Microwave-Assisted Pyrolysis of Forest Biomass
Abstract
:1. Introduction
2. Biomass
2.1. Biomass Types
2.2. Forest Biomass
2.3. Conversion Technologies
3. Microwave-Assisted Pyrolysis (MAP)
4. MAP of Forest Biomass
5. Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sridevi, V.; Surya, D.V.; Reddy, B.R.; Shah, M.; Gautam, R.; Kumar, T.H.; Puppala, H.; Pritam, K.S.; Basak, T. Challenges and opportunities in the production of sustainable hydrogen from lignocellulosic biomass using microwave-assisted pyrolysis: A review. Int. J. Hydrogen Energy 2023, 52 Pt A, 507–531. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Ong, H.C.; Mofijur, M.; Ahmed, S.F.; Ashok, B.; Bui, V.T.V.; Chau, M.Q. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 2021, 281, 130878. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. World Energy Outlook 2023|Enhanced Reader. 2023. Available online: https://www.oecd-ilibrary.org/docserver/827374a6-en.pdf?expires=1727372493&id=id&accname=guest&checksum=D09E08F6E8794E5772E10F1FABA66EE0 (accessed on 25 September 2024).
- Motasemi, F.; Ani, F. A review on microwave-assisted production of biodiesel. Renew. Sustain. Energy Rev. 2012, 16, 4719–4733. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Bilal, M.; Salama, E.S.; Periyasamy, S.; Fattah, I.M.R.; Ruan, R.; Awasthi, M.K.; Leng, L. Phenolic-rich bio-oil production by microwave catalytic pyrolysis of switchgrass: Experimental study, life cycle assessment, and economic analysis. J. Clean. Prod. 2022, 366, 132668. [Google Scholar] [CrossRef]
- Mutsengerere, S.; Chihobo, C.H.; Musademba, D.; Nhapi, I. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2019, 104, 328–336. [Google Scholar] [CrossRef]
- Zhu, H.; Saddler, J.; Bi, X. An economic and environmental assessment of biofuel produced via microwave-assisted catalytic pyrolysis of forest residues. Energy Convers. Manag. 2022, 263, 115723. [Google Scholar] [CrossRef]
- Selvam, S.M.; Paramasivan, B. Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review. Chemosphere 2022, 286, 131631. [Google Scholar] [CrossRef]
- Zhang, J.; Tahmasebi, A.; Omoriyekomwan, J.E.; Yu, J. Direct synthesis of hollow carbon nanofibers on bio-char during microwave pyrolysis of pine nut shell. J. Anal. Appl. Pyrolysis 2018, 130, 142–148. [Google Scholar] [CrossRef]
- Makepa, D.C.; Chihobo, C.H.; Manhongo, T.T.; Musademba, D. Life-cycle assessment of microwave-assisted pyrolysis of pine sawdust as an emerging technology for biodiesel production. Results Eng. 2023, 20, 101480. [Google Scholar] [CrossRef]
- Arias, A.; Costa, C.E.; Feijoo, G.; Moreira, M.T.; Domingues, L. Process modeling, environmental and economic sustainability of the valorization of whey and eucalyptus residues for resveratrol biosynthesis. Waste Manag. 2023, 172, 226–234. [Google Scholar] [CrossRef]
- Farag, S.; Fu, D.; Jessop, P.G.; Chaouki, J. Detailed compositional analysis and structural investigation of a bio-oil from microwave pyrolysis of kraft lignin. J. Anal. Appl. Pyrolysis 2014, 109, 249–257. [Google Scholar] [CrossRef]
- Penín, L.; López, M.; Santos, V.; Alonso, J.L.; Parajó, J.C. Technologies for Eucalyptus wood processing in the scope of biorefineries: A comprehensive review. Bioresour. Technol. 2020, 311, 123528. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Yaashikaa, P.R.; Kumar, P.S.; Thamarai, P.; Deivayanai, V.C.; Rangasamy, G. A comprehensive review on techno-economic analysis of biomass valorization and conversional technologies of lignocellulosic residues. Ind. Crop. Prod. 2023, 200, 116822. [Google Scholar] [CrossRef]
- Iglesias, S.P.; Miyazaki, M.R.; Mariano, A.P.; Franco, T.T. Techno-economic assessment of bio-oil produced from Eucalyptus forestry residues. Ind. Crop. Prod. 2021, 171, 113936. [Google Scholar] [CrossRef]
- Wang, X.; Morrison, W.; Du, Z.; Wan, Y.; Lin, X.; Chen, P.; Ruan, R. Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition. Appl. Energy 2012, 99, 386–392. [Google Scholar] [CrossRef]
- Konstantinavičienė, J. Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development. Sustain. 2023, 15, 13871. [Google Scholar] [CrossRef]
- Gonçalves, M.; Freire, F.; Garcia, R. Material flow analysis of forest biomass in Portugal to support a circular bioeconomy. Resour. Conserv. Recycl. 2021, 169. [Google Scholar] [CrossRef]
- Chen, X.; Che, Q.; Li, S.; Liu, Z.; Yang, H.; Chen, Y.; Wang, X.; Shao, J.; Chen, H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process. Technol. 2019, 196, 106180. [Google Scholar] [CrossRef]
- Salema, A.A.; Ani, F.N. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation. Bioresour. Technol. 2012, 125, 102–107. [Google Scholar] [CrossRef]
- Foong, S.Y.; Liew, R.K.; Yang, Y.; Cheng, Y.W.; Yek, P.N.Y.; Wan Mahari, W.A.; Lee, X.Y.; Han, C.S.; Vo, D.V.N.; Van Le, Q.; et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem. Eng. J. 2020, 389, 124401. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Papari, S.; Hawboldt, K. A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models. Renew. Sustain. Energy Rev. 2015, 52, 1580–1595. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X. Microwave-assisted catalytic biomass pyrolysis: Effects of catalyst mixtures. Appl. Catal. B Environ. 2019, 253, 226–234. [Google Scholar] [CrossRef]
- Fan, J.; Shuttleworth, P.S.; Gronnow, M.; Breeden, S.W.; Clark, J.H.; Macquarrie, D.J.; Budarin, V.L. Influence of Density on Microwave Pyrolysis of Cellulose. ACS Sustain. Chem. Eng. 2018, 6, 2916–2920. [Google Scholar] [CrossRef]
- Ge, S.; Yek, P.N.Y.; Cheng, Y.W.; Xia, C.; Wan Mahari, W.A.; Liew, R.K.; Peng, W.; Yuan, T.Q.; Tabatabaei, M.; Aghbashlo, M.; et al. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renew. Sustain. Energy Rev. 2021, 135, 110148. [Google Scholar] [CrossRef]
- Tabakaev, R.; Kalinich, I.; Dimitryuk, I.; Asilbekov, A.; Astafev, A.; Ibraeva, K.; Shanenkov, I.; Mostovshchikov, A.; Chumerin, P. Experimental study of microwave processing of pine nut shells into a high-calorie gas: Main results and physicochemical features. J. Anal. Appl. Pyrolysis 2023, 176, 106264. [Google Scholar] [CrossRef]
- Li, J.; Dai, J.; Liu, G.; Zhang, H.; Gao, Z.; Fu, J.; He, Y.; Huang, Y. Biochar from microwave pyrolysis of biomass: A review. Biomass Bioenergy 2016, 94, 228–244. [Google Scholar] [CrossRef]
- Akbari, M.; Kumar, A. The development of data-intensive techno-economic models for the comparison of renewable natural gas production from six different biomass feedstocks for the decarbonization of energy demand sectors. Fuel 2024, 358, 130107. [Google Scholar] [CrossRef]
- Patel, P.; Vaezi, M.; Billal, M.M.; Kumar, A. Development of data-intensive techno-economic models for the assessment of a biomass, waste heat, and MSW integrated waste-to-electricity facility. Resour. Conserv. Recycl. Adv. 2023, 20, 200188. [Google Scholar] [CrossRef]
- Tisserant, A.; Hu, X.; Liu, Q.; Xie, Z.; Zhao, W.; Cherubini, F. Biochar and Its Potential to Deliver Negative Emissions and Better Soil Quality in Europe. Earth’s Futur. 2023, 11, e2022EF003246. [Google Scholar] [CrossRef]
- França, L.C.d.J.; e Silva, C.S.J.; Mucida, D.P.; da Costa, J.S.; Gomide, L.R. Towards renewable energy projects under sustainable watersheds principles for forest biomass supply. Biomass Bioenergy 2023, 176, 106916. [Google Scholar] [CrossRef]
- Brunel, C.; Farnet Da Silva, A.M.; Lerch, T.Z.; Gros, R. Influence of tree residue retention in Mediterranean forest on soil microbial communities responses to frequent warming and drying events. Eur. J. Soil Biol. 2023, 118, 103541. [Google Scholar] [CrossRef]
- Freer-Smith, P.; Bailey-Bale, J.H.; Donnison, C.L.; Taylor, G. The good, the bad, and the future: Systematic review identifies best use of biomass to meet air quality and climate policies in California. GCB Bioenergy 2023, 15, 1312–1328. [Google Scholar] [CrossRef]
- Natural Resources Canada. Is Forest Bioenergy Good for the Environment? Natural Resources Canada: Ottawa, ON, Canada, 2010. [Google Scholar]
- Serra, R.; Niknia, I.; Paré, D.; Titus, B.; Gagnon, B.; Laganière, J. From conventional to renewable natural gas: Can we expect GHG savings in the near term? Biomass Bioenergy 2019, 131, 105396. [Google Scholar] [CrossRef]
- Jordan, M.; Meisel, K.; Dotzauer, M.; Schröder, J.; Cyffka, K.F.; Dögnitz, N.; Schmid, C.; Lenz, V.; Naumann, K.; Daniel-Gromke, J.; et al. The controversial role of energy crops in the future German energy system: The trade offs of a phase-out and allocation priorities of the remaining biomass residues. Energy Rep. 2023, 10, 3848–3858. [Google Scholar] [CrossRef]
- Rijal, P.; Bras, P.; Garrido, S.; Matias, J.; Pimentel, C.; Carvalho, H. Residual Forestry Biomass Supply Chain: A Mapping Approach. Int. J. Ind. Eng. Manag. 2023, 14, 244–256. [Google Scholar] [CrossRef]
- Negi, H.; Suyal, D.C.; Soni, R.; Giri, K.; Goel, R. Indian Scenario of Biomass Availability and Its Bioenergy-Conversion Potential. Energies 2023, 16, 5805. [Google Scholar] [CrossRef]
- Gan, X.; Guo, B.; Ma, Z.; Fang, M.; Yan, Y.; Liu, W. The Effect of Forest Growth Rate on Climate Change Impacts of Logging Residue Utilization. Atmosphere 2023, 14, 1270. [Google Scholar] [CrossRef]
- Watanabe, M.D.B.; Hu, X.; Ballal, V.; Cavalett, O.; Cherubini, F. Climate change mitigation potentials of on grid-connected Power-to-X fuels and advanced biofuels for the European maritime transport. Energy Convers. Manag. X 2023, 20, 100418. [Google Scholar] [CrossRef]
- Hu, J.; Jåstad, E.O.; Bolkesjø, T.F.; Rørstad, P.K. Impact of large-scale Bio-CCS deployment on forest biomass competition and forest industry production. Biomass Bioenergy 2023, 175, 106896. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Mahamood, R.M.; Jen, T.C.; Loha, C.; Akinlabi, E.T. An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties. J. Bioresour. Bioprod. 2023, 8, 333–360. [Google Scholar] [CrossRef]
- Rehan, M.; Amir Raza, M.; Ghani Abro, A.; M Aman, M.; Mohammad Ibrahim Ismail, I.; Sattar Nizami, A.; Imtiaz Rashid, M.; Summan, A.; Shahzad, K.; Ali, N. A sustainable use of biomass for electrical energy harvesting using distributed generation systems. Energy 2023, 278, 128036. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Nadagouda, M.N.; Badawi, M.; Bonilla-Petriciolet, A.; Aminabhavi, T.M. Valorization of biowastes for clean energy production, environmental depollution and soil fertility. J. Environ. Manag. 2023, 332, 117410. [Google Scholar] [CrossRef]
- Zhou, C.H.; Xia, X.; Lin, C.X.; Tong, D.S.; Beltramini, J. Beltramini Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 2011, 40, 5588–5617. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, D.; Zhou, Z.; Page, S.J.; Liu, D.; Zhao, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021, 57, 247–280. [Google Scholar] [CrossRef]
- European Union. Infographics on Biomass Sources and Uses in the EU-27; European Commission: 2022. Available online: https://knowledge4policy.ec.europa.eu/publication/infographics-biomass-sources-uses-eu-27-2017-data_en (accessed on 25 September 2024).
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Morgan, H.M.; Bu, Q.; Liang, J.; Liu, Y.; Mao, H.; Shi, A.; Lei, H.; Ruan, R. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour. Technol. 2017, 230, 112–121. [Google Scholar] [CrossRef]
- Al Shra’Ah, A.; Helleur, R. Microwave pyrolysis of cellulose at low temperature. J. Anal. Appl. Pyrolysis 2014, 105, 91–99. [Google Scholar] [CrossRef]
- Wang, N.; Tahmasebi, A.; Yu, J.; Xu, J.; Huang, F.; Mamaeva, A. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresour. Technol. 2015, 190, 89–96. [Google Scholar] [CrossRef] [PubMed]
- European Commission Forests. Available online: https://international-partnerships.ec.europa.eu/publications/forest-partnerships-factsheets_en (accessed on 20 August 2024).
- Chiang, L.E.; Castro, F.A.; Molina, F.A. Socioeconomic and environmental benefits of substituting firewood with charcoal briquettes produced from biomass residues in the Forestry Belt in Chile. Energy Sustain. Dev. 2023, 77, 101341. [Google Scholar] [CrossRef]
- Wang, R.; Cai, W.; Yu, L.; Li, W.; Zhu, L.; Cao, B.; Li, J.; Shen, J.; Zhang, S.; Nie, Y.; et al. A high spatial resolution dataset of China’s biomass resource potential. Sci. Data 2023, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.; Teixeira, S.; Teixeira, J.C. Characterization of the physicochemical and thermal properties of different forest residues. Biomass Bioenergy 2023, 175, 106870. [Google Scholar] [CrossRef]
- Węgiel, A.; Jakubowski, J.; Molińska-Glura, M.; Polowy, K.; Węgiel, J.; Gornowicz, R. Effect of logging residue removal and mechanical site preparation on productivity of the subsequent Scots pine (Pinus sylvestris L.) stands. Ann. For. Sci. 2023, 80, 5. [Google Scholar] [CrossRef]
- Arpia, A.A.; Chen, W.H.; Lam, S.S.; Rousset, P.; de Luna, M.D.G. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review. Chem. Eng. J. 2021, 403, 126233. [Google Scholar] [CrossRef]
- Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [Google Scholar] [CrossRef]
- Hadiya, V.; Popat, K.; Vyas, S.; Varjani, S.; Vithanage, M.; Kumar Gupta, V.; Núñez Delgado, A.; Zhou, Y.; Loke Show, P.; Bilal, M.; et al. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. Bioresour. Technol. 2022, 355, 127303. [Google Scholar] [CrossRef]
- Velvizhi, G.; Jacqueline, P.J.; Shetti, N.P.; Latha, K.; Mohanakrishna, G.; Aminabhavi, T.M. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. J. Environ. Manag. 2023, 345, 118527. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Tejasvi, R. A review on role of process parameters on pyrolysis of biomass and plastics: Present scope and future opportunities in conventional and microwave-assisted pyrolysis technologies. Process Saf. Environ. Prot. 2022, 162, 435–462. [Google Scholar] [CrossRef]
- Ronsse, F.; Nachenius, R.W.; Prins, W. Carbonization of Biomass. Elsevier B.V.: Amsterdam, The Netherlands, 2015; ISBN 9780444632906. [Google Scholar]
- Huang, Y.F.; Chiueh, P.T.; Lo, S.L. A review on microwave pyrolysis of lignocellulosic biomass. Sustain. Environ. Res. 2016, 26, 103–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.T. 5—Hydrothermal liquefaction of protein-containing feedstocks. In Direct Thermochemical Liquefaction for Energy Applications; Rosendahl, L., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 127–168. ISBN 9780081010297. [Google Scholar]
- Guo, H.; Chang, Y.; Lee, D.J.; Tien Thanh, N.; Mostapha, M.; Lam, M.K.; Ishak, S.; Kanna Dasan, Y.; Lim, J.W.; Tan, I.S.; et al. Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches. Renew. Sustain. Energy Rev. 2024, 98, 95–123. [Google Scholar] [CrossRef]
- Guo, H.; Chang, Y.; Lee, D.J. Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. Bioresour. Technol. 2018, 252, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Stickel, J.J.; Elander, R.T.; Mcmillan, J.D.; Brunecky, R. Chapter 4 Enzymatic Hydrolysis of Lignocellulosic Biomass. In Bioprocessing of Renewable Resources to Commodity Bioproducts; Virendra, S., Bisaria, A.K., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2014; pp. 77–103. [Google Scholar]
- Tien Thanh, N.; Mostapha, M.; Lam, M.K.; Ishak, S.; Kanna Dasan, Y.; Lim, J.W.; Tan, I.S.; Lau, S.Y.; Chin, B.L.F.; Hadibarata, T. Fundamental understanding of in-situ transesterification of microalgae biomass to biodiesel: A critical review. Energy Convers. Manag. 2022, 270, 116212. [Google Scholar] [CrossRef]
- Santos, F.; Eichler, P.; de Queiroz, J.H.; Gomes, F. (Eds.) Chapter 11—Production of second-generation ethanol from sugarcane. In Sugarcane Biorefinery, Technology and Perspectives; Academic Press: Cambridge, MA, USA, 2020; pp. 195–228. ISBN 9780128142363. [Google Scholar]
- Prado, J.M.; Lachos-Perez, D.; Forster-Carneiro, T.; Rostagno, M.A. Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. Food Bioprod. Process. 2016, 98, 95–123. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Conversion of Biomass to Biofuels and Life Cycle Assessment: A Review; Springer International Publishing: Cham, Switzerland, 2021; Volume 19, ISBN 0123456789. [Google Scholar]
- García-Velásquez, C.A.; Cardona, C.A. Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment. Energy 2019, 172, 232–242. [Google Scholar] [CrossRef]
- Liu, T.; Miao, P.; Shi, Y.; Tang, K.H.D.; Yap, P.S. Recent advances, current issues and future prospects of bioenergy production: A review. Sci. Total Environ. 2022, 810, 152181. [Google Scholar] [CrossRef]
- Syed, N.R.; Zhang, B.; Mwenya, S.; Aldeen, A.S. A Systematic Review on Biomass Treatment Using Microwave-Assisted Pyrolysis under PRISMA Guidelines. Molecules 2023, 28, 5551. [Google Scholar] [CrossRef]
- Andooz, A.; Eqbalpour, M.; Kowsari, E.; Ramakrishna, S.; Ansari Cheshmeh, Z. A comprehensive review on pyrolysis from the circular economy point of view and its environmental and social effects. J. Clean. Prod. 2023, 388, 136021. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Awasthi, A.; Sahoo, A.; Rehman, S.; Pant, K.K.; Murugavelh, S.; Huang, Q.; Anthony, E.; Fennel, P.; et al. Biomass pyrolysis: A review on recent advancements and green hydrogen production. Bioresour. Technol. 2022, 364, 128087. [Google Scholar] [CrossRef]
- Oh, S.; Lee, J.; Lam, S.S.; Kwon, E.E.; Ha, J.M.; Tsang, D.C.W.; Ok, Y.S.; Chen, W.H.; Park, Y.K. Fast hydropyrolysis of biomass Conversion: A comparative review. Bioresour. Technol. 2021, 342, 126067. [Google Scholar] [CrossRef]
- Pahnila, M.; Koskela, A.; Sulasalmi, P.; Fabritius, T.; Roy, P.; Dias, G.; Andooz, A.; Eqbalpour, M.; Kowsari, E.; Ramakrishna, S.; et al. A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. Renew. Sustain. Energy Rev. 2023, 388, 6936. [Google Scholar] [CrossRef]
- Resende, F.L.P. Recent advances on fast hydropyrolysis of biomass. Catal. Today 2016, 269, 148–155. [Google Scholar] [CrossRef]
- Vignesh, N.S.; Soosai, M.R.; Chia, W.Y.; Wahid, S.N.; Varalakshmi, P.; Moorthy, I.M.G.; Ashokkumar, B.; Arumugasamy, S.K.; Selvarajoo, A.; Chew, K.W. Microwave-assisted pyrolysis for carbon catalyst, nanomaterials and biofuel production. Fuel 2022, 313, 123023. [Google Scholar] [CrossRef]
- Fricler, V.Y.; Nyashina, G.S.; Vershinina, K.Y.; Vinogrodskiy, K.V.; Shvets, A.S.; Strizhak, P.A. Microwave pyrolysis of agricultural waste: Influence of catalysts, absorbers, particle size and blending components. J. Anal. Appl. Pyrolysis 2023, 171, 105962. [Google Scholar] [CrossRef]
- Abdelsayed, V.; Ellison, C.; Trubetskaya, A.; Smith, M.; Shekhawat, D. Effect of Microwave and Thermal Co-pyrolysis of Low Rank Coal and Pine Wood on Product Distributions and Char Structure. Energy Fuels 2019, 33, 7069–7082. [Google Scholar] [CrossRef]
- Li, X.; Li, K.; Geng, C.; El Mashad, H.; Li, H.; Yin, W. Biochar from microwave pyrolysis of artemisia slengensis: Characterization and methylene blue adsorption capacity. Appl. Sci. 2019, 9, 1813. [Google Scholar] [CrossRef]
- Su, G.; Ong, H.C.; Cheah, M.Y.; Chen, W.H.; Lam, S.S.; Huang, Y. Microwave-assisted pyrolysis technology for bioenergy recovery: Mechanism, performance, and prospect. Fuel 2022, 326, 124983. [Google Scholar] [CrossRef]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G.; et al. Microwave assisted preparation of activated carbon from biomass: A review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Yadav, S.P.S.; Bhandari, S.; Bhatta, D.; Poudel, A.; Bhattarai, S.; Yadav, P.; Ghimire, N.; Paudel, P.; Shrestha, J.; Oli, B. Biochar application: A sustainable approach to improve soil health. J. Agric. Food Res. 2023, 11, 100498. [Google Scholar]
- Zhou, R.; Lei, H.; Julson, J.L. Effects of reaction temperature, time and particle size on switchgrass microwave pyrolysis and reaction kinetics. Int. J. Agric. Biol. Eng. 2013, 6, 53–61. [Google Scholar] [CrossRef]
- Zheng, A.; Xia, S.; Cao, F.; Liu, S.; Yang, X.; Zhao, Z.; Tian, Y.; Li, H. Directional valorization of eucalyptus waste into value-added chemicals by a novel two-staged controllable pyrolysis process. Chem. Eng. J. 2021, 404, 127045. [Google Scholar] [CrossRef]
- Luo, H.; Bao, L.; Kong, L.; Sun, Y. Low temperature microwave-assisted pyrolysis of wood sawdust for phenolic rich compounds: Kinetics and dielectric properties analysis. Bioresour. Technol. 2017, 238, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Karthäuser, J.; Biziks, V.; Frauendorf, H.; Hoffmann, L.; Raskop, S.; Roggatz, D.; Militz, H. Substituting phenol in phenol–formaldehyde resins for wood modification by phenolic cleavage products from vacuum low-temperature microwave-assisted pyrolysis of softwood kraft lignin. Cellulose 2023, 30, 7277–7293. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Wang, L.; Yadavalli, G.; Wei, Y.; Zhang, X.; Zhu, L.; Liu, Y. Biofuel production from catalytic microwave pyrolysis of Douglas fir pellets over ferrum-modified activated carbon catalyst. J. Anal. Appl. Pyrolysis 2015, 112, 74–79. [Google Scholar] [CrossRef]
- Reddy, B.R.; Sridevi, V.; Kumar, T.H.; Rao, C.S.; Palla, V.C.S.; Suriapparao, D.V.; Undi, G.S. Synthesis of renewable carbon biorefinery products from susceptor enhanced microwave-assisted pyrolysis of agro-residual waste: A review. Process Saf. Environ. Prot. 2022, 164, 354–372. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Liu, S.; Peng, P.; Min, M.; Cheng, Y.; Anderson, E.; Zhou, N.; Fan, L.; Liu, C.; et al. Effects of feedstock characteristics on microwave-assisted pyrolysis—A review. Bioresour. Technol. 2017, 230, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, L.; Ju, T.; Meng, F.; Han, S.; Chen, K.; Jiang, J. Microwave-assisted pyrolysis of solid waste for production of high-value liquid oil, syngas, and carbon solids: A review. Renew. Sustain. Energy Rev. 2024, 189, 113979. [Google Scholar] [CrossRef]
- Sharma, A.K.; Ghodke, P.K.; Goyal, N.; Bobde, P.; Kwon, E.E.; Lin, K.Y.A.; Chen, W.H. A critical review on biochar production from pine wastes, upgradation techniques, environmental sustainability, and challenges. Bioresour. Technol. 2023, 387, 129632. [Google Scholar] [CrossRef] [PubMed]
- Lapshinov, B.A. Temperature Measurement Methods in Microwave Heating Technologies. Meas. Tech. 2021, 64, 453–462. [Google Scholar] [CrossRef]
- Chemat, F.; Esveld, E. Microwave super-heated boiling of organic liquids: Oigin, effect and application. Chem. Eng. Technol. 2001, 24, 735–744. [Google Scholar] [CrossRef]
- Feng, H.; Yin, Y.; Tang, J. Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Eng. Rev. 2012, 4, 89–106. [Google Scholar] [CrossRef]
- Anwar, J.; Shafique, U.; Zaman, W.U.; Rehman, R.; Salman, M.; Dar, A.; Anzano, J.M.; Ashraf, U.; Ashraf, S. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens. Arab. J. Chem. 2015, 8, 100–104. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Tanneru, H.K.; Reddy, B.R. A review on the role of susceptors in the recovery of valuable renewable carbon products from microwave-assisted pyrolysis of lignocellulosic and algal biomasses: Prospects and challenges. Environ. Res. 2022, 215, 114378. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, H.S.; Raghavan, V.G.S.; Santos, T.; Hennetier, L.; Costa, V.A.F.; Costa, L.C.; Liu, H.P.; Chen, T.P.; Li, Y.; Song, Z.Y.; et al. Temperature rise characteristics of ZhunDong coal during microwave pyrolysis. J. Manuf. Process. 2016, 148, 92–100. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Rauber, J.M.; Raghavan, G.V.; Van De Voort, F.R. Evaluation of shielded thermocouples for measuring temperature of foods in a microwave oven. J. Food Sci. Technol. 1998, 35, 325–329. [Google Scholar]
- Santos, T.; Hennetier, L.; Costa, V.A.F.; Costa, L.C. Microwave versus conventional porcelain firing: Temperature measurement. J. Manuf. Process. 2019, 41, 92–100. [Google Scholar] [CrossRef]
- Siddique, I.J.; Salema, A.A. Unraveling the metallic thermocouple effects during microwave heating of biomass. Energy 2023, 267, 126529. [Google Scholar] [CrossRef]
- Wada, D.; Sugiyama, J.I.; Zushi, H.; Murayama, H. An optical fiber sensing technique for temperature distribution measurements in microwave heating. Meas. Sci. Technol. 2015, 26, 085105. [Google Scholar] [CrossRef]
- Lapshinov, B.A.; Mamontov, A.V. Application of Spectral Pyrometry Under Conditions of Intense Microwave Electromagnetic Fields. Meas. Tech. 2020, 63, 741–746. [Google Scholar] [CrossRef]
- Valverde, C.; Rodríguez-García, M.M.; Rojas, E.; Bayón, R. State of the art of the fundamental aspects in the concept of microwave-assisted heating systems. Int. Commun. Heat Mass Transf. 2024, 156, 107594. [Google Scholar] [CrossRef]
- Gulyaev, I.P.; Dolmatov, A.V. Spectral-brightness pyrometry: Radiometric measurements of non-uniform temperature distributions. Int. J. Heat Mass Transf. 2018, 116, 1016–1025. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Tahir, F.; Pradhan, S.; Al-Ansari, T.; McKay, G. Life cycle assessment of biofuel production from waste date stones using conventional and microwave pyrolysis. Energy Convers. Manag. X 2024, 21, 100510. [Google Scholar] [CrossRef]
- Seow, Y.X.; Tan, Y.H.; Kansedo, J.; Tan, I.S.; Chin, B.L.F.; Mubarak, N.M.; Bin Mohiddin, M.N.; Yek, P.N.Y.; Chan, Y.S.; Abdullah, M.O. Pyrolysis assessment of palm kernel shell waste valorization to sulfonated magnetic biochar from techno-economic and energy perspectives. Discov. Appl. Sci. 2024, 6, 398. [Google Scholar] [CrossRef]
- Muniyappan, D.; Lima, G.R.; Pereira, A.O.; Gopi, R.; Ramanathan, A. Multivariate combined optimization strategy and comparative life-cycle assessment of biomass and plastic residues via microwave co-pyrolysis approach towards a sustainable synthesis of renewable hydrocarbon fuel. J. Environ. Chem. Eng. 2023, 11, 111436. [Google Scholar] [CrossRef]
- Fodah, A.E.M.; Abdelwahab, T.A.M. Process optimization and technoeconomic environmental assessment of biofuel produced by solar powered microwave pyrolysis. Sci. Rep. 2022, 12, 12572. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Yek, P.N.Y.; Lock, S.S.M.; Chin, B.L.F.; Yiin, C.L.; Lan, J.C.W.; Lam, S.S. Microwave-assisted pyrolysis in biomass and waste valorisation: Insights into the life-cycle assessment (LCA) and techno-economic analysis (TEA). Chem. Eng. J. 2024, 491, 151942. [Google Scholar] [CrossRef]
- Ren, X.; Shanb Ghazani, M.; Zhu, H.; Ao, W.; Zhang, H.; Moreside, E.; Zhu, J.; Yang, P.; Zhong, N.; Bi, X. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Appl. Energy 2022, 315, 118970. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Liu, S.; Fan, L.; Zhou, N.; Min, M.; Cheng, Y.; Peng, P.; Anderson, E.; Wang, Y.; et al. Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production. In Pyrolysis; InTech: Houston, TX, USA, 2017. [Google Scholar]
- Fernandes, A.; Cruz-Lopes, L.; Esteves, B.; Evtuguin, D.V. Microwaves and Ultrasound as Emerging Techniques for Lignocellulosic Materials. Materials 2023, 16, 7351. [Google Scholar] [CrossRef]
- Ravikumar, C.; Senthil Kumar, P.; Subhashni, S.K.; Tejaswini, P.V.; Varshini, V. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: Experimental investigation on bio-oil yield and high heating values. Sustain. Mater. Technol. 2017, 11, 19–27. [Google Scholar] [CrossRef]
- Thue, P.S.; Adebayo, M.A.; Lima, E.C.; Sieliechi, J.M.; Machado, F.M.; Dotto, G.L.; Vaghetti, J.C.P.; Dias, S.L.P. Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. J. Mol. Liq. 2016, 223, 1067–1080. [Google Scholar] [CrossRef]
- Giorcelli, M.; Das, O.; Sas, G.; Försth, M.; Bartoli, M. A review of bio-oil production through microwave-Assisted pyrolysis. Processes 2021, 9, 561. [Google Scholar] [CrossRef]
- Yang, Y.; Shahbeik, H.; Shafizadeh, A.; Masoudnia, N.; Rafiee, S.; Zhang, Y.; Pan, J.; Tabatabaei, M.; Aghbashlo, M. Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries. Renew. Energy 2022, 201, 70–86. [Google Scholar] [CrossRef]
- Pritam, K.; Puppala, H.; Palla, S.; Suriapparao, D.V.; Basak, T. A two-step hybrid multi-criteria approach to analyze the significance of parameters affecting microwave-assisted pyrolysis. Process Saf. Environ. Prot. 2023, 171, 975–985. [Google Scholar] [CrossRef]
- Zheng, A.; Zhao, K.; Sun, J.; Jiang, L.; Zhao, Z.; Huang, Z.; Wei, G.; He, F.; Li, H. Effect of microwave-assisted organosolv fractionation on the chemical structure and decoupling pyrolysis behaviors of waste biomass. J. Anal. Appl. Pyrolysis 2018, 131, 120–127. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Luo, K.; Shao, J.; Yang, H. The influence of microwave drying on biomass pyrolysis. Energy and Fuels 2008, 22, 67–74. [Google Scholar] [CrossRef]
- Liang, J.; Xu, X.; Yu, Z.; Chen, L.; Liao, Y.; Ma, X. Effects of microwave pretreatment on catalytic fast pyrolysis of pine sawdust. Bioresour. Technol. 2019, 293, 122080. [Google Scholar] [CrossRef]
- Karthäuser, J.; Biziks, V.; Frauendorf, H.; Mai, C.; Militz, H. Vacuum Low-Temperature Microwave-Assisted Pyrolysis of Technical Lignins. Polymers 2022, 14, 3383. [Google Scholar] [CrossRef]
- Venegas-Vásconez, D.; Arteaga-Pérez, L.E.; Aguayo, M.G.; Romero-Carrillo, R.; Guerrero, V.H.; Tipanluisa-Sarchi, L.; Alejandro-Martín, S. Analytical Pyrolysis of Pinus radiata and Eucalyptus globulus: Effects of Microwave Pretreatment on Pyrolytic Vapours Composition. Polymers 2023, 15, 3790. [Google Scholar] [CrossRef]
- Yang, X.; Cui, C.; Zheng, A.; Zhao, Z.; Wang, C.; Xia, S.; Huang, Z.; Wei, G.; Li, H. Ultrasonic and microwave assisted organosolv pretreatment of pine wood for producing pyrolytic sugars and phenols. Ind. Crop. Prod. 2020, 157, 112921. [Google Scholar] [CrossRef]
- Duan, X.; Srinivasakannan, C.; Peng, J.; Zhang, L.; Zhang, Z. Comparison of activated carbon prepared from Jatropha hull by conventional heating and microwave heating. Biomass Bioenergy 2011, 35, 3920–3926. [Google Scholar] [CrossRef]
- Mašek, O.; Budarin, V.; Gronnow, M.; Crombie, K.; Brownsort, P.; Fitzpatrick, E.; Hurst, P. Microwave and slow pyrolysis biochar—Comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 2013, 100, 41–48. [Google Scholar] [CrossRef]
- Merckel, R.D. Fast and Microwave-Induced Pyrolysis Bio-Oil from Eucalyptus Grandis: Possibilities for Upgrading. Master’s Thesis, University of Pretoria (South Africa), Pretoria, South Africa, 2014. [Google Scholar]
- Du, J.; Liu, P.; Zuo-Hua, L.; Da-Gui, S.; Chang-Yuan, T. Fast pyrolysis of biomass for bio-oil with ionic liquid and microwave irradiation. J. Fuel Chem. Technol. 2010, 38, 554–559. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, P.; Zhang, B.; Yang, C.; Liu, Y.; Lin, X.; Ruan, R. Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. J. Anal. Appl. Pyrolysis 2009, 86, 161–167. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2016, 119, 224–232. [Google Scholar] [CrossRef]
- Lo, S.L.; Huang, Y.F.; Chiueh, P.T.; Kuan, W.H. Microwave Pyrolysis of Lignocellulosic Biomass. Energy Procedia 2017, 105, 41–46. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chiueh, P.T.; Kuan, W.H.; Lo, S.L. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis. Energy 2015, 89, 974–981. [Google Scholar] [CrossRef]
- Shi, K.; Yan, J.; Menéndez, J.A.; Luo, X.; Yang, G.; Chen, Y.; Lester, E.; Wu, T. Production of H2-Rich Syngas From Lignocellulosic Biomass Using Microwave-Assisted Pyrolysis Coupled With Activated Carbon Enabled Reforming. Front. Chem. 2020, 8, 3. [Google Scholar] [CrossRef]
- Wauts, J. Catalytic Microwave Pyrolysis to Produce Upgraded Bio-Oil. Master’s Thesis, University of Pretoria (South Africa), Pretoria, South Africa, 2016; pp. 1–111. [Google Scholar]
- Gronnow, M.J.; Budarin, V.L.; Mašek, O.; Crombie, K.N.; Brownsort, P.A.; Shuttleworth, P.S.; Hurst, P.R.; Clark, J.H. Torrefaction/biochar production by microwave and conventional slow pyrolysis—Comparison of energy properties. GCB Bioenergy 2013, 5, 144–152. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chiueh, P.T.; Kuan, W.H.; Lo, S.L. Product distribution and heating performance of lignocellulosic biomass pyrolysis using microwave heating. Energy Procedia 2018, 152, 910–915. [Google Scholar] [CrossRef]
- Dong, Q.; Xiong, Y. Kinetics study on conventional and microwave pyrolysis of moso bamboo. Bioresour. Technol. 2014, 171, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.T.; Sanz, A.B.; Nozal, L.; Castro, F.; Alonso, R.; Aguirre, J.L.; González, S.D.; Matía, M.P.; Novella, J.L.; Peinado, M.; et al. Microwave-assisted pyrolysis of Mediterranean forest biomass waste: Bioproduct characterization. J. Anal. Appl. Pyrolysis 2017, 127, 278–285. [Google Scholar] [CrossRef]
- Parvez, A.M.; Afzal, M.T.; Jiang, P.; Wu, T. Microwave-assisted biomass pyrolysis polygeneration process using a scaled-up reactor: Product characterization, thermodynamic assessment and bio-hydrogen production. Biomass Bioenergy 2020, 139, 105651. [Google Scholar] [CrossRef]
- Nhuchhen, D.R.; Afzal, M.T.; Dreise, T.; Salema, A.A. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass Bioenergy 2018, 119, 293–303. [Google Scholar] [CrossRef]
- Sellamuthu, S.; Chowdhury, Z.Z.; Khalid, K.; Shibly, S.M.; Rahman, M.M.; Rana, M.; Badruddin, I.A.; Khaleed, H.M.T.; Kamangar, S.; Johan, M.R.B.; et al. Mathematical Modelling and Optimization for Facile Synthesis of Structured Activated Carbon (ACs) from Adansonia kilima (Baobab) Wood Chips Integrating Microwave-Assisted Pyrolysis for the Elimination of Lead (II) Cations from Wastewater Effluents. Molecules 2023, 28, 6640. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, Z.; Lin, L.; Qiu, R.; Yan, K. Synthesis of alkoxyphenols-rich bio-oil by microwave-assisted catalytic pyrolysis of wood over MoS2 catalyst. Renew. Energy 2023, 219, 119491. [Google Scholar] [CrossRef]
- Khelfa, A.; Rodrigues, F.A.; Koubaa, M.; Vorobiev, E. Microwave-assisted pyrolysis of pine wood sawdust mixed with activated carbon for bio-oil and bio-char production. Processes 2020, 8, 1437. [Google Scholar] [CrossRef]
- Wu, C.; Budarin, V.L.; Gronnow, M.J.; De Bruyn, M.; Onwudili, J.A.; Clark, J.H.; Williams, P.T. Conventional and microwave-assisted pyrolysis of biomass under different heating rates. J. Anal. Appl. Pyrolysis 2014, 107, 276–283. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wu, T.Y.; Jhang, S.R.; Yang, P.M.; Hsiao, Y.H. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor. Bioresour. Technol. 2014, 161, 304–309. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, S.; Wang, B.; Shi, C.; Nie, Y. Microwave –assisted pyrolysis aspen wood for production of valuable products under different temperatures. Arab. J. Chem. 2023, 16, 105187. [Google Scholar] [CrossRef]
- Wang, C.; Lei, H.; Zhao, Y.; Qian, M.; Kong, X.; Mateo, W.; Zou, R.; Ruan, R. Integrated harvest of phenolic monomers and hydrogen through catalytic pyrolysis of biomass over nanocellulose derived biochar catalyst. Bioresour. Technol. 2021, 320, 124352. [Google Scholar] [CrossRef] [PubMed]
- Huo, E.; Duan, D.; Lei, H.; Liu, C.; Zhang, Y.; Wu, J.; Zhao, Y.; Huang, Z.; Qian, M.; Zhang, Q.; et al. Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts. Energy 2020, 199, 117459. [Google Scholar] [CrossRef]
- Wallace, C.A.; Afzal, M.T.; Saha, G.C. Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresour. Bioprocess. 2019, 6, 33. [Google Scholar] [CrossRef]
- Dutta, B.; Gariepy, Y.; Raghavan, G.S.V. Effects of process parameters and selective heating on microwave pyrolysis of lignocellulosic biomass for biochar production. Can. Biosyst. Eng. Genie Biosyst. 2016, 57, 323–332. [Google Scholar] [CrossRef]
- Zhou, C.; Deng, Z.; Zhang, Y.; Li, X.; Liu, Y.; Fu, J.; Chen, L.; Yuan, Y.; Jin, Y.; Dai, J.; et al. Pyrolysis of typical solid wastes in a continuously operated microwave-assisted auger pyrolyser: Char characterization, analysis and energy balance. J. Clean. Prod. 2022, 373, 133818. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components. Bioresour. Technol. 2014, 170, 262–269. [Google Scholar] [CrossRef]
- Wang, X.H.; Chen, H.P.; Ding, X.J.; Yang, H.P.; Zhang, S.H.; Shen, Y.Q. Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources 2009, 4, 946–959. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Arshad, M.; Ulah, A.; Naeth, M.A.; Chang, S.X. Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature. Bioresour. Technol. 2021, 320, 124282. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Ren, S.; Wang, L.; Holladay, J.; Zhang, Q.; Tang, J.; Ruan, R. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour. Technol. 2011, 102, 7004–7007. [Google Scholar] [CrossRef]
- Bu, Q. Catalytic Microwave Pyrolysis of Biomass for Renewable Phenols and Fuels. Ph.D. Thesis, Washington State University, Pullman, WA, USA, 2013. [Google Scholar]
- Miura, M.; Kaga, H.; Sakurai, A.; Kakuchi, T.; Takahashi, K. Rapid pyrolysis of wood block by microwave heating. J. Anal. Appl. Pyrolysis 2004, 71, 187–199. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J.; Julson, J.; Ruan, R. Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. J. Anal. Appl. Pyrolysis 2012, 94, 163–169. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Ren, S.; Wang, L.; Zhang, Q.; Tang, J.; Ruan, R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2012, 108, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lei, H.; Zhang, Y.; Qian, K.; Villota, E.; Qian, M.; Yadavalli, G.; Sun, H. Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons. Appl. Energy 2018, 220, 426–436. [Google Scholar] [CrossRef]
- Moen, J.; Yang, C.; Zhang, B.; Lei, H.; Hennessy, K.; Wan, Y.; Liu, Y.; Le, Z.; Chen, P.; Ruan, R. Catalytic microwave assisted pyrolysis of aspen. Int. J. Agric. Biol. Eng. 2009, 2, 70–75. [Google Scholar] [CrossRef]
- Yang, X.; Cui, C.; Zheng, A.; Zhao, Z.Z.; Wang, C.C.C.; Xia, S.; Huang, Z.Z.; Wei, G.; Li, H.H.; Karthäuser, J.; et al. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation. J. Anal. Appl. Pyrolysis 2023, 15, 175–179. [Google Scholar]
- Suriapparao, D.V.; Vinu, R. Biomass waste conversion into value-added products via microwave-assisted Co-Pyrolysis platform. Renew. Energy 2021, 170, 400–409. [Google Scholar] [CrossRef]
- Vorhauer-Huget, N.; Seidenbecher, J.; Bhaskaran, S.; Schenkel, F.; Briest, L.; Gopalkrishna, S.; Barowski, J.; Dernbecher, A.; Hilfert, L.; Rolfes, I.; et al. Dielectric and physico-chemical behavior of single thermally thick wood blocks under microwave assisted pyrolysis. Particuology 2024, 86, 291–303. [Google Scholar] [CrossRef]
- Klinger, J.L.; Westover, T.L.; Emerson, R.M.; Williams, C.L.; Hernandez, S.; Monson, G.D.; Ryan, J.C. Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Appl. Energy 2018, 228, 535–545. [Google Scholar] [CrossRef]
- Mamaeva, A.; Tahmasebi, A.; Tian, L.; Yu, J. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresour. Technol. 2016, 211, 382–389. [Google Scholar] [CrossRef]
- Shang, H.; Lu, R.R.; Shang, L.; Zhang, W.H. Effect of additives on the microwave-assisted pyrolysis of sawdust. Fuel Process. Technol. 2015, 131, 167–174. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Wang, L.; Wei, Y.; Zhu, L.; Liu, Y.; Liang, J.; Tang, J. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts. Bioresour. Technol. 2013, 142, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, Z.; Xu, H.; Wan, K.; Liao, Y.; Ma, X. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives. Bioresour. Technol. 2019, 273, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Yan, J.; Luo, X.; Lester, E.; Wu, T. Microwave-assisted pyrolysis of bamboo coupled with reforming by activated carbon for the production of hydrogen-rich syngas. Energy Procedia 2017, 142, 1640–1646. [Google Scholar] [CrossRef]
- Makepa, D.C.; Chihobo, C.H.; Ruziwa, W.R.; Musademba, D. Microwave-assisted pyrolysis of pine sawdust: Process modelling, performance optimization and economic evaluation for bioenergy recovery. Heliyon 2023, 9, e14688. [Google Scholar] [CrossRef]
- Zhou, N.; Zhou, J.; Dai, L.; Guo, F.; Wang, Y.; Li, H.; Deng, W.; Lei, H.; Chen, P.; Liu, Y.; et al. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresour. Technol. 2020, 314, 123756. [Google Scholar] [CrossRef] [PubMed]
- Parvez, A.M.; Wu, T.; Afzal, M.T.; Mareta, S.; He, T.; Zhai, M. Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production. Fuel Process. Technol. 2019, 184, 1–11. [Google Scholar] [CrossRef]
- Dong, Y.; Tian, B.; Guo, F.; Du, S.; Zhan, Y.; Zhou, H.; Qian, L. Application of low-cost Fe-based catalysts in the microwave-assisted pyrolysis of macroalgae and lignocellulosic biomass for the upgradation of bio-oil. Fuel 2021, 300, 120944. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Zhang, M.; Chen, M.; Zhu, X.; Min, F.; Tan, Z. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J. Anal. Appl. Pyrolysis 2008, 82, 145–150. [Google Scholar] [CrossRef]
- Borges, F.C.; Du, Z.; Xie, Q.; Trierweiler, J.O.; Cheng, Y.; Wan, Y.; Liu, Y.; Zhu, R.; Lin, X.; Chen, P.; et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour. Technol. 2014, 156, 267–274. [Google Scholar] [CrossRef]
- Ellison, C.R.; Hoff, R.; Mărculescu, C.; Boldor, D. Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting. Appl. Energy 2020, 259, 114217. [Google Scholar] [CrossRef]
- Undri, A.; Abou-Zaid, M.; Briens, C.; Berruti, F.; Rosi, L.; Bartoli, M.; Frediani, M.; Frediani, P. Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel 2015, 153, 464–482. [Google Scholar] [CrossRef]
- Lestinsky, P.; Grycova, B.; Pryszcz, A.; Martaus, A.; Matejova, L. Hydrogen production from microwave catalytic pyrolysis of spruce sawdust. J. Anal. Appl. Pyrolysis 2017, 124, 175–179. [Google Scholar] [CrossRef]
- Li, L.; Cao, K.; Cai, D.; Zhang, Z.; Zhao, Z.; Yu, M.; Zhang, L.; Zhang, Q.; Zou, G.; Wang, C. Influences of iron additives on microwave-assisted pyrolysis of woody biomass and microwave-induced discharge with spherical bio-char. Energy 2023, 276, 127549. [Google Scholar] [CrossRef]
- Guo, H.; Qin, X.; Cheng, S.; Xing, B.; Jiang, D.; Meng, W.; Xia, H. Production of high-quality pyrolysis product by microwave–assisted catalytic pyrolysis of wood waste and application of biochar. Arab. J. Chem. 2023, 16, 104961. [Google Scholar] [CrossRef]
- Li, M.; Yu, Z.; Bin, Y.; Huang, Z.; He, H.; Liao, Y.; Zheng, A.; Ma, X. Microwave-assisted pyrolysis of eucalyptus wood with MoO3 and different nitrogen sources for coproducing nitrogen-rich bio-oil and char. J. Anal. Appl. Pyrolysis 2022, 167, 105666. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; He, Y.; An, X.; Fan, D.; Wu, Z. Microwave-assisted catalytic pyrolysis of apple wood to produce biochar: Co-pyrolysis behavior, pyrolysis kinetics analysis and evaluation of microbial carriers. Bioresour. Technol. 2021, 320, 124345. [Google Scholar] [CrossRef]
- Li, L.; Tan, Y.; Sun, J.; Zhang, Y.; Zhang, L.; Deng, Y.; Cai, D.; Song, Z.; Zou, G.; Bai, Y. Characteristics and kinetic analysis of pyrolysis of forestry waste promoted by microwave-metal interaction. Energy 2021, 232, 121095. [Google Scholar] [CrossRef]
- Gao, Q.; Budarin, V.L.; Cieplik, M.; Gronnow, M.; Jansson, S. PCDDs, PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass—Distribution among solid, Liquid and gaseous phases and effects of material composition. Chemosphere 2016, 145, 193–199. [Google Scholar] [CrossRef]
- McKeown, M.S.; Trabelsi, S.; Tollner, E.W. Effects of temperature and material on sensing moisture content of pelleted biomass through dielectric properties. Biosyst. Eng. 2016, 149, 1–10. [Google Scholar] [CrossRef]
- Wang, C.; Ouyang, S.; Shen, Z.; Cai, B.; Zhao, C.; Peng, H.; Zhang, Y. Research on the determination method of biomass dielectric properties based on mixing rules. Biomass Convers. Biorefinery 2024, 2–11. [Google Scholar] [CrossRef]
- Ellison, C.; McKeown, M.S.; Trabelsi, S.; Boldor, D. Dielectric properties of biomass/biochar mixtures at microwave frequencies. Energies 2017, 10, 502. [Google Scholar] [CrossRef]
- Motasemi, F.; Salema, A.A.; Afzal, M.T. Dielectric characterization of corn stover for microwave processing technology. Fuel Process. Technol. 2015, 131, 370–375. [Google Scholar] [CrossRef]
- Fan, X.; Li, B.; Zi, W.; Kang, M.; Wu, H.; Bian, J.; Sun, M.Y. Microwave dielectric characterization and loss mechanism of biowaste during pyrolysis. Energy Convers. Manag. 2024, 301, 118075. [Google Scholar] [CrossRef]
Microwave-Assisted Pyrolysis | Conventional Pyrolysis |
---|---|
Dependent on material properties | Less reliant on material properties |
Energy conversion | Energy transfer |
Generation of hot spots | Absence of hot spots |
Selective heating | Non-selective heating |
Rapid | Slower |
Accurate and controlled heating | Less controllable |
Uniform and volumetric heating within the core at the molecular level | Surface-level heating through conduction, convection, and radiation |
Moisture in biomass feedstocks may increase heating rate | Moisture in biomass feedstocks may decrease heating rate |
Improved efficiency in electricity conversion | Decreased efficiency in electricity conversion |
Reduced thermal inertia and quicker response | Higher thermal inertia and slower response |
Relatively difficult temperature measurement | Easier temperature measurement |
Microwave absorbers and catalysts needed | Absorbers are not required and catalysts sometimes needed |
Less feedstock pre-treatment needed | Feedstock pre-treatment is required and its cost is high |
Not well-established | Well-established (easy scale-up) |
More complicated reactor design | Simple reactor design |
High-quality products | Poor-quality products |
Cost-saving | Less cost-saving |
Formation of arcs and plasma resulting from thermal runaway | Absence of arcs and plasma |
Huge capital investment | Lower capital investment |
Increase the pre-exponential factor, and decrease the activation energy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, I.; Pérez, S.F.; Fernández-Ferreras, J.; Llano, T. Microwave-Assisted Pyrolysis of Forest Biomass. Energies 2024, 17, 4852. https://doi.org/10.3390/en17194852
Fernández I, Pérez SF, Fernández-Ferreras J, Llano T. Microwave-Assisted Pyrolysis of Forest Biomass. Energies. 2024; 17(19):4852. https://doi.org/10.3390/en17194852
Chicago/Turabian StyleFernández, I., S. F. Pérez, J. Fernández-Ferreras, and T. Llano. 2024. "Microwave-Assisted Pyrolysis of Forest Biomass" Energies 17, no. 19: 4852. https://doi.org/10.3390/en17194852
APA StyleFernández, I., Pérez, S. F., Fernández-Ferreras, J., & Llano, T. (2024). Microwave-Assisted Pyrolysis of Forest Biomass. Energies, 17(19), 4852. https://doi.org/10.3390/en17194852