821 | |
Proposed HSEPF | 7.3362 | 14.9100 | 9.7486 | 9.8568 | 20.9750 | 12.9024 | 10.2954 | 21.9254 | 13.2731 | |
SGP-EP | ELsR | 5.8931 | 5.8611 | 9.0542 | 8.7458 | 8.7855 | 12.3424 | 10.9286 | 11.0888 | 14.7562 |
EMD-ELsR | 4.9054 | 4.9167 | 7.3040 | 5.5805 | 5.6481 | 7.5667 | 8.4750 | 8.7852 | 11.2588 | |
EEMD-ELsR | 4.3753 | 4.5751 | 6.4219 | 5.8097 | 5.8772 | 8.6673 | 8.1902 | 8.1718 | 11.7028 | |
Proposed HSEPF | 4.2784 | 4.1918 | 5.9268 | 5.0703 | 4.8966 | 6.7367 | 6.7639 | 6.5111 | 9.1110 |
Electricity Markets | Model | 1-Step | 2-Step | 3-Step | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | MAE (USD/MWh) | MAPE (%) | RMSE (USD/MWh) | ||
AUS-EP | tVMD-ELsR-SA | 7.7246 | 16.2421 | 10.4957 | 9.8595 | 20.8713 | 12.9840 | 10.4218 | 22.4290 | 13.3598 |
tVMD-ELsR-RMS | 7.7316 | 16.2596 | 10.5043 | 9.8595 | 20.8732 | 12.9843 | 10.4232 | 22.4332 | 13.3602 | |
tVMD-ELsR-MODA | 8.2481 | 17.7936 | 10.7628 | 10.3643 | 23.2164 | 13.4367 | 10.4906 | 22.8998 | 13.3782 | |
Proposed HSEPF | 7.3362 | 14.9100 | 9.7486 | 9.8568 | 20.9750 | 12.9024 | 10.2954 | 21.9254 | 13.2731 | |
SGP-EP | tVMD-ELsR-SA | 4.6101 | 4.5774 | 6.3866 | 5.4094 | 5.3809 | 7.1779 | 6.9354 | 7.0019 | 9.0398 |
tVMD-ELsR-RMS | 4.4409 | 4.3885 | 6.1485 | 5.2488 | 5.1829 | 7.0080 | 6.8546 | 6.8528 | 8.9524 | |
tVMD-ELsR-MODA | 4.5325 | 4.4305 | 6.3215 | 5.1215 | 4.9873 | 6.8570 | 6.8631 | 6.6923 | 8.9942 | |
Proposed HSEPF | 4.2784 | 4.1918 | 5.9268 | 5.0703 | 4.8966 | 6.7367 | 6.7639 | 6.5111 | 9.1110 |
Electricity Market | AUS-EP | SGP-EP | ||||
---|---|---|---|---|---|---|
Model | 1-Step | 2-Step | 3-Step | 1-Step | 2-Step | 3-Step |
ARIMA | 6.8043 *** | 7.4900 *** | 8.0509 *** | 4.8452 *** | 8.4343 *** | 8.8529 *** |
BP | 7.1934 *** | 9.0850 *** | 8.8016 *** | 3.9281 *** | 7.5013 *** | 8.2048 *** |
ELM | 7.1672 *** | 8.3486 *** | 8.6239 *** | 3.8637 *** | 7.2651 *** | 8.1112 *** |
LSTM | 7.1313 *** | 8.3954 *** | 8.2850 *** | 3.9831 *** | 7.3610 *** | 8.2098 *** |
RF | 7.1672 *** | 8.7916 *** | 8.3099 *** | 4.2884 *** | 6.2514 *** | 6.4664 *** |
tVMD-ELM | 1.8208 * | 0.5748 | 2.3776 ** | 0.4241 | 2.1572 ** | 0.7557 |
tVMD-LSTM | 3.5418 *** | 1.8477 * | 0.1518 | 3.8626 *** | 1.3480 * | 1.8091 * |
tVMD-RF | 5.6180 *** | 2.3662 ** | 1.8415 * | 6.1373 *** | 5.3650 *** | 3.1619 *** |
ELsR | 7.1362 *** | 8.5006 *** | 8.1303 *** | 3.5945 *** | 6.4505 *** | 6.8781 *** |
EMD-ELsR | 0.9941 | 2.0821 ** | 7.2362 *** | 3.0622 *** | 2.5157 ** | 6.1797 *** |
EEMD-ELsR | 5.8997 *** | 3.9738 *** | 3.5646 *** | 1.1119 | 2.4545 ** | 3.2436 *** |
tVMD-ELsR-SA | 3.7340 *** | 1.5210 * | 1.5346 * | 4.1060 *** | 3.0546 *** | 0.5165 |
tVMD-ELsR-RMS | 3.7501 *** | 1.5189 * | 1.5313 * | 3.0160 *** | 2.4181 ** | 1.2954 * |
tVMD-ELsR-MODA | 3.3949 *** | 2.3408 ** | 1.1199 | 4.5819 *** | 1.6640 * | 0.9010 |
Electricity Markets | Model | 1-Step | 2-Step | 3-Step | Avg. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | ||
AUS-EP | ARIMA | 35.34 | 31.88 | 39.26 | 35.10 | 30.35 | 36.48 | 39.66 | 36.10 | 41.35 | 36.70 | 32.78 | 39.03 |
BP | 36.91 | 42.87 | 38.56 | 33.71 | 35.69 | 34.23 | 34.29 | 41.41 | 35.33 | 34.97 | 39.99 | 36.04 | |
ELM | 32.20 | 34.26 | 36.82 | 29.02 | 32.20 | 31.90 | 30.50 | 36.32 | 32.87 | 30.57 | 34.26 | 33.86 | |
LSTM | 32.01 | 33.76 | 36.70 | 29.13 | 32.14 | 31.82 | 29.76 | 36.05 | 32.02 | 30.30 | 33.98 | 33.51 | |
RF | 34.24 | 40.34 | 36.83 | 31.59 | 35.98 | 31.14 | 32.33 | 40.46 | 32.17 | 32.72 | 38.92 | 33.38 | |
tVMD-ELM | 0.48 | 3.13 | 1.88 | 0.58 | 0.48 | 0.26 | 1.86 | 2.27 | 2.05 | 0.97 | 1.96 | 1.40 | |
tVMD-LSTM | 2.52 | 4.44 | 4.67 | 0.43 | 1.01 | 1.34 | 0.00 | 0.55 | 0.03 | 0.98 | 2.00 | 2.01 | |
tVMD-RF | 17.13 | 20.72 | 17.56 | 2.93 | 3.71 | 3.04 | 3.95 | 5.41 | 2.05 | 8.00 | 9.95 | 7.55 | |
ELsR | 32.04 | 33.50 | 36.69 | 28.95 | 32.58 | 31.20 | 29.74 | 36.07 | 31.51 | 30.24 | 34.05 | 33.14 | |
EMD-ELsR | 9.91 | 14.27 | 4.67 | 9.16 | 9.92 | 8.68 | 26.07 | 28.22 | 27.71 | 15.05 | 17.47 | 13.68 | |
EEMD- ELsR | 24.29 | 26.21 | 26.53 | 12.16 | 11.62 | 16.02 | 11.36 | 11.44 | 15.90 | 15.93 | 16.42 | 19.48 | |
tVMD-ELsR-SA | 5.03 | 8.20 | 7.12 | 0.03 | 0.50 | 0.63 | 1.21 | 2.25 | 0.65 | 2.09 | 3.65 | 2.80 | |
tVMD-ELsR-RMS | 5.11 | 8.30 | 7.19 | 0.03 | 0.49 | 0.63 | 1.23 | 2.26 | 0.65 | 2.12 | 3.68 | 2.83 | |
tVMD-ELsR-MODA | 11.06 | 16.21 | 9.42 | 4.90 | 9.65 | 3.98 | 1.86 | 4.26 | 0.79 | 5.94 | 10.04 | 4.73 | |
SGP-EP | ARIMA | 34.98 | 36.58 | 42.85 | 52.13 | 54.03 | 56.62 | 51.62 | 54.44 | 53.84 | 46.24 | 48.35 | 51.10 |
BP | 31.27 | 34.45 | 37.96 | 45.86 | 48.73 | 48.48 | 40.85 | 45.53 | 41.17 | 39.32 | 42.90 | 42.54 | |
ELM | 28.33 | 31.02 | 36.68 | 43.32 | 45.93 | 47.16 | 39.56 | 43.63 | 40.50 | 37.07 | 40.19 | 41.45 | |
LSTM | 28.91 | 31.03 | 37.08 | 44.39 | 47.12 | 48.02 | 39.57 | 44.11 | 40.84 | 37.62 | 40.76 | 41.98 | |
RF | 32.85 | 33.41 | 37.53 | 45.71 | 48.06 | 46.59 | 38.13 | 43.19 | 38.05 | 38.90 | 41.55 | 40.73 | |
tVMD-ELM | 0.76 | 1.76 | 0.37 | 3.81 | 5.60 | 2.91 | 1.64 | 4.81 | 1.09 | 2.07 | 4.06 | 1.46 | |
tVMD-LSTM | 5.12 | 5.59 | 4.89 | 1.03 | 2.51 | 1.41 | 0.47 | 3.08 | 2.49 | 2.21 | 3.73 | 2.93 | |
tVMD-RF | 21.73 | 24.35 | 19.49 | 19.82 | 24.56 | 18.30 | 13.44 | 19.83 | 8.14 | 18.33 | 22.91 | 15.31 | |
ELsR | 27.40 | 28.48 | 34.54 | 42.03 | 44.26 | 45.42 | 38.11 | 41.28 | 38.26 | 35.84 | 38.01 | 39.41 | |
EMD-ELsR | 12.78 | 14.74 | 18.86 | 9.14 | 13.31 | 10.97 | 20.19 | 25.89 | 19.08 | 14.04 | 17.98 | 16.30 | |
EEMD- ELsR | 2.21 | 8.38 | 7.71 | 12.73 | 16.68 | 22.27 | 17.41 | 20.32 | 22.15 | 10.79 | 15.13 | 17.38 | |
tVMD-ELsR-SA | 7.20 | 8.42 | 7.20 | 6.27 | 9.00 | 6.15 | 2.47 | 7.01 | 0.79 | 5.31 | 8.14 | 4.71 | |
tVMD-ELsR-RMS | 3.66 | 4.48 | 3.61 | 3.40 | 5.52 | 3.87 | 1.32 | 4.99 | 1.77 | 2.79 | 5.00 | 3.08 | |
tVMD-ELsR-MODA | 5.61 | 5.39 | 6.24 | 1.00 | 1.82 | 1.75 | 1.45 | 2.71 | 1.30 | 2.68 | 3.30 | 3.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, H.; Shao, Y. Advanced Optimal System for Electricity Price Forecasting Based on Hybrid Techniques. Energies 2024, 17, 4833. https://doi.org/10.3390/en17194833
Luo H, Shao Y. Advanced Optimal System for Electricity Price Forecasting Based on Hybrid Techniques. Energies. 2024; 17(19):4833. https://doi.org/10.3390/en17194833
Chicago/Turabian StyleLuo, Hua, and Yuanyuan Shao. 2024. "Advanced Optimal System for Electricity Price Forecasting Based on Hybrid Techniques" Energies 17, no. 19: 4833. https://doi.org/10.3390/en17194833
APA StyleLuo, H., & Shao, Y. (2024). Advanced Optimal System for Electricity Price Forecasting Based on Hybrid Techniques. Energies, 17(19), 4833. https://doi.org/10.3390/en17194833