Asynchronous Injection–Production Method in the High Water Cut Stage of Tight Oil Reservoirs
Abstract
:1. Introduction
2. Methodology
- Fracture propagation behavior excludes the influence of chemical, biological, and other external factors.
- The two mechanisms can occur independently or simultaneously.
- In each simulation round, the principal stress direction and magnitude remain constant with fixed activation pressures and fracture pressures. Parameters can be adjusted for subsequent simulations if needed.
2.1. Waterflood-Induced Fracture
2.1.1. Single Fracture
2.1.2. Fracture Area
2.2. Asynchronous Cyclic Waterflooding for the Horizontal–Vertical Well Pattern
3. Results and Discussion
3.1. Reservoir Model
3.2. Result Analysis
3.2.1. Asynchronous Mode of the Full-Production-Injection Well
3.2.2. Asynchronous Mode of the Half-Production-Injection Well
4. Conclusions
- The use of a 5-point horizontal–vertical well pattern enhances recovery through an asynchronous injection–production method. The main recovery mechanism involves periodically altering the pressure distribution to mobilize residual oil in the matrix through pressure perturbation and changes in flow lines, thereby expanding the swept area of the injected water.
- WIFs are more likely to form where the angle between the flow line and the maximum horizontal principal stress is small. In the full-production injection mode, high permeability regions are concentrated between the injection wells and the fractures. In the half-production injection mode, high permeability regions are more dispersed and appear between the fractures.
- Cumulative oil production initially increases and then decreases with the rise in the ratios of injection–production duration (ripd). The optimal ripd ratios were 0.75 and 0.5 for the parallel injection mode in the full-production injection case and half-production injection case, respectively, and 1 and 0.75 for the diagonal injection mode, respectively.
- The parallel mode (ripd = 0.5) of the half-production injection well fully utilized the imbibition mechanism and maximized oil recovery. It limited the expansion of WIFs and prevented water breakthroughs.
- This method is suitable for reservoirs where WIFs have already been identified; otherwise, the lack of reference pressure-sensitive permeability may reduce the accuracy of predictions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIPC | asynchronous injection–production cycle |
DIM | diagonal injection mode |
HF | hydraulic fractures |
PIM | parallel injection mode |
WIF | waterflood-induced fracture |
Nomenclature
pi | open pressure of naturally fractures |
pp | pore pressure |
po | overburden pressure |
pf | the fracture pressure |
p | pressure |
ν | Poisson ratio |
σH | maximum horizontal stress |
σh | minimum horizontal stress |
σf | tensile strength |
θ | fracture dip angle |
β | the angle of maximum horizontal stress and fracture trend |
γ | the angle between the injection–production connection line (main flow line) and the maximum horizontal principal stress |
Kf | the permeability of WIF-influenced area |
Ki | the initial permeability |
c1 and c2 | coefficient that adjusts the pressure-sensitive relationship |
References
- Zou, C. Tight-Sandstone Oil and Gas. In Unconventional Petroleum Geology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 61–109. [Google Scholar]
- Li, N.; Zhu, S.; Li, Y.; Zhao, J.; Long, B.; Chen, F.; Wang, E.; Feng, W.; Hu, Y.; Wang, S.; et al. Fracturing-flooding technology for low permeability reservoirs: A review. Petroleum 2023, 10, 202–215. [Google Scholar] [CrossRef]
- Cao, L.; Xiu, J.; Cheng, H.; Wang, H.; Xie, S.; Zhao, H.; Sheng, G. A New Methodology for the Multilayer Tight Oil Reservoir Water Injection Efficiency Evaluation and Real-Time Optimization. Geofluids 2020, 2020, 8854545. [Google Scholar] [CrossRef]
- Teng, Z.; Zhu, P.; Wang, X.; Qi, R.; He, F.; Ma, T. Characteristics and model of meandering-river-delta reservoir architecture of Member Chang-6 in Fuxian area, Triassic Ordos Basin. Unconv. Resour. 2024, 4, 100084. [Google Scholar] [CrossRef]
- Ma, G.; Li, T.; Wang, Y.; Chen, Y. The Equivalent Discrete Fracture Networks Based on the Correlation Index in Highly Fractured Rock Masses. Eng. Geol. 2019, 260, 105228. [Google Scholar] [CrossRef]
- Zeng, L.; Song, Y.; Liu, G.; Tan, X.; Xu, X.; Yao, Y.; Mao, Z. Natural Fractures in Ultra-Deep Reservoirs of China: A Review. J. Struct. Geol. 2023, 175, 104954. [Google Scholar] [CrossRef]
- Bai, W.; Cheng, S.; Wang, Y.; Cai, D.; Guo, X.; Guo, Q. A Transient Production Prediction Method for Tight Condensate Gas Wells with Multiphase Flow. Pet. Explor. Dev. 2024, 51, 172–179. [Google Scholar] [CrossRef]
- Cheng, M.; Xue, W.; Guo, Z.; Hou, M.; Wang, C. Development of Large-Scale Tight Gas Sandstone Reservoirs and Recommendations for Stable Production—The Example of the Sulige Gas Field in the Ordos Basin. Sustainability 2023, 15, 9933. [Google Scholar] [CrossRef]
- Liao, J.; Hong, L.; Li, Z.; Tan, K.; Zhao, L.; Yang, J.; Yu, P. Characterization of Ultra-Low Permeability Tight Sandstone Reservoir Properties and Criteria for Hydrocarbon Accumulation in Chang 6 Member, Huaqing Area, Ordos Basin. Front. Earth Sci. 2022, 10, 1013776. [Google Scholar] [CrossRef]
- Azeemuddin, M.; Ghori, S.G.; Saner, S.; Khan, M.N. Injection-Induced Hydraulic Fracturing in a Naturally Fractured Carbonate Reservoir: A Case Study from Saudi Arabia. In Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, LA, USA, 20–21 February 2002. [Google Scholar]
- Wang, Y.; Cheng, S.; Zhang, K.; Xu, J.; Qin, J.; He, Y.; Luo, L.; Yu, H. Case Studies: Pressure-Transient Analysis for Water Injector with the Influence of Waterflood-Induced Fractures in Tight Reservoir. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018. [Google Scholar]
- Wang, Y.; Song, X. Comprehensive Characterization Integrating Static and Dynamic Data for Dynamic Fractures in Ultra-Low Permeability Reservoirs: A Case Study of the Chang 6 Reservoir of the Triassic Yanchang Formation in the Ordos Basin, China. Minerals 2022, 12, 1277. [Google Scholar] [CrossRef]
- Hagoort, J.; Weatherill, B.D.; Settari, A. Modeling the Propagation of Waterflood-Induced Hydraulic Fractures. Soc. Pet. Eng. J. 1980, 20, 293–303. [Google Scholar] [CrossRef]
- Di, S.; Cheng, S.; Bai, W.; Wei, C.; Wang, Y.; Qin, J. Dynamic Fracture Propagation Mechanism and Application in Tight Oil Reservoir. Chin. J. Theor. Appl. Mech. 2021, 53, 2141–2155. [Google Scholar]
- Deng, H.; Steefel, C.; Molins, S.; DePaolo, D. Fracture Evolution in Multimineral Systems: The Role of Mineral Composition, Flow Rate, and Fracture Aperture Heterogeneity. ACS Earth Space Chem. 2018, 2, 112–124. [Google Scholar] [CrossRef]
- Ren, G.; Ma, X.; Zhang, S.; Zou, Y.; Duan, G.; Xiong, Q. Optimization of Water Injection Strategy before Re-Stimulation Considering Fractures Propagation. Processes 2022, 10, 1538. [Google Scholar] [CrossRef]
- Xue, L.; Liu, P.; Zhang, Y. Status and Prospect of Improved Oil Recovery Technology of High Water Cut Reservoirs. Water 2023, 15, 1342. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Luo, H.; Lu, Y.; Li, Y.; Su, C.; Chen, S. Investigation and Application of Perforation Optimization Method on Shale Gas Horizontal Well with Numerical Simulation of Multicluster Fracturing under Dense-Segment Pattern. ACS Omega 2023, 9, 675–691. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, Z.; Tang, H.; Yang, J.; Zhang, X.; Wang, B. Simulation of Fracturing and Well Pattern Optimization of Fractured Tight Sandstone Reservoirs. Front. Earth Sci. 2022, 10, 873617. [Google Scholar] [CrossRef]
- Ge, J.; Wang, D.; Qu, D. Combination Production of Vertical and Horizontal Wells. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Kuala Lumpur, Malaysia, 20–22 March 1995. [Google Scholar]
- He, X.; Zhang, P.; He, G.; Gao, Y.; Liu, M.; Zhang, Y.; Fang, D.; Li, Y. Evaluation of Sweet Spots and Horizontal-Well-Design Technology for Shale Gas in the basin-margin Transition Zone of southeastern Chongqing, SW China. Energy Geosci. 2020, 1, 134–146. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Luo, H.; Cao, S.; Cao, J.; Li, X. Staged fracturing of horizontal wells in continental tight sandstone oil reservoirs: A case study of Yanchang Formation in Western Ordos Basin, China. Front. Earth Sci. 2021, 9, 760976. [Google Scholar] [CrossRef]
- Wu, B.; Yao, J.; Lü, A. Research on Sweep Efficiency in Horizontal-Vertical Combined Well Pattern. Acta Pet. Sin. 2006, 27, 85–88. [Google Scholar]
- Zhang, F.; Wu, S.; Liu, H. A Waterflood Induced Fracture Simulation Model for Naturally Fractured Low-Permeability Reservoirs. In Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Australia, 25–27 October 2016. [Google Scholar]
- Sanchez-Rivera, D.; Mohanty, K.; Balhoff, M. Reservoir simulation and optimization of Huff-and-Puff operations in the Bakken Shale. Fuel 2015, 147, 82–94. [Google Scholar] [CrossRef]
- Di, S.; Cheng, S.; Wei, C.; Bai, W.; Shang, R.; Cao, N.; Zhang, Y. Study on the production mode of horizontal well from water huff and puff to segmented injection and production in tight reservoir. Geofluids 2021, 2021, 7947911. [Google Scholar] [CrossRef]
- He, Y. Experimental Study on Asynchronous Injection-Production in Horizontal Well Area of Low Permeability Reservoir. J. Phys. Conf. Ser. 2020, 1549, 042045. [Google Scholar] [CrossRef]
- Kang, S.; Pu, C.; Wang, Y.; Liu, W.; Wang, K.; Huang, F.; Fan, Q.; Gao, X.; Yang, Q. Parameter Optimization of Asynchronous Cyclic Waterflooding for Horizontal–Vertical Well Patterns in Tight Oil Reservoirs. ACS Omega 2022, 7, 11226–11239. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, J.; Chen, Y.; Wang, A.; Zhou, X. Analysis of asynchronous/inter-fracture injection-production mechanism under the condition of five-spot vertical and horizontal well combination in low permeability oil reservoirs. Energy 2024, 308, 132923. [Google Scholar] [CrossRef]
- Xu, X.; Wu, W.; Jiang, D.; Wu, J. Development Characteristics and Key Parameter Optimization of High-Pressure Water Injection in Low Permeability Reservoirs. In Proceedings of the International Field Exploration and Development Conference, Qingdao, China, 20–22 October 2021; Springer Nature: Singapore, 2021; pp. 3414–3423. [Google Scholar]
- Zhao, J.; Fan, J.; He, Y.; Yang, Z.; Gao, W.; Gao, W. Optimization of Horizontal Well Injection-Production Parameters for Ultra-Low Permeable–Tight Oil Production: A Case from Changqing Oilfield, Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 74–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Bi, L.; Gao, X.; Shen, B.; Hu, J.; Luo, Y.; Zhao, Y.; Chen, H.; Li, J. A technical review of CO2 flooding sweep-characteristics research advance and sweep-extend technology. Pet. Sci. 2024; in press. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Wilkinson, M.; Haszeldine, R.S. Hydrogen energy futures–foraging or farming? Chem. Soc. Rev. 2024, 53, 2258–2263. [Google Scholar] [CrossRef]
- Gao, S.; Yang, Y.; Liao, G.; Xiong, W.; Liu, H.; Shen, R.; Ye, L.; Zhu, W.; An, H. Experimental research on inter-fracture asynchronous injection-production cycle for a horizontal well in a tight oil reservoir. J. Pet. Sci. Eng. 2022, 208, 109647. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, G.; Xiong, W.; Shen, R.; Zhang, J.; Li, Q.; Wang, S.; Zhang, J.; Tan, L.; Shao, G. Physical and numerical simulation of inter-fracture flooding in heterogeneous tight oil reservoirs. Energy Rep. 2022, 8, 12970–12978. [Google Scholar] [CrossRef]
- Wang, Z.; Muhtar, M.; Xu, D.; Fang, J.; Li, J.; Liu, D.; Zhang, Z.; Gao, L. Seepage Behavior of Fractures in Paleogene Sandstone Reservoirs in Nanpu Sag, Bohai Bay Basin, Eastern China. Front. Earth Sci. 2021, 9, 718733. [Google Scholar] [CrossRef]
- Su, Z.; Li, T.; Bai, M.; Zhou, Z. Influence of Mineral Composition on Initiation Pressure of Waterflood-Induced Fractures in Tight Sandstone Reservoir. ACS Omega 2024, 9, 9269–9285. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.K. Transient Pressure Testing of Fractured Water Injection Wells. J. Pet. Technol. 1968, 20, 639–643. [Google Scholar] [CrossRef]
- Lyu, W.; Zeng, L.; Chen, M.; Qiao, D.; Fan, J.; Xia, D. An Approach for Determining the Water Injection Pressure of Low-Permeability Reservoirs. Energy Explor. Exploit. 2018, 36, 1210–1228. [Google Scholar] [CrossRef]
- Liu, H.; Pang, J.; Yu, X. A Mathematical Model for Natural Fracture Evolution in Water-Flooding Oil Reservoir. Energy Procedia 2012, 16, 1348–1356. [Google Scholar] [CrossRef]
- Zhao, X.; Zeng, L.; Wang, X.; Wang, F.; Zhang, Y.; Jiao, J.; Weng, J. Differences of Natural Fracture Characteristics and Their Development Significance in Chang 6, Chang 7 and Chang 8 Reservoir, Ningxian-Heshui Area, Ordos Basin. Sci. Geol. Sin. 2015, 50, 274–285. [Google Scholar]
- Hubbert, M.K.; Willis, D.G. Mechanics of Hydraulic Fracturing. Trans. AIME 1957, 210, 153–168. [Google Scholar] [CrossRef]
- Ji, W.; Yu, H.; Liu, X.; Fu, H.; Yuan, B.; Yan, F.; Luo, C.; Jiang, X.; Dai, C. Oil Production Mechanism of Water Injection Huff-n-Puff for Enhancing Oil Recovery in Tight Sandstone Reservoir. Energy Fuels 2023, 37, 18867–18877. [Google Scholar] [CrossRef]
- Yoon, J.S.; Zimmermann, G.; Zang, A. Numerical Investigation on Stress Shadowing in Fluid Injection-Induced Fracture Propagation in Naturally Fractured Geothermal Reservoirs. Rock Mech. Rock Eng. 2015, 48, 1439–1454. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Yao, J.; Huang, Z. Mechanistic Study of Cyclic Water Injection to Enhance Oil Recovery in Tight Reservoirs with Fracture Deformation Hysteresis. Fuel 2020, 271, 117677. [Google Scholar] [CrossRef]
- Iltaf, K.H.; Yue, D.; Wang, W.; Wan, X.; Li, S.; Wu, S.; Liu, R.; Weijia, Z.; Mehboob, S.; Shah, S.A.; et al. Facies and Petrophysical Modeling of Triassic Chang 6 Tight Sandstone Reservoir, Heshui Oil Field, Ordos Basin, China. Lithosphere 2021, 2021, 9230422. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Maximum principal stress, σh | MPa | 28 |
Minimum principal stress, σH | MPa | 36 |
Tensile strength σf | MPa | 5 |
Overburden pressure, po | MPa | 21 |
Poisson ratio, ν | - | 0.25 |
Pore pressure, pp | MPa | 14.5 |
Angle of maximum horizontal stress and fracture, β | ° | [0, 5] |
Fracture state index for area, Af | - | [0, 1] |
Initial permeability, Ki | 10−3 μm2 | 0.36 |
Mode | Group 1 | Group 2 |
---|---|---|
PIM | I1-1, I1-2, I1-3 | I2-1, I2-2, I2-3 |
DIM | I1-1, I2-2, I1-3 | I2-1, I1-2, I2-3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Cai, D.; Zhang, T.; Yu, L.; Zhou, D.; Cheng, S. Asynchronous Injection–Production Method in the High Water Cut Stage of Tight Oil Reservoirs. Energies 2024, 17, 4838. https://doi.org/10.3390/en17194838
Chen J, Cai D, Zhang T, Yu L, Zhou D, Cheng S. Asynchronous Injection–Production Method in the High Water Cut Stage of Tight Oil Reservoirs. Energies. 2024; 17(19):4838. https://doi.org/10.3390/en17194838
Chicago/Turabian StyleChen, Jianwen, Dingning Cai, Tao Zhang, Linjun Yu, Dalin Zhou, and Shiqing Cheng. 2024. "Asynchronous Injection–Production Method in the High Water Cut Stage of Tight Oil Reservoirs" Energies 17, no. 19: 4838. https://doi.org/10.3390/en17194838
APA StyleChen, J., Cai, D., Zhang, T., Yu, L., Zhou, D., & Cheng, S. (2024). Asynchronous Injection–Production Method in the High Water Cut Stage of Tight Oil Reservoirs. Energies, 17(19), 4838. https://doi.org/10.3390/en17194838