
Citation: Luo, H.; Shao, Y. Advanced

Optimal System for Electricity Price

Forecasting Based on Hybrid

Techniques. Energies 2024, 17, 4833.

https://doi.org/10.3390/en17194833

Academic Editor: Seung‑Hoon Yoo

Received: 9 August 2024

Revised: 8 September 2024

Accepted: 24 September 2024

Published: 26 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Advanced Optimal System for Electricity Price Forecasting
Based on Hybrid Techniques
Hua Luo 1 and Yuanyuan Shao 2,*

1 School of Economics and Finance, Shanghai International Studies University, Shanghai 201620, China;
loha_u@shisu.edu.cn

2 School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
* Correspondence: syy1079746994@163.com

Abstract: In the context of the electricity sector’s liberalization and deregulation, the accurate fore‑
casting of electricity prices has emerged as a crucial strategy for market participants and operators
to minimize costs and maximize profits. However, their effectiveness is hampered by the variable
temporal characteristics of real‑time electricity prices and a wide array of influencing factors. These
challenges hinder a single model’s ability to discern the regularity, thereby compromising forecast
precision. This study introduces a novel hybrid system to enhance forecast accuracy. Firstly, by
employing an advanced decomposition technique, this methodology identifies different variation
features within the electricity price series, thus bolstering feature extraction efficiency. Secondly, the
incorporation of a novel multi‑objective intelligent optimization algorithm, which utilizes two ob‑
jective functions to constrain estimation errors, facilitates the optimal integration of multiple deep
learningmodels. The case studyuses electricitymarket data fromAustralia and Singapore to validate
the effectiveness of the algorithm. The forecast results indicate that the hybrid short‑term electric‑
ity price forecasting system proposed in this paper exhibits higher prediction accuracy compared to
traditional single‑model predictions, with MAE values of 7.3363 and 4.2784, respectively.

Keywords: electricity price forecasting; hybrid model; improved decomposition technique; novel
multi‑objective optimization algorithm; artificial intelligence

1. Introduction
In recent years, renewable energy generation, includingwind and solar photovoltaics,

has seen rapid expansion and active integration into the electricity market. Due to the
uncontrollability of their power generation, it breaks the real‑time supply and demand
balance of electric energy, which causes the fluctuation of electricity prices in the power
market to become more severe [1,2]. Electricity prices are considered an important refer‑
ence for decision making in the market. Accurate short‑term electricity price forecasting
can help market participants and power suppliers flexibly adjust pricing strategies accord‑
ing to changes in electricity prices, thereby increasing profits [3]. Moreover, electricity
purchasers can use the difference between peak and off‑peak electricity prices to carry out
dynamic cost management to save expenses. At the same time, it also provides an impor‑
tant scientific basis for the real‑time supervision of regulatory authorities, ensuring the
normal operation of electricity [4].

Our study focuses on enhancing the precision and robustness of hybrid models for
forecasting electricity prices, employing cutting‑edge optimization techniques. The moti‑
vation for our research lies in the potential impact of reliable short‑term electricity price
forecasts on the energy market, fostering intelligent data‑driven strategies beneficial to
energy managers, suppliers, and consumers, especially in an era of rapid technological ad‑
vancements and severe resource wastage. The essence of our research lies in developing
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time‑series forecasting models suitable for further academic investigation, thereby under‑
scoring the goal of the rigorous evaluation and enhancement of current predictive method‑
ologies.

Electricity prices exhibit non‑stationary and variable characteristics within the energy
market, coupled with notable anomalies. Such factors introduce increased uncertainty
and complexity to the electricity market, complicating the task of short‑term price fore‑
casting [5,6]. Generally, the prevailing approaches to forecasting encompass statistical
methods, along with models based on machine learning or deep learning, and those that
integrate hybrid methodologies.

Models based on statistical analysis usually analyze historical data mathematically
and statistically to build probabilistic models to predict future trends. Examples include
the hidden Markov model (HMM) [7], autoregressive integrated generalized autoregres‑
sive conditional heteroskedasticity (Autoregressive‑GARCH) model [8], and autoregres‑
sive integrated moving average (ARIMA) model [9]. These models are simple to imple‑
ment, require fewer parameters for adjustment, and demand fewer computing resources.
They can predict the trend in electricity price changes to a certain extent. However, their
effectiveness is diminished by their reliance on assumptions, such as data smoothness and
autocorrelation, which render them less capable of accommodating a nonlinear series.

To address the limitations inherent in statistical analysis models, scholars have in‑
creasingly shifted their focus toward machine learning and deep learning
methodologies [10]. These techniques have proven to be highly effective in identifying and
processing complex, nonlinear characteristics, thus offering superior performances in ap‑
plications. Machine learning models mainly include artificial neural networks (ANN) [11],
support vector machine (SVM) [12], and random forest (RF) [13]. Machine learning can
adjust weights to approximate multivariate functions and capture complex, dynamic, non‑
linear features of electricity prices. However, these methods require a significant amount
of historical data and effective features. Additionally, the algorithm’s robustness needs im‑
provement. More researchers opt for deep learning models when it comes to forecasting
tasks [14]. Typical studies include the following: Rezaei, Rajabi, & Estebsar (2022) uti‑
lized a Stacked Auto Encoder (SAE) to extract features from denoised electricity price data
efficiently. To further refine the accuracy of electricity price forecasts and minimize the
potential for overfitting, this model incorporated a Gated Recurrent Unit (GRU) [15]. And
B. Wang, Wei, & Su (2022) employed Long Short‑Term Memory (LSTM) networks, which
led to the selection of more accurate forecast samples, resulting in a reduction in both rela‑
tive and absolute forecasting errors [16]. Furthermore, three different artificial intelligence
algorithms were applied to forecast day‑ahead electricity prices in the Turkish electricity
market [17]. The experimental findings demonstrated that, in the context of error met‑
rics, the model based on Extreme Gradient Boosting Decision Trees (XGBoost) exhibited
superior performance compared to its counterparts. Deep learning approaches typically
outperform traditionalmachine learning algorithms and encounter notable difficulties [18].
However, the process of directly incorporating exogenous variables through partial mod‑
els risks overwhelming the system and obscuring recognizable patterns. Furthermore, the
conventional method of initializing weights randomly in deep learning frameworks might
underemphasize vital features andmoments, thereby reducing the effectiveness of feature
extraction. This necessitates a refined strategy to ensure balanced weight distribution and
optimal pattern discernment, enhancing the overall efficacy of models.

Researchers have employed a variety of hybrid strategies to address the limitations
inherent in singular models by leveraging the unique advantages of different methodolo‑
gies to “learn from the strong to offset one’s weaknesses effect” [19,20]. These efforts can
be categorized into three distinct groups.

The first group focuses on optimizing from a singular model perspective by combin‑
ing singular models with optimizationmodels or by integrating singular models with vari‑
able selection models [21]. For instance, Qu et al. (2024) introduced an improved Wavelet
Neural Network (WNN) model, building upon the foundation laid by ELM to construct
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classification prediction models for various electricity pricing schemes, effectively over‑
coming the traditional WNN issues of slow or even non‑converging rates [22]. Similarly,
J. Wang, Liu, Song, & Zhao (2016) updated the dynamic choice artificial neural network
(DCANN) using the Cuckoo Search algorithm (CS) to address the initial parameter short‑
comings of DCANN [23]. This approach also involved the identification of poor training
sample sets through the Index of Bad Samples Matrix (IBSM) and the selection of appro‑
priate inputs for each desired output. While such models have achieved commendable
predictive performance, they struggle to capture the complex characteristics of electricity
price series.

To address this issue, a second group of models was introduced, incorporating signal
decomposition strategies to forecast different trend variables independently and subse‑
quently integrate the final predictions. Typical studies include the following: H. Zhang
et al. (2021) introduced an innovative hybrid model that combined Temporal Convolu‑
tional Networks (TCNs) and ARIMA with empirical mode decomposition (EMD) [24].
This method targets high‑ and low‑frequency data parts and significantly enhances accu‑
racy. However, EMDs may experience modal aliasing at different frequencies when pro‑
cessing signals, especially when the signals contain similar frequency components. To ad‑
dress this challenge, P. Jiang, Nie,Wang, &Huang (2023) implemented the ImprovedCom‑
plete Ensemble EMD with Adaptive Noise (ICEEMDAN) technique in their research [25].
This approach ameliorates the mode mixing problem by introducing additional noise sig‑
nals. However, the selection of noise levels within the algorithm significantly impacts the
outcome, and the lack of a unified standard for choosing the optimal noise level compli‑
cates the utilization of this method. Conversely, variational mode decomposition (VMD)
operates through predetermined bandwidth constraints to decompose signals, effectively
reducing mode mixing between different modes [26]. The decomposition results are less
susceptible to signal noise, enhancing the precision and interpretability of the decomposi‑
tion [27]. Compared to EMD and its variants, VMD requires fewer parameters, making the
algorithm easier to adjust and implement [28]. The predictive accuracy of second‑group
hybrid models demonstrates an improvement, yet they struggle to surmount the intrinsic
limitations of singular models and lack the capacity for adaptive parameter adjustments
in response to variations in input samples.

Consequently, contemporary research has expanded to encompass a third group of
models that advocate for the integration of multiple predictive models, employing opti‑
mization algorithms to facilitate a weighted amalgamation of diverse models. Z. Yang, Ce,
& Lian (2017) introduced the hybrid methodology aimed at enhancing predictive accuracy
by leveraging the distinct characteristics of each model [29]. Specifically, our approach in‑
tegrated the wavelet transform with the kernel extreme learning machine (KELM), which
was further optimized through self‑adapting particle swarm optimization techniques and
the autoregressive moving average (ARMA) model. X. Zhang, Wang, & Gao (2019) as‑
sessed a groundbreaking hybrid forecasting framework in the context of the New South
Wales electricity market [30]. This framework innovatively melds a variety of predictive
methodologies, encompassing seasonal ARIMA, Backpropagation (BP) neural networks,
and SVM, aiming to bolster the precision of forecasts. Y. Xu, Li, Wang, &Du (2024) adeptly
utilized an advanced version of the Multi‑Objective Tuna Swarm Optimization (MOTSO)
algorithm [31]. This innovative approachwaspivotal in determining the combinedweights
assigned to each model. The third group of models had significantly improved predictive
accuracy; however, the selection of the model and its parameter configuration greatly in‑
fluenced the operational efficiency and predictive performance. Thus, it is imperative to
engage in additional simulation experiments to identify more optimal methods for short‑
term electricity price forecasts. Moreover, conducting multi‑step forecasting experiments
is crucial for maintaining the integrity of the research framework. The representative arti‑
cles, models, and findings discussed in the preceding literature review are systematically
outlined and summarized in Table 1.
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Table 1. A comprehensive overview based on the representative literature.

Categorization Related Studies Main Technology Discovery

Statistical
analysis‑based
categorization

Liu, Wei, Yang, & Guan, 2013 [7] HMM Using the firing matrix of the HMM to correct the
residuals of the combined prediction.

Girish, 2016 [8] Autoregressive‑
GARCH

A study on modeling and forecasting prices in a
market with demand exceeding supply.

Zhao, Wang, Nokleby, & Miller, 2017 [9] ARIMA Incorporating an exogenous time series into the
model enhances precision.

Machine learning
models

Singh & Sahay, 2018 [11] ANN Accuracy can be maintained even in the presence of
high volatility in the raw data.

Wu, He, Zhang, & Du, 2021 [12] DE‑SVM
The differential evolutionary (DE) enhanced the
precision of the SVM model while concurrently
diminishing the computational time required.

P. Wang et al., 2022 [13] RF
An adaptive online prediction methodology that
employed RF algorithms was designed to
dynamically adjust the sizes of its training datasets.

Deep learning
models

Rezaei, Rajabi, & Estebsari, 2022 [15] GRU This approach resulted in stable and robust
forecasting performance.

B. Wang, Wei, & Su, 2022 [16] LSTM LSTM networks led to the selection of more
accurate forecast samples.

Yorat, Ozbek, Zor, & Saribulut, 2023 [17]. XGBoost The test results indicated that the XGBoost model
outperformed the others in terms of error metrics.

Hybrid models

Qu et al., 2024 [22] ELM‑WNN (IWNN)
A two‑stage forecasting algorithm that integrates
pattern recognition and classification‑based
forecasting was proposed.

P. Jiang, Nie, Wang, & Huang, 2023 [25] ICEEMDAN‑MSSA Anchoring electricity price forecasts to a loading
series marked by minimal variability.

Y. Xu, Li, Wang, & Du, 2024 [31] IMOTSO
This approach yields probability density estimation
curves that closely align with the actual values,
demonstrating minimal deviation.

In reviewing the literature, it is evident that hybrid forecasting methods are gaining
acknowledgment for their significant advantages in predicting electricity prices. How‑
ever, despite their rising importance, these models have limitations. The following gaps
exist in current research: (1) The electricity price dataset is extensive and rife with extra‑
neous information. Conventional time‑series decomposition methods frequently generate
mixed‑frequency components, compromising the precision of predictive analyses. (2) In
the realm of model combination, the absence of a scientifically rigorous weighting scheme
can yield less‑than‑ideal forecasting outcomes. Moreover, the utilization of antiquated
weighting strategies may impede optimal model parameter tuning and prolong the com‑
putational runtime.

Therefore, this study employed an innovative approach to address the existing gaps
in research by integrating trend decomposition techniques with multi‑objective intelligent
optimization algorithms, effectively optimizing prediction accuracy. The principal contri‑
butions of the study are as follows:

(1) Introduce an innovative trend decomposition technique that enhances the effi‑
ciency of feature extraction for predictive analysis. By employing an improved variational
mode decomposition, we can dissect electricity price sequences into trend components,
cyclical components, and irregular fluctuating components. This allows for the separate
prediction of each component, facilitating a more effective capture of the distinct charac‑
teristics inherent in electricity price data.

(2) Apply a novel multi‑objective intelligent optimization technique to further refine
the predictive outcomes of deep learning models through scientific weighting, thereby in‑
creasing the forecasting accuracy for non‑stationary sequences. By constraining the esti‑
mation error through an objective function and seeking Pareto optimal solutions, we pro‑
mote the integration of multiple deep learning models, leveraging the unique predictive
strengths of each model.

(3) The proposed hybrid short‑term electricity price forecasting system demonstrates
adaptability and scalability, making it applicable to various types of power markets.
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Through cases and discussions conducted across 14 comparativemodels inmarkets experi‑
encing different levels of volatility, we validated the effectiveness of the proposed model’s
forecasting capabilities.

This paper is structured as follows: Section 1 is the introduction presenting the re‑
search motivation, related literature, current research gaps, and innovations; Section 2 in‑
troduces the basic concepts of model preparation; Section 3 demonstrates the main frame‑
work of this study; Section 4 gives the details of the experimental setup, data presentation,
numerical results, and case study; Section 5 discusses the results of the present study; and
Section 6 presents the conclusion and future research plans.

2. Basic Concepts of Model Preparation
2.1. Trend Decomposition Technique

Electricity price series exhibit complexities such as instability, nonlinearity, and un‑
predictability, posing a significant challenge to accurate forecasting [32]. Decomposition
algorithms become essential in addressing prediction inaccuracies due to noise, elucidating
crucial electricity price attributes, and augmenting the efficacy of predictive models in var‑
ious domains [33]. The essence of selecting apt decomposition algorithms lies in their abil‑
ity to discern and utilize the principal characteristics of electricity prices efficiently. How‑
ever, traditional signal decomposition methods, such as Fourier transform and wavelet
transform, may have limitations in some cases. For example, they usually assume that the
signal is linear and stationary, which is less effectivewhen dealingwith nonlinear and non‑
stationary signals. In order to overcome these limitations, K. Dragomiretskiy & K. Zosso
(2014) proposed the variational mode decomposition (VMD) algorithm [34].

VMDstands out as a premier technique for the iterative separation ofmulti‑component
signals into the quasi‑orthogonal intrinsic mode function. VMD is notably superior to the
adaptive decomposition method EMD as it circumvents the issues of recursive computa‑
tion errors and premature termination. Therefore, for the analysis of electricity price data,
VMD emerges as the methodology of choice [35].

The price sequence γ(t) can be decomposed into P sub‑signals (modes){
Ep(t)

}
= {E1(t), · · · , EP(t)}, where eachmode is a set of band‑limited data with a center

frequency.
{

ωp
}
= {ω1, · · · , ωP} and Ep(t) ae able to be transformed into their analytical

form by EA,p(t) = Ep(t)jHEp(t) = ((t) + j/πt) ∗ Ep(t), where H is the Hilbert transform
operator, δ(·) represents the use of the Dirac function, and ∗ embodies the convolution.

To derive the Ep(t) in the frequency domain, we can recenter the spectrum of Ep(t)
and apply a low‑pass filter. The formulation of the recenter process is EA,p(t)e−jωpt =[
(δ(t) + j/πt) ∗ Ep(t)

]
e−jωpt.

Following Fourier transform, e−jωpt should be converted to δ
(
ω + ωp

)
in the fre‑

quency domain. The bandwidth of Ep(t) can be determined by optimizing the demod‑
ulated spectrum. Thus, the objective and constraint are formed in (1).min

{
∑
∥∥∥∂t

[
(δ(t) + j/πt) ∗ Ep(t)

]
e−jωpt

∥∥∥2

2

}
s.t. ∑ Ep(t) = γ(t)

(1)

The utilization of the augmented Lagrangian method (L) assists in transforming the
aforementioned constrained optimization problem to an unconstrained form:

L = α∑
∥∥∥∂t

[
(δ(t) + j/πt) ∗ Ep(t)

]
e−jωpt

∥∥∥2

2
+
∥∥γ(t)− ∑ Ep(t)

∥∥2
2 +λ[γ(t)−∑ Ep(t)] (2)

where α is the balancing parameter of the data‑fidelity constraint, and λ is the Lagrangian
multiplier.
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To simplify (2), a more feasible approach would be to transpose L into the frequency
domain using the Fourier transform as follows (3):

minα∑ jω
∥∥[(1 + sgn(ω + ωp)

)
Ep(ω + ωp)

]∥∥2
2 +

∥∥γ(ω)− ∑ Ep(ω) + λ(ω)/2
∥∥2

2 (3)

where the multiplication of the exponential term becomes the frequency spectrum shift
operation, the convolution becomes multiplication, the derivative operation becomes mul‑
tiplying the objective function with jω, and sgn means the sign function.

Employing the Alternating Direction Method of Multipliers (ADMMs) [36], we com‑
puted the spectral properties of mode EP(ω) by executing a series of iterative refinement
with:

Er+1
P (ω) = argmin

EP

α∥jω(1 + sgn(ω + ωr
P))Er

P(ω + ωr
P)∥

2
2 +

∥∥∥∥∥γ(ω)−
p−1

∑
l=1

Er+1
l (ω)− ∑ Er

l (ω) + λr(ω)/2

∥∥∥∥∥
2

2

 (4)

The iteration number is denoted by r, where l is mode index, P is the total number of
modes, and Hermitian symmetry is applied to simplify the following:

Er+1
P (ω) = argmin

EP


∫ ∞

0
4α

(
ω − ωr

p

)2∣∣∣Er
p(ω)

∣∣∣2 + 2

∣∣∣∣∣γ(ω)−
p−1

∑
l=1

Er+1
l (ω)−

P

∑
l=p

Er
l (ω) + λr(ω)/2

∣∣∣∣∣
2

dω

 (5)

The optimal solution is letting the derivative equal 0. Thus,

Er+1
p (ω) =

γ(ω)− ∑
p−1
l=1 Er+1

l (ω)− ∑P
l=p Er

l (ω) + λr(ω)/2

1 + 2α
(

ω − ωr
p

)2 (6)

The center frequency is ωr+1
p = argmin

ωp

{∫ ∞
0 (ω − ωr

p)
2
∣∣∣Er+1

P (ω)2
∣∣∣dω

}
. The solution

is found by the following equations: ωr+1
p = (

∫ ∞
0 ω

∣∣∣Er+1
p (ω)

∣∣∣2dω)/(
∫ ∞

0

∣∣∣Er+1
p (ω)

∣∣∣2dω)

and λr+1(ω) = λr(ω) + τ(γ(ω) − ∑ Er+1
p (ω)), where τ is the penalty parameter. And

they run until the convergence criterion ∑
v

∥∥∥Er+1
p (ω)− Er

p(ω)
∥∥∥2

2
/Er

p(ω)2
2 ≤ ε is met.

Following a thorough examination of the data, this study employed a K‑means clus‑
tering methodology to categorize dataset Er

p(ω) into n distinct groups. Each chronologi‑
cal day within the dataset was assigned a specific pattern label to facilitate analysis. The
Euclidean distance metric served as the basis for assessing the similarity between pat‑
terns. In the process of de‑duplication and revision, the d‑dimensional vector space of data
points Ei, D = {Ei | i = 1, 2, . . . , t} was partitioned by minimizing the objective function:
F = ∑ (argmin

∣∣∣∣∣∣Ei − c∀j ||
2) . Here, c∀j represents the k‑cluster centroids in the central set

C∀ =
{

c∀j | j = 1, 2, . . . , k
}
. This method helps to identify the optimal number of clusters

for the dataset, ensuring the efficient and accurate partitioning of the data points [37]. The
final result obtained contained several trend components; hence, themethod is called tVMD.

2.2. Multi‑Objective Wild Horse Optimization Algorithm
The living behavior of stallions, several mares, and foals in the wild horse society in‑

spired the wild horse optimization algorithm (WHO) [38]. The decency behavior of horses,
such as grazing, chasing, dominance, leadership, and mating, has been used to construct
a new method. In comparison to other intelligence algorithms, the optimization process
of horses departing from the group and mating with horses from other groups efficiently
avoids the algorithm slipping into local optimization and balances the algorithm’s explo‑
ration and development. On this basis, this paper introduces the concepts of the Pareto
optimal solution and external archiving mechanism into WHO and creatively proposes
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a multi‑objective wild horse swarm optimization algorithm (MOWHO) to solve complex
forecasting problems. Figure 1 illustrates the key link and the flowchart of the algorithm.
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(1)  Creating an initial population.

An initialized random population is constructed X = ⟨x1, x2, . . . , xn⟩ and determines
the objective value Ői =

〈
Ői1, Ői2, . . . , Őin

〉
. Then, the groups are divided. Let the pop‑

ulation size be N; then, the number of groups is Ğ = [N ∗ PS], where PS indicates the
proportion of stallions. The remaining populations [N−Ğ] are divided equally into these
groups according to the number of stallions, Stallion (Leader). Figure 1a shows an example
of this population division.

(2)  Grazing behavior.

The algorithm positions the stallion Ğ as the central point of the grazing area, with
group members moving and searching around the Stallion’s perimeter by Xj

i,Ğ = 2Ź ∗

COS(2πRŹ)× (Stallionj −Xj
i,G) + Stallionj, where Xj

i,Ğ is the position of themare and foal
and Ź is an adaptive mechanism: Ź = R2ΘЇ + R2Θ(Ї). Ri ∈ [−2, 2] is a uniform random
number. The COS function enables the population to move in a 360‑degree direction. The
Ї index satisfies the condition (P == 0) and this results in P = R1 < TDR , Ї = (P == 0)
and Ź = R2ΘЇ + R2Θ(Ї), where TDR is the parameter regulator by TDR = 1 − Iter×
(1/IMax), which gradually decreases to 0 with the number of iterations.

(3)  Improved nonlinear update strategy.

To overcome the shortage of the only local search, a new nonlinear TDRnon was pro‑
posed by TDRnon = 2 × (1 − (Iter/IMax1/3)

1/3 × (Rand − 1), where Rand ∈ [0, 1] is a
random number. Through the nonlinear updating mode, the algorithm performs global
and local searches in the whole iterative process. Therefore, TDR = TDRnon in the paper.



Energies 2024, 17, 4833 8 of 24

(4)  Horse mating behavior.

Horses have unique forms of decent behavior, i.e., the foal will leave the original pop‑
ulation when it is about to mature, the male horse will join the single horse group, and
the female horse will join another family group. Such decent behavior avoids inbreeding
among horses. WHO uses the mean crossover operator to simulate this behavior in horses:
Xp

Ğ,k
= Crossover(Xq

Ğ,i
,Xz

Ğ,j), where X
p
Ğ,k

is the distance from group k; Xq
Ğ,i

and Xz
Ğ,j are two

maturing foals from i group and j group, respectively. Figure 1b shows this mating and
departure behavior.

(5)  Group leadership.

Each group has a leader (StallionĞi) who leads the group to occupy the water holeЊ
and occupy a dominant position. (Њ is the current optimal solution).

StallionĞi =

{
XĞ,i i f COS[t(XĞ,i)] > COS[t(StallionĞi)]

StallionĞi i f COS[t(XĞ,i)] < COS[t(StallionĞi)]

}
(7)

StallionĞi =

{
2Ź ∗COS(2πRŹ)× (Њ− StallionĞi) +Њ i f R3 > 0.5
2Ź ∗COS(2πRŹ)× (Њ− StallionĞi)−Њ i f R3 ≤ 0.5

}
(8)

where StallionĞi and StallionĞi are the next and current positions of the leader of the i
group. In addition, for the selection of leaders, StallionĞi, in each group, we randomly
select leaders StallionĞ1 in the initial stage to maintain the diversity of algorithms. In the
later stage, the position of the leader StallionĞi, i = 2, 3, . . . is exchanged in the group
according to the Pareto dominance relationship.

(6)  Adaptive T‑distribution variation strategy.

The variation operator in the algorithm uses the T‑distribution with the number of
iterations (Iter) serving as the degree of freedom. This aims to balance exploration and
development by StallionĞi = StallionĞi + T(Iter) ∗ StallionĞi. The probability density
function is as follows:

tn(x) =
Γ
(

n+1
2

)
Γ
( n

2
)√

nπ

(
1 +

x2

n

)− n+1
2

,−∞ < x < ∞ (9)

where Γ(·) is the Gamma function.

(7)  Multi‑objective version introduction.

This paper innovatively introduces the Pareto optimal solutionA*, and externalArchiv‑
ing mechanism Årc into WHO, and constructs a multi‑objective wild horse optimization
algorithm (MOWHO) suitable for time‑series forecasts. In the current iteration, Årc serves
primarily as a repository for the non‑dominated solution A′′, thus establishing an upper
limit Ň ≤ N. Upon acquiring a new non‑dominated solution And via the iterative method,
it undergoes comparison with the archived member

{
A′′

1 ,A′′
2 , . . . ,A′′

N
}
. If F(And) ≻ F(A′′

i ),
i ∈ [1, N], it shall incorporate And in Årc. To refine Årc, the optimization algorithm will re‑
tain the superior solution withinÅrcwhile discarding the least effective one. The selection
of the most advantageous starting point for the subsequent iteration is conducted through
the application of a roulette‑based mechanism þr

i = ξ/Дr
i , ξ > 1, where ξ is considered a

constant, while Дr
i represents the number of solutions that are closely related to the i solu‑

tion. þr
i assigns higher weights to solutions located in regions with fewer samples at the

Pareto optimality boundary. This strategy aims to expand the coverage to provide a more
diverse and comprehensive solution. It is worth noting that the two optimization objec‑

tives [Ob f1
M

,Ob f2
M
] and constraints of this study are as follows: Ob f1

M
= MinMAE and

Ob f2
M

= Minstd(EP′′ − EP).
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3. The Main Structure
The principal architecture is depicted in Figure 2, with the specific workflow delin‑

eated as follows. Initially, trend decomposition techniques are employed to extract trends,
seasonal, and irregular components from raw electricity price data. Subsequently, the
three most accurate forecasting models are selected for multiple simulations and parame‑
ter adjustments to ensure the stability of results. Ultimately, the multi‑objective optimiza‑
tion algorithm is utilized to execute a weighted combination of the three models. And the
comparative results are obtained by analyzing the error evaluation indexes.
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4. Case Study and Evaluations
4.1. Datasets and Preprocessing

In this comparative analysis, we leveraged datasets derived from authentic electric‑
ity markets. The Singapore electricity market (SGP‑EP), inaugurated in 2003, represents
Asia’s pioneering deregulated market. Recent years have seen the Singaporean govern‑
ment adapt to the global movement towards energy transition, enacting long‑term strate‑
gies for the decarbonization of its electricity sector. This initiative has culminated in the
development of a sophisticated framework for electricity generation and retailing. Con‑
versely, the Australian National Electricity Market (AUS‑EP), initiated in 1998, extends
over 5000 km, making it the world’s most extensive alternating current electricity system.
Characterized by its leading position in global price volatility, it ranks among the most
unstable electricity markets internationally.

In the context of electricity markets, the data on electricity prices exhibit pronounced
volatility and are frequently characterized by a surplus of peak values. Utilizing unad‑
justed electricity price series as inputs for predictive models inherently compromises the
precision of future price forecasts. To mitigate this challenge, our approach encompasses
the identification and subsequent adjustment of aberrant outlier data points. For exam‑
ple, within the Singaporean electricity market, outliers are ascertained utilizing the 3σ
criterion. Conversely, the Australian market’s outlier data, distinguished by their con‑
siderable deviation resulting in atypical standard deviations, necessitates outlier identi‑
fication through box plot analysis. Following outlier adjustment, data imputation is con‑
ducted employing the piecewise cubic Hermite interpolation polynomial (PCHIP)method.
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It aims to approximate the original data by a series of cubic polynomials, each of which
is responsible for interpolating between two points in the dataset. The polynomial is ex‑
pressed as follows: H3(x) = [(1 + 2χ)y0 + (x − x0)y′0]ψ

2 +
[
(1 + 2ψ)y1 + (x − x1)y′1

]
χ,

where x0, x1 are the positions of the two neighboring points of the point to be interpolated,
χ = (x − x0)/(x1 − x0), ψ = (x − x1)/(x0 − x1), y0, y1 corresponds to the dependent vari‑
ables of the independent variable x0, x1, and y′0, y′1 are the corresponding derivatives. This
methodology ensures the interpolation curve’s monotonicity and smoothness, effectively
eliminating the introduction of supplementary local extrema. Such a feature renders it ex‑
ceptionally applicable to contexts necessitating the mitigation of undue oscillations and
the retention of inherent data trends and attributes.

Our dataset encompasses 31 days from 1 January to 31 January 2024 (sample interval:
15min). We adopted a stratified split for each dataset into training, validation, and test sets
in a 6:2:2 ratio, ensuring rigorous methodology and comprehensive analysis. The specific
features of the datasets are shown in Table 2.

Table 2. Statistical features of the datasets.

Dataset Samples Numbers
Statistical Indicator (USD/MWh)

Max Min Median MEAN Std.

AUS‑EP

All samples 1488 127.83 4.15 59.98 61.54 25.03
Training set 912 127.83 4.15 58.00 60.10 26.53
Validation set 288 125.72 10.00 61.02 65.93 21.83
Testing set 288 127.81 9.54 60.77 61.69 22.55

SGP‑EP

All samples 1488 183.62 47.48 112.17 109.23 25.75
Training set 912 183.54 29.08 107.68 101.38 33.22
Validation set 288 177.17 49.43 116.27 107.55 26.19
Testing set 288 183.62 29.08 113.12 107.38 27.58

4.2. Evaluation Metrics
In assessing the predictive model, three essential metrics were utilized: the Mean

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square
Error (RMSE) [39,40]. The equation and indicator strengths are shown in Table 3.

Table 3. Three indicators.

Equation Strengths

MAE = 1
n

n
∑

t=1

∣∣EPt − EP′′
t
∣∣ The average difference between predicted and actual

values is directly provided, relatively unaffected by
extreme values.

MAPE =
1
n

n
∑

t=1

∣∣EPt − EP′′
t
∣∣

EPt
∗ 100%

Expression of the error as a percentage allows for fair
comparisons between datasets of different scales.

RMSE =

√
1
n

n
∑

t=1
(EPt − EP′′

t )
2

As the error is squared and then averaged, a larger
penalty is given to large prediction errors.

Note: EPt and EP′′
t represent actual and predicted prices, t represents the sample index in chronological order,

and t = 1, 2,…, n, and n denotes the total number of samples.

4.3. Experimental Setup
In this segment, we test the proposed hybrid short‑term electricity price forecast

(HSEPF) model through experimental studies. We begin by outlining the model’s com‑
plex operational settings, followed by a thorough examination of the results obtained from
these processes. The first case demonstrates themodel’s significant ability to integrate vari‑
ous forecasting elements, showing a clear advantage over traditional methods. The second
case highlights an improvement in performance compared to models based on different
decomposition techniques. The third case emphasizes the model’s exceptional accuracy in
predictions thanks to its novel approach of intelligently weighting multi‑objectives.
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4.3.1. Operational Settings
In the field of deep learning, model parameters play a pivotal role in determining both

the computational efficiency and the accuracy of experimental simulations. This study
has rigorously tested these parameters across a series of simulation experiments, with the
definitive configurations enumerated in Table 4.

Table 4. Parameter settings.

Model Parameter Symbol Value Reason

ELM

Input‑layer nodes IElm 5 Trial and error
Hidden‑layer nodes HElm 15 Trial and error
Output‑layer nodes OElm 1 Target outcome
Transfer function Tf

Elm
sigmoid Common preset

LSTM

Input‑layer nodes ILstm 5 Trial and error
Hidden‑layer nodes HLstm 150 Trial and error
Output‑layer nodes OLstm 1 Target outcome
Gradient threshold ΓLstm

tau 2 Common preset
Maximum iteration IterLstmmax 500 Trial and error

RF
Max_depth DepthRFmax 50 Trial and error

Min_samples_leaf LeafRFmax 5 Trial and error

tVMD
Moderate bandwidth constraint α∀tVMD 2000 Trial and error

Modes K K∀
tVMD 5 Trial and error

categories C∀
tVMD 3 outcome

MOWHO
Population number NPMOWHO 100 Trial and error
Maximum iteration IterMOWHO

max 100 Trial and error

MODA
Population number NPMODA 100 Parameter consistency
Maximum iteration IterMODA

max 100 Parameter consistency

4.3.2. Case I: Comparison with Predictive Classical Models
Case I involved conducting a comparative experiment with a singlemodel. In this sce‑

nario, ARIMA, BP, ELM, LSTM, and RF single models were first used for direct prediction.
Subsequently, considering that combiningmultiplemodels would increase the complexity
of the prediction framework, this paper intended to use the three best‑performing single
models for decomposition‑ensemble [41]. The prediction results are shown in Table 5.

(a) For AUS‑EP forecasting, the developed HSEFP system was evaluated alongside
five benchmark models. This comparison provides a fundamental insight into the ad‑
vanced capabilities of the proposed system. Specifically, whenmaking a 1‑stepprediction—
which involves forecasting the upcoming half‑hour—the HSEFP system demonstrates su‑
perior performance with parameter settings of α∀tVMD = 2000, K∀

tVMD = 5, C∀
tVMD = 3,

NPMOWHO = 100, and IterMOWHO
max = 100. It achieved MAEHSEPFone‑step = 7.3362,

MAPEHSEPFone‑step = 14.9100%, andRMSEHSEPFone‑step = 9.7486. In contrast, the benchmarks reported
MAEvalues above 10,MAPEvalues ranging from 22% to 27%, andRMSEvalues exceeding
15. The prediction accuracies are significantly better relative to all the base single models.
Figure 3 shows the forecast trends and error indicators of each model.

(b) For SGP‑EP forecasting, the overall forecast error was smaller because this market
is more stable than the AUS‑EP. When 1‑step forecasting was performed, the best forecast‑
ing performance in the benchmark model was ELM, with parameters IElm = 5, HElm = 15,
OElm = 1, and Tf

Elm
= sigmoid resulting in MAEELMone‑step = 5.9693, MAPEELMone‑step = 6.0769%,

and RMSEELMone‑step = 9.3607. HSEFP has a better forecasting performance (with parameters
NPMOWHO = 100, IterMOWHO

max = 100, HElm = 15, Tf
Elm

= sigmoid, HLstm = 150, IterLstmmax = 500,
DepthRFmax = 50, and Leaf

RF
max = 5), where the prediction is expressed asMAEHSEPFone‑step = 4.2784,

MAPEHSEPFone‑step = 4.1918%, and RMSEHSEPFone‑step = 5.9268. There is still a gap in the forecasting
effectiveness of the single model.
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Table 5. Results of the compared models for different markets.

Electricity
Markets Model

1‑Step 2‑Step 3‑Step

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

AUS‑EP

ARIMA 11.3460 21.8877 16.0503 15.1869 30.1169 20.3130 17.0614 34.3129 22.6320
BP 11.6282 26.0983 15.8673 14.8692 32.6167 19.6171 15.6677 37.4229 20.5253
ELM 10.8203 22.6797 15.4311 13.8873 30.9370 18.9472 14.8129 34.4319 19.7708
LSTM 10.7900 22.5088 15.4000 13.9089 30.9113 18.9242 14.6578 34.2829 19.5256
RF 11.1553 24.9916 15.4319 14.4085 32.7613 18.7385 15.2152 36.8230 19.5678

tVMD‑ELM 7.3713 15.3919 9.9353 9.9147 20.8753 12.9356 10.4908 22.4343 13.5512
tVMD‑LSTM 7.5255 15.6030 10.2262 9.8997 20.7652 13.0770 10.2958 22.0460 13.2776
tVMD‑RF 8.8530 18.8079 11.8251 10.1543 21.7829 13.3063 10.7188 23.1796 13.5515
Proposed
HSEPF 7.3362 14.9100 9.7486 9.8568 20.9750 12.9024 10.2954 21.9254 13.2731

SGP‑EP

ARIMA 6.5799 6.6092 10.3703 10.5916 10.6513 15.5312 13.9822 14.2917 19.7375
BP 6.2245 6.3944 9.5537 9.3644 9.5499 13.0753 11.4359 11.9542 15.4864
ELM 5.9693 6.0769 9.3607 8.9450 9.0558 12.7482 11.1910 11.5506 15.3115
LSTM 6.0180 6.0780 9.4193 9.1182 9.2607 12.9609 11.1937 11.6502 15.4007
RF 6.3716 6.2949 9.4881 9.3393 9.4269 12.6135 10.9317 11.4619 14.7077

tVMD‑ELM 4.3112 4.2667 5.9489 5.2712 5.1873 6.9389 6.8767 6.8401 9.0130
tVMD‑LSTM 4.5092 4.4401 6.2313 5.1233 5.0226 6.8330 6.7955 6.7179 8.8900
tVMD‑RF 5.4662 5.5410 7.3617 6.3240 6.4909 8.2456 7.8141 8.1212 9.9183
Proposed
HSEPF 4.2784 4.1918 5.9268 5.0703 4.8966 6.7367 6.7639 6.5111 9.1110

Note: This table shows the prediction results for five single models, three models based on the

tVMD trend decomposition afterward and the proposed HSEPF, where MAE = 1
n

n
∑

t=1

∣∣EPt − EP′′
t
∣∣,

MAPE = 1
n

n
∑

t=1
(
∣∣EPt − EP′′

t
∣∣)/(EPt) ∗ 100%, and RMSE =

√
1
n

n
∑

t=1

(
EPt − EP′′

t
)2. Bold numbers indicate that

the model performed better in all comparison results.
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(c) To compare the capability of the data decomposition–integration strategy, the
three models ELM, LSTM, and RF, which performed better in the benchmark model, were
trend decomposed, and each trend variable was predicted individually. As shown in Ta‑
ble 5, the prediction accuracy improved after integration. From the forecasting results for
the AUS‑EP, to ensure objectivity in the model comparisons, the ELM was unified with
parameters IElm = 5, HElm = 15,OElm = 1, and Tf

Elm
= sigmoid; the changes in the indicators

at 1‑step prediction were MAEone‑step{ELM,tVMD‑ELM} = {10.8203→7.3713}, MAPEone‑step{ELM,tVMD‑ELM}
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= {22.6797%→15.3919%}, and RMSEone‑step{ELM,tVMD‑ELM} = {15.4311→9.9353}. The LSTM uni‑
form parameters were HLstm = 150, ΓLstmtau = 2, and IterLstmmax = 500; the changes in the indi‑
cators at one‑step prediction were as follows: MAEone‑step{LSTM,tVMD‑LSTM} = {10.7900→7.5255},

MAPEone‑step{LSTM,tVMD‑LSTM} = {22.5088%→15.6030%}, and RMSEone‑step{LSTM,tVMD‑LSTM} =
{15.4000→9.8997}. The RF model unification parameters were DepthRFmax = 50 and
LeafRFmax = 5; the changes in the indicators were MAEone‑step{RF,tVMD‑RF} = {11.1553→8.8530},

MAPEone‑step{RF,tVMD‑RF} = {24.9916%→18.8079%}, and RMSEone‑step{RF,tVMD‑RF} = {15.4319→11.8251}.
From the performance of the metrics, the tVMD decomposition technique effectively im‑
proved the accuracy prediction. In the multi‑step simulation results, it seemed that 88.89%
of the indicators could reflect the superiority of the HSEPF system.

(d) The fitting effect of the SGP‑EP models was satisfactory. Additionally, decompos‑
ing the model using tVMD significantly enhanced the performance. Under the parame‑
ters IElm = 5, HElm = 15, OElm = 1, and Tf

Elm
= sigmoid, there were MAEone‑step{ELM,tVMD‑ELM} =

{5.9693→4.3112}, MAPEone‑step{ELM,tVMD‑ELM} = {6.0769%→4.2667%}, and RMSEone‑step{ELM,tVMD‑ELM}
= {9.3607→5.9489}. The LSTM uniform parameters were ILstm = 5, HLstm = 150, OLstm =
1, ΓLstm

tau = 2, and IterLstmmax = 500; the results were MAEone‑step{LSTM,tVMD‑LSTM} = {6.0180→4.5092},

MAPEone‑step{LSTM,tVMD‑LSTM} = {6.0780%→4.4401%}, and RMSEone‑step{LSTM,tVMD‑LSTM} =
{9.4193→6.2313}. The errors of the RFmodelwere reduced (parameterswereDepthRFmax = 50
and LeafRFmin = 5) and the results were MAEone‑step{RF,tVMD‑RF} = {6.3716→5.4662},

MAPEone‑step{RF,tVMD‑RF} = {6.2949%→5.5410%}, and RMSEone‑step{RF,tVMD‑RF} = {9.4881→7.3617}. The
prediction errors all decreased significantly, indicating that the introduction of the tVMD
decomposition technique significantly enhanced the hybrid model.

Remark 1. The effectiveness of the HSEPF system in predicting future electricity prices was vali‑
dated through experimental results. This system surpassed other single models in forecasting accu‑
racy, as evidenced by the results that support the validity and effectiveness of the proposed modeling
theory and methodology. Additionally, the use of the tVMD decomposition technique significantly
improved forecasting accuracy. Crucially, this method supports automatic adjustments based on in‑
coming data, enhancing their applicability across various forecasting domains and its practical im‑
plementation.

4.3.3. Case II: Comparison with Other Data Decomposition Methods
This experiment validated the ability of the tVMD method proposed in this paper to

decompose trends in electricity price data, comparing it with the following three models:
one without decomposition and twowith other varieties of decomposition methods (EMD
and EEMDmodels). The research results for the AUS‑EP and SGP‑EPmarkets are summa‑
rized in Table 6 and Figure 4, with specific comparative analyses as follows.

(a) Due to various uncertainties in the electricity market, electricity price series are
typical examples of nonlinear and non‑stationary data. Decomposition techniques can sig‑
nificantly improve predictive performance. For the AUS‑EP, which is characterized by
significant price fluctuations, the multi‑step forecasting results of a combined deep learn‑
ing and machine learning approach without data decomposition areMAEstepELsR = {10.7941,
13.8730, 14.6527},MAPEstepELsR = {22.4224%, 31.1126%, 34.2981%}, and RMSEstepELsR = {15.3988,
18.7547, 19.3794}. And for the relatively stable SGP‑EP, the combined model ELsR without
data decomposition processing can obtainMAEstepELsR = {5.8931, 8.7458, 10.9286},MAPEstepELsR
= {5.8611%, 8.7855%, 11.0888%}, and RMSEstepELsR = {9.0542, 12.3424, 14.7562} in the calcu‑
lation of error indicators for multi‑step prediction. However, the use of decomposition
techniques in the forecasting model reduces the MAPE, MAE, and RMSE values.
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Table 6. Results of the compared models for data decomposition methods.

Electricity
Markets Model

1‑Step 2‑Step 3‑Step

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

AUS‑EP

ELsR 10.7941 22.4224 15.3988 13.8730 31.1126 18.7547 14.6527 34.2981 19.3794
EMD‑ELsR 8.1432 17.3928 10.2257 10.8504 23.2847 14.1286 13.9258 30.5456 18.3599
EEMD‑ELsR 9.6894 20.2068 13.2696 11.2209 23.7322 15.3640 11.6149 24.7575 15.7821

Proposed HSEPF 7.3362 14.9100 9.7486 9.8568 20.9750 12.9024 10.2954 21.9254 13.2731

SGP‑EP

ELsR 5.8931 5.8611 9.0542 8.7458 8.7855 12.3424 10.9286 11.0888 14.7562
EMD‑ELsR 4.9054 4.9167 7.3040 5.5805 5.6481 7.5667 8.4750 8.7852 11.2588
EEMD‑ELsR 4.3753 4.5751 6.4219 5.8097 5.8772 8.6673 8.1902 8.1718 11.7028

Proposed HSEPF 4.2784 4.1918 5.9268 5.0703 4.8966 6.7367 6.7639 6.5111 9.1110
Note: ELsR represents the combination model of ELM, LSTM, and RF, which is modeled without any decomposition processing. This table shows the prediction results for different

decompositions afterward, whereMAE = 1
n

n
∑

t=1

∣∣EPt − EP′′
t
∣∣, MAPE = 1

n

n
∑

t=1
(
∣∣EPt − EP′′

t
∣∣)/(EPt) ∗ 100%, and RMSE =

√
1
n

n
∑

t=1

(
EPt − EP′′

t
)2. Bold numbers indicate that the model

performed better in all comparison results.
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(b) For the 1‑step forecasting analysis using two market datasets, the accuracy im‑
provements were most pronounced following decomposition through the tVMD method.
Notably, there was a significant reduction in all error metrics for the AUS‑EP:
∇MAPEHSEPFAUS‑EP = 7.5124%,∇RMAEHSEPFAUS‑EP = 5.6502 USD/MWh, and∇MAEHSEPFAUS‑EP = 3.4579
USD/MWh. In the context of SGP‑EP, forecasts derived from tVMD decomposition were
most satisfactory, showing improved prediction precision with ∇RMSEHSEPFSGP‑EP = 3.12174
USD/MWh, ∇MAPEHSEPFSGP‑EP = 1.6693%, and ∇MAEHSEPFSGP‑EP = 1.6147 USD/MWh.

(c) In multi‑step forecasting performances across two major market datasets, mod‑
els decomposed via the tVMD method consistently maintained excellent predictive per‑
formance. There are significant improvements in the 2‑step and 3‑step forecasting accu‑
racy in AUS‑EP: ∇MAPEHSEPFAUS‑EP{2,3} = {10.1376%, 12.3727%}. The improvement effects of
EEMD and EMD decomposed models are similar in the 2‑step, but EEMD performs better
at the 3‑step, though it still lags behind the proposed HSEFP model by about 3% in terms
of the MAPE index. For SGP‑EP, the forecasting errors decreased by ∇MAPEHSEPFSGP‑EP{2,3}
= {3.8889%, 4.5777%} for 2‑step and 3‑step forecasting, where the improvement effects of
EEMD and EMD were closer.

Remark 2. Before integration into predictive models, it is crucial to stabilize electricity price data
and to adaptively isolate several components that exhibit periodicity. Comparative analyses robustly
validate that forecasting precision enhancements afforded by tVMD outperform those achieved with
alternative decomposition methodologies. Furthermore, the benefits of this decomposition approach
intensify progressively with the increase in forecast steps. The potential of tVMD as a superior tool
for improving the reliability and accuracy of forecasting models is underscored by this finding.
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4.3.4. Case III: Comparison with Other Combinatorial Weighting Methods
In this case, we compared the HSEPFmodel proposed in this paper with a combinato‑

rial weighting strategy based on three different principles. Among them, simple average
(SA) weightings were the most common method of model mixing, which reflects the aver‑
age performance of multiple model combinations. The root mean square (RMS) weighting
strategy amplifies large deviations by squaring them and emphasizes the volatility or dif‑
ference in these values. The multi‑objective Dragonfly optimization algorithm (MODA) is
widely used in the fields of energy and financial forecasting. Compared with the model
prediction results in Table 7, it was found that the HSEPF method achieves higher predic‑
tion accuracy and a smaller prediction error. Figure 5 shows the forecast trends and error
indicators of each method for the SGP‑EP market.

(a) In 1‑step forecasting, theHSEPF technique outperformed the otherweighting strate‑
gies in the forecasting performance in Singapore and Australian markets. tVMD‑ELsR‑
SA, tVMD‑ELsR‑RMS, and tVMD‑ELsR‑MODA all performed well when applied to AUS‑
EP prediction, with tVMD‑ELsR‑SA being the strategy with the smaller forecasting er‑
rors,MAESAAUS‑EP = 7.7246,MAPESAAUS‑EP = 16.2421%, and RMSESAAUS‑EP = 10.4957. However,
there was a gap relative to HSEPF, MAEHSEPFAUS‑EP = 7.3362, MAPEHSEPFAUS‑EP = 14.9100%, and
RMSEHSEPFAUS‑EP = 9.7486. On the other hand, among the comparison models in Singapore,
tVMD‑ELsR‑RMS was the strategy with less prediction error with MAERMS

SGP‑RP = 4.4409,
MAPERMS

SGP‑RP = 4.3885%, and RMSERMS
SGP‑RP = 6.1485. Similarly, the prediction performance

lost out to the proposed HSEPF system withMAEHSEPFSGP‑RP = 4.2784,MAPEHSEPFSGP‑RP = 4.1918%,
and RMSEHSEPFSGP‑RP = 5.9268.

(b) In the 2‑step prediction of the AUS‑EP, the prediction accuracy of the tVMD‑ELsR‑
SA in MAPE index was better: MAPESAAUS‑EP = 20.8713%. At this time, withMAPEHSEPFAUS‑EP =
20.9750%,MAEHSEPFAUS‑EP = 9.8568, and RMSEHSEPFAUS‑EP = 12.9024, the HSEPF model was slightly
better than the tVMD‑ELsR‑SA model in the performance of MAE and MAPE prediction
errors. In SGP‑EP, the HSEPF model still maintained a good forecasting ability, where
MAEHSEPFSGP‑RP = 5.0703, MAPEHSEPFSGP‑RP = 4.8966%, RMSEHSEPFSGP‑RP = 6.7367. The overall perfor‑
mance was better than that of the best‑performing comparative models: tVMD‑ELsR‑
MODAwithMAEMODA

SGP‑RP = 5.1215,MAPEMODA
SGP‑RP = 4.9873%, andRMSEMODA

SGP‑RP = 6.8570. There‑
fore, in general, the overall performance of the HSEPFmodel was better and can be widely
used in different electricity price markets.

(c) For a 3‑step prediction with a longer prediction period, the HSEPF model had ex‑
cellent performance in model comparison. In the AUS‑EP market, the forecast errors were
MAEHSEPFAUS‑EP = 10.2954, MAPEHSEPFAUS‑EP = 21.9254%, and RMSEHSEPFAUS‑EP = 13.2731. The tVMD‑
ELsR‑SA, tVMD‑ELsR‑RMS, and tVMD‑ELsR‑MODA models had closer prediction accu‑
racies, and theMAPE errors were all above 22%. The tVMD‑ELsR‑RMSmodel had a better
RMSE in the SGP‑EP market, which was lower than the HSEPF model with∇RMSERMS

SGP‑EP
= 0.1586 USD/MWh. However, the HSEPF model of the other two indicators still main‑
tained low prediction errors asMAEHSEPFSGP‑EP = 6.7639,MAPEHSEPFSGP‑EP = 6.5111%.

Remark 3. In this comprehensive study, we substantiated the robust theoretical foundation of
the HSEPF model and its superiority in enhancing the predictive accuracy of complex systems.
Comparative analyses revealed that other models failed to guarantee stable electricity price forecasts
across varied market conditions. In contrast, the model proposed herein consistently demonstrates
heightened precision in numerous forecasting scenarios, proficiently responding to the challenges
presented by the significant fluctuations in electricity prices.
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Table 7. Results of the compared models for other combinatorial weighting methods.

Electricity
Markets Model

1‑Step 2‑Step 3‑Step

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

MAE
(USD/MWh)

MAPE
(%)

RMSE
(USD/MWh)

AUS‑EP

tVMD‑ELsR‑SA 7.7246 16.2421 10.4957 9.8595 20.8713 12.9840 10.4218 22.4290 13.3598
tVMD‑ELsR‑RMS 7.7316 16.2596 10.5043 9.8595 20.8732 12.9843 10.4232 22.4332 13.3602

tVMD‑ELsR‑MODA 8.2481 17.7936 10.7628 10.3643 23.2164 13.4367 10.4906 22.8998 13.3782
Proposed HSEPF 7.3362 14.9100 9.7486 9.8568 20.9750 12.9024 10.2954 21.9254 13.2731

SGP‑EP

tVMD‑ELsR‑SA 4.6101 4.5774 6.3866 5.4094 5.3809 7.1779 6.9354 7.0019 9.0398
tVMD‑ELsR‑RMS 4.4409 4.3885 6.1485 5.2488 5.1829 7.0080 6.8546 6.8528 8.9524

tVMD‑ELsR‑MODA 4.5325 4.4305 6.3215 5.1215 4.9873 6.8570 6.8631 6.6923 8.9942
Proposed HSEPF 4.2784 4.1918 5.9268 5.0703 4.8966 6.7367 6.7639 6.5111 9.1110

Note: ELsR represents the combination model of ELM, LSTM, and RF, which is modeled without any decomposition processing; SA is the simple average method; and RMS is the root

mean square. MAE = 1
n

n
∑

t=1

∣∣EPt − EP′′
t
∣∣,MAPE = 1

n

n
∑

t=1
(
∣∣EPt − EP′′

t
∣∣)/(EPt) ∗ 100%, and RMSE =

√
1
n

n
∑

t=1

(
EPt − EP′′

t
)2. Bold numbers indicate that the model performed better in all

comparison results.
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5. Discussion
To further demonstrate the accuracy of the proposed HSEPF, we perform two addi‑

tional sets of model tests.

5.1. DM Test
From the comparison of error indicators, we can understand the model prediction

performance but cannot discern whether the model is statistically significant or not. The
Diebold–Mariano (DM) test can solve this problem, where DM applies to the comparison
of predictive ability between two ormoremodels [42]. We can assume that the true value is
{EPt; t = 1, . . . , T}, the twopredicted values in the differentmodels are

{
EP′′

1,t; t = 1, . . . , T
}

and
{

EP′′
2,t; t = 1, . . . , T

}
, respectively, and the prediction errors of the two models are

{ℑi,t; i = 1, 2}, where ℑi,t = EPi − EP′′
i,ti= 1, 2. We can assume that the loss associated

with prediction i is a function of the prediction error, ℑi,t, and denotes the loss function
by {Ψ(ℑi,t), i = 1, 2}. δ∆

t = Ψ(ℑ1,t) − Ψ(ℑ2,t), where δ∆
t is a first‑order difference func‑

tion of the loss function, if and only if G(δ∆
t ) = 0, EP′′

1,t and EP′′
2,t have the same prediction

accuracy, so we construct the null hypothesis H0 : G(δ∆
t ) = 0 ∀t and the alternative hy‑

pothesis H1 : G(δ∆
t ) ̸= 0 ∀t. Here, H0 means that the two prediction models have the

same prediction accuracy, and H1 states that the two do not have related prediction ac‑

curacies. The DM statistic can be constructed as
√

T(δ∆ − µ)
δ∆
→ N(0, 2π fδ(0)), where

δ∆ is the mean of δ∆
t , µ is the overall mean of the loss function, and fδ(0) is the spectral

line density function when the loss difference is 0. The expression of fδ(0) is as follows:
fδ(0) = ∑+∞

−∞ γδ(ϕ), where γδ(ϕ) is the order self‑covariance of δ∆
t , and the specific func‑



Energies 2024, 17, 4833 19 of 24

tional equation is γδ(ϕ) = E[(δ∆
t − µ)(δ∆

t−ϕ − µ)], where DM = δ∆/
√

2π f ∆
δ (0)/T; N(0, 1),

f ∆
δ (0) and fδ(0) are the consistent estimators when the null hypothesis is valid; the DM
statistic obeys N(0,1), HSEPF is used as the benchmark model for the DM test, and the
other 14 control models are selected for the DM test. Table 8 presents the outcomes of
the tests.

Table 8. DM test results.

Electricity Market AUS‑EP SGP‑EP

Model 1‑Step 2‑Step 3‑Step 1‑Step 2‑Step 3‑Step

ARIMA 6.8043 *** 7.4900 *** 8.0509 *** 4.8452 *** 8.4343 *** 8.8529 ***
BP 7.1934 *** 9.0850 *** 8.8016 *** 3.9281 *** 7.5013 *** 8.2048 ***
ELM 7.1672 *** 8.3486 *** 8.6239 *** 3.8637 *** 7.2651 *** 8.1112 ***
LSTM 7.1313 *** 8.3954 *** 8.2850 *** 3.9831 *** 7.3610 *** 8.2098 ***
RF 7.1672 *** 8.7916 *** 8.3099 *** 4.2884 *** 6.2514 *** 6.4664 ***
tVMD‑ELM 1.8208 * 0.5748 2.3776 ** 0.4241 2.1572 ** 0.7557
tVMD‑LSTM 3.5418 *** 1.8477 * 0.1518 3.8626 *** 1.3480 * 1.8091 *
tVMD‑RF 5.6180 *** 2.3662 ** 1.8415 * 6.1373 *** 5.3650 *** 3.1619 ***
ELsR 7.1362 *** 8.5006 *** 8.1303 *** 3.5945 *** 6.4505 *** 6.8781 ***
EMD‑ELsR 0.9941 2.0821 ** 7.2362 *** 3.0622 *** 2.5157 ** 6.1797 ***
EEMD‑ELsR 5.8997 *** 3.9738 *** 3.5646 *** 1.1119 2.4545 ** 3.2436 ***
tVMD‑ELsR‑SA 3.7340 *** 1.5210 * 1.5346 * 4.1060 *** 3.0546 *** 0.5165
tVMD‑ELsR‑RMS 3.7501 *** 1.5189 * 1.5313 * 3.0160 *** 2.4181 ** 1.2954 *
tVMD‑ELsR‑MODA 3.3949 *** 2.3408 ** 1.1199 4.5819 *** 1.6640 * 0.9010

Note: ***, **, and * represent the significance levels under 99%, 95%, and 90% confidence level, respectively.
DM = δ∆/

√
2π f ∆

δ (0)/T; N(0, 1). Here, z0.01/2 = 2.576, z0.05/2 = 1.96, and z0.1/2 = 1.645.

(a) In the comparison of single‑mode models, whether for 1‑step, 2‑step, or 3‑step
predictions, the results uniformly achieved statistical significance at the 1% level. This
outcome indicates a disparity in predictive capabilities between the proposed hybrid sys‑
tem and single models. Further analysis revealed that the predictive strength of models
diminishes as the forward prediction steps increase. Moreover, the DM test values exhib‑
ited an increasing trend in 85% of the cases. This trend signifies that in 85% of instances,
the decline in the predictive ability of single models is notably more pronounced than that
of the HSEPF model, underscoring the superior multi‑step forecasting stability of the hy‑
brid model.

(b) In the comparison of machine learning models decomposed by tVMD, undecom‑
posed deep learning integration models, and hybrid deep learning models based on other
data decomposition techniques, it was found that there were cases where individual mod‑
els performed better in prediction, but the prediction performance was not stable in multi‑
step prediction. Among them, the hybrid model ELsR without data decomposition had
the highest DM values: DMAUS‑EP

ELsR = {7.1362, 8.5006, 8.1303} andDMSGP‑EP
ELsR = {3.5945, 6.4505,

6.8781}, which are both greater than z0.01/2 = 2.576, suggesting that the prediction without
data decomposition is the weakest. Further analysis revealed that the decomposition tech‑
nique helped improve the prediction accuracy, whether it was a single model or a hybrid
model. For example, in the 2‑step prediction in AUS‑EP, tVMD‑ELM has DMAUS‑EP

tVMD−ELM =
0.5748, and in the 3‑step prediction model, tVMD‑LSTM has a statistically non‑significant
difference with themodel proposed in this paper,DMAUS‑EP

tVMD−LSTM = 0.1518. It suggests that
the forecasting performance of deep learning models, after undergoing trend decomposi‑
tion through tVMD, closely matches that of the optimal model in specific instances.

(c) In the optimization comparison of different weighting strategies, the DM results
in the 1‑step prediction for the Australian and Singaporean markets, which both exceed
z0.01/2 = 2.576, indicating a significant difference between the HSEPFmodel and others at a
99% confidence level. This suggests the effectiveness of theHSEPFmodel. In themulti‑step
prediction performance, the majority of models have DM values exceeding z0.1/2 = 1.645,
signifying a significant difference between models at a 90% confidence level. The HSEPF
model demonstrates a leading advantage in electricity price prediction. These findings
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underscore the robustness and superiority of the HSEPF model in forecasting electricity
prices, positioning them as a valuable tool in the energy market.

Remark 4. According to the results in Table 8, 90.48% of the models passed the test in the AUS‑
EP, while 88% of the models passed the test in the SGP‑EP. This demonstrates a significant differ‑
ence between the comparative models, confirming the predictive effectiveness of the HSEPF model.

5.2. Performance Improvement Analysis
In predictive research, the improvement percentage of predictive indicators serves as

a crucial metric for assessing the predictive capabilities of models. This is quantified as
pimprovement =

∣∣∣(Metriccompared − MetricHSEPF)/Metriccompared

∣∣∣, where Metriccompared de‑
notes the evaluation metric of the reference model, and MetricHSEPF signifies the predic‑
tive indicator from the composite system developed in this study. pimprovement quantifies
the enhancement in predictive performance, with higher values reflecting the superior pre‑
dictive accuracy of HSEFP. The comparative outcomes of models in AUS‑EP and SGP‑EP
are summarized in Table 9.

(a) Upon analyzing the results ofmulti‑step forecasting, it was evident that theHSEFP
prediction system had significantly improved the accuracy and stability of electricity price
forecasting in Australia. Particularly, for the single prediction model, the minimum val‑

ues of the model average improvement rates were pAvg.MAE
LSTM = 30.30%, pAvg.MAPE

ARIMA = 32.78%,

and pAvg.RMSE
RF = 33.38%. However, when predicting using the single model after tVMD

model decomposition, the model improvement rates were all below 10%, indicating the
significant impact of tVMD technology on enhancing model prediction accuracy. The av‑
erage improvement rates of models decomposed by EMD and EEMD are the minimal val‑

ues of pAvg.RMSE
EMD−ELsR = 13.68% and pAvg.MAE

EEMD−ELsR = 15.93%, respectively, suggesting that these
two decomposition techniques have weaker capabilities in decomposing electricity price
sequences compared to the tVMD technology proposed in this study. Among the three

different combination weighted models, only pAvg.MAPE
tVMD − ELsR − MODA

exceeded 10%,

indicating that the hybrid weighting strategy effectively enhanced model prediction ca‑
pability, yet the HSEFP proposed in this study still outperformed the other comparative
strategies.

(b) The electricity price sequence in Singapore exhibited relative stability, with small
prediction errors. However, the improvement in forecast accuracy with the HSEFP model
was also significant when considering the enhanced percentage. Compared to ARIMA,

the HSEFP model demonstrates a superiority of pAvg.RMSE
ARIMA = 51.10%. In the models de‑

composed by tVMD, the improvement rates were all above 10%, with pAvg.MAE
tVMD−RF = 18.33%,

pAvg.MAPE
tVMD−RF = 22.91%, and pAvg.RMSE

tVMD−RF = 15.31%, showcasing the excellent predictive perfor‑
mance of the MOWHO‑weighted strategy. This finding highlights the capability of tVMD
to handle electricity price data, significantly enhancing the predictive accuracy of deep
learning algorithms and positioning it as a crucial tool for advancing predictive analytics
in the field.

Remark 5. The improvement in percentage through model enhancement further confirms the pre‑
dictive ability of the HSEFP system. It validates the significant effect of the tVMD technique in
enhancing model prediction accuracy, and compared with other weighting strategies, theMOWHO
algorithm has clear advantages, which can be further extended to the analysis of time‑series predic‑
tion.
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Table 9. Improvement ratio results (%).

Electricity
Markets Model

1‑Step 2‑Step 3‑Step Avg.

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

AUS‑EP

ARIMA 35.34 31.88 39.26 35.10 30.35 36.48 39.66 36.10 41.35 36.70 32.78 39.03
BP 36.91 42.87 38.56 33.71 35.69 34.23 34.29 41.41 35.33 34.97 39.99 36.04
ELM 32.20 34.26 36.82 29.02 32.20 31.90 30.50 36.32 32.87 30.57 34.26 33.86
LSTM 32.01 33.76 36.70 29.13 32.14 31.82 29.76 36.05 32.02 30.30 33.98 33.51
RF 34.24 40.34 36.83 31.59 35.98 31.14 32.33 40.46 32.17 32.72 38.92 33.38

tVMD‑ELM 0.48 3.13 1.88 0.58 0.48 0.26 1.86 2.27 2.05 0.97 1.96 1.40
tVMD‑LSTM 2.52 4.44 4.67 0.43 1.01 1.34 0.00 0.55 0.03 0.98 2.00 2.01
tVMD‑RF 17.13 20.72 17.56 2.93 3.71 3.04 3.95 5.41 2.05 8.00 9.95 7.55
ELsR 32.04 33.50 36.69 28.95 32.58 31.20 29.74 36.07 31.51 30.24 34.05 33.14

EMD‑ELsR 9.91 14.27 4.67 9.16 9.92 8.68 26.07 28.22 27.71 15.05 17.47 13.68
EEMD‑ ELsR 24.29 26.21 26.53 12.16 11.62 16.02 11.36 11.44 15.90 15.93 16.42 19.48

tVMD‑ELsR‑SA 5.03 8.20 7.12 0.03 0.50 0.63 1.21 2.25 0.65 2.09 3.65 2.80
tVMD‑ELsR‑RMS 5.11 8.30 7.19 0.03 0.49 0.63 1.23 2.26 0.65 2.12 3.68 2.83

tVMD‑ELsR‑MODA 11.06 16.21 9.42 4.90 9.65 3.98 1.86 4.26 0.79 5.94 10.04 4.73

SGP‑EP

ARIMA 34.98 36.58 42.85 52.13 54.03 56.62 51.62 54.44 53.84 46.24 48.35 51.10
BP 31.27 34.45 37.96 45.86 48.73 48.48 40.85 45.53 41.17 39.32 42.90 42.54
ELM 28.33 31.02 36.68 43.32 45.93 47.16 39.56 43.63 40.50 37.07 40.19 41.45
LSTM 28.91 31.03 37.08 44.39 47.12 48.02 39.57 44.11 40.84 37.62 40.76 41.98
RF 32.85 33.41 37.53 45.71 48.06 46.59 38.13 43.19 38.05 38.90 41.55 40.73

tVMD‑ELM 0.76 1.76 0.37 3.81 5.60 2.91 1.64 4.81 1.09 2.07 4.06 1.46
tVMD‑LSTM 5.12 5.59 4.89 1.03 2.51 1.41 0.47 3.08 2.49 2.21 3.73 2.93
tVMD‑RF 21.73 24.35 19.49 19.82 24.56 18.30 13.44 19.83 8.14 18.33 22.91 15.31
ELsR 27.40 28.48 34.54 42.03 44.26 45.42 38.11 41.28 38.26 35.84 38.01 39.41

EMD‑ELsR 12.78 14.74 18.86 9.14 13.31 10.97 20.19 25.89 19.08 14.04 17.98 16.30
EEMD‑ ELsR 2.21 8.38 7.71 12.73 16.68 22.27 17.41 20.32 22.15 10.79 15.13 17.38

tVMD‑ELsR‑SA 7.20 8.42 7.20 6.27 9.00 6.15 2.47 7.01 0.79 5.31 8.14 4.71
tVMD‑ELsR‑RMS 3.66 4.48 3.61 3.40 5.52 3.87 1.32 4.99 1.77 2.79 5.00 3.08

tVMD‑ELsR‑MODA 5.61 5.39 6.24 1.00 1.82 1.75 1.45 2.71 1.30 2.68 3.30 3.10
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6. Conclusions and Future Work
TheHSEPF system, introduced in this study, is a novel approach for forecasting short‑

term electricity prices. Initially, acknowledging the high volatility and irregular move‑
ments characteristic of electricity price sequences, the HSEPF system applied a stabilizing
transformation to the raw data before forecasting. This involves the adaptive extraction of
several feature components with distinct central frequencies. Specifically, this study em‑
ployed the tVMD technique to isolate the trend, cyclical, and irregular components of the
dataset. This approach significantly enhanced the efficiency of feature extraction in the
forecasting model. Comparative analysis and discussion provided compelling evidence
that the application of tVMD exerts a scalable impact on forecasting accuracy, warranting
further exploration and validation in a broader data context.

Subsequently, the model inputs the decomposed sequence components into both lin‑
ear and nonlinear machine learning models for separate predictions before integrating the
results from each component. The final stage involved selecting the top three perform‑
ing single models and employing the MOWHO model to obtain a weighted amalgama‑
tion of their outcomes. The experimental results demonstrated that the proposed HSEPF
model was capable of predicting electricity prices across different market types. The fore‑
cast results in the Singapore market were as follows: MAEHSEPFone‑step = 4.2784, MAPEHSEPFone‑step

= 4.1918%, and RMSEHSEPFone‑step = 5.9268. Australian market data fluctuated dramatically but
still obtained smaller errors as follows: MAEHSEPFone‑step = 7.3362,MAPEHSEPFone‑step = 14.9100%, and
RMSEHSEPFone‑step = 9.7486. This system not only enhances prediction accuracy through inno‑
vative decomposition and optimization techniques but also demonstrates its universality
and effectiveness under different market conditions. This study highlights the potential of
combining advanced analytical methods with deep learning models to improve predictive
performance in the non‑stationary, complex field of electricity price forecasting, providing
valuable insights for academia and industry stakeholders.

In future research, two aspects can be explored. Firstly, a generalized and precise
electricity price predictionmodel can be developed by considering various factors, such as
user behavior, holidays, and weather. Secondly, future work can focus on peak electricity
price prediction based on the current research to achieve higher prediction accuracy.
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