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Abstract: Graphene nanoplatelets with high thermal diffusivity are being researched for their ability
to improve the thermal characteristics of adsorbents. Similarly, ionic liquids with hydrophilic
properties have shown promising sorption and thermal attributes. In this study, novel composite
adsorbents are developed, comprising few-layered graphene nanoplatelets and specific ionic liquids
(ethyl-methylimidazolium methanesulfonate (EMIMCH3SO3) and ethyl-methylimidazolium chloride
(EMIMCl)), along with polyvinyl alcohol binder. The composites, known as GP-CL-30-CP and GP-
CH3SO3-30-CP, each contain 30% ionic liquid content. The aim is to capitalise on the superior thermal
properties of graphene nanoplatelets and the stability and solvation characteristics of ionic liquids
to enhance water and cooling production in adsorption-based cooling and desalination processes,
addressing challenges in the water–energy nexus. The findings revealed an improvement in the
thermal diffusivity of the composites by 167%, which is 76 times higher than the baseline silica
gel. There was an increase in water uptake from 0.3534 kg/kg for silica gel to 0.9648 kg/kg for
the composites, representing a 174% enhancement in water sorption, and hence more freshwater
water production.

Keywords: graphene nanoplatelets; consolidated composites; ionic liquids; exergy analysis; adsorption
cooling; desalination; computational modelling

1. Introduction

Water scarcity is expected to worsen with increasing population and clean water
demand, which is expected to increase by 40% by 2050 [1,2]. It was reported that 25%
of the world population will be affected by water scarcity and millions will be forced
for migration searching for freshwater by 2030 [3]. Adsorption desalination-cum-cooling
technology has been regarded to utilise renewable thermal energy, the low-temperature
waste heat of 50–85 ◦C and an environmentally friendly working fluid (water) to pro-
duce freshwater-cum-cooling. It is the most feasible in polygeneration systems used for
cooling-cum-freshwater production [4], which has emerged as the most feasible technology
to solve freshwater scarcity and simultaneously provides cooling in areas experiencing
high temperatures or for combined heat and power systems [2,5,6]. Adsorption cooling
and desalination systems typically involve the adsorption/desorption of water vapour
utilising adsorbent material with porous properties such as silica gel, MOFs and zeolite [2].
Adsorption systems can produce energy-efficient cooling and freshwater, yet they offer a
relatively low specific cooling power of 10–1000 W/kg and a COP of 0.15–0.6. The reported
literature for prototypes utilising silica gel, which can be considered as a baseline material
in this study, shows low specific daily water production (SDWP) in the range of 4.5 to
7.4 m3/tonne/day [7]. Therefore, there is a pressing need to enhance the thermal and
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adsorption capacity of adsorbents to enable the wide spreading of their energy efficiency
and commercialisation.

Many researchers have worked on improving the performance of adsorbents by
developing several composites by impregnating hygroscopic salts into host matrices or
blending porous adsorbents such as silica gel, zeolites and activated carbon with heat
transfer-enhancing material [8,9]. It was widely reported that porous adsorbents like silica
gel may not be the most efficient since they attain low water uptake when operating at
low-pressure adsorption and high-pressure desorption, resulting in low COP [8]. The
porous matrix in the developed composites usually disperses the salt particles, which
enhances the sorption and heat and mass transfer properties compared to the salts alone [9].
Restuccia et al. [10] investigated a composite of silica gel and CaCl2 called selective water
sorbent and reported an adsorption capacity of 0.7 g/g, a COP of 0.6 and an SCP of
20 W/kg. Chan et al. [6] developed a composite that comprises zeolite-13X and CaCl2,
which showed an uptake of 0.48 kg/kg. This resulted in an overall enhancement in the
uptake, where COP and SCP increased by 320% and 180%, respectively, compared to zeolite
13X. While the zeolite 13X/CaCl2 composite showed an improved performance, there was
an ion exchange that occurred between the Na+ in zeolite and Ca2+ causing changes in the
composite adsorbent properties, reducing its performance in cooling applications [8], in
addition to its poor heat transfer properties [11,12].

Enhancing the heat and mass transfer is a crucial challenge in adsorption cooling
and desalination [3]. Therefore, there has been an increasing interest in enhancing the
thermal and adsorption properties of adsorbents by developing consolidated composites
using various additives such as expanded graphite (EG), expanded natural graphite (ENG)
and expanded graphite treated with sulphuric acid (ENG-TSA) utilising binders such as
polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), polymerised ionic liquid (PIL),
polyvinylpyrrolidone (PVP), gelatin and hydroxyethyl cellulose (HEC) [13–20]. PVP and
PVA were the most suitable binders for composite synthesis for adsorption cooling applica-
tion because of their low negative effect on the porous properties of the host material [20].

El-sharkawy et al. [16] investigated a composite comprising 50% Maxsorb III, 20%
expanded graphite and 10% PVA binder. Their findings showed a thermal conductivity
that was 11 times higher, and further tests alluded to an adsorption uptake improved by
51% [21]. Wang et al. [22] investigated a consolidated composite made from activated
carbon (AC) and expanded natural graphite with an ENG-TSA. Their results showed an
improved thermal conductivity of 34.2 W m−1 K−1, which was 150 times higher compared
to granular activated carbon. Pal et al. [13] developed composites from activated carbon and
PIL. The results showed an 85% increase in thermal conductivity and a 22% enhancement
in the uptake.

It can be concluded from the literature that consolidated composites have improved
thermal and adsorption properties compared to ordinary adsorbents, such as silica gel,
zeolite and activated carbon. However, there is a need for higher thermal enhancement
in composites that further intensifies their adsorption capacity. Graphene and graphene
nanoplatelets (GNPs) have emerged as suitable thermal enhancers because of their high
thermal conductivity of 3000 W m−1 K−1 and 6 W m−1 K−1 parallel and perpendicular
to the surface, respectively [19,23,24]. Graphene nanoplatelets have a planar shape and
comprise short stacks of graphene sheets made from a few layers of graphite with a
thickness of 0.1–100 nm [25]. GNPs are preferred as a composite enhancer material to
graphene because of their low cost that supports their large-scale production [26,27]. Pal
et al. developed composites from activated carbon, graphene nanoplatelets and PVA binder,
which resulted in a thermal conductivity of 1.55 W m−1 K−1, i.e., 23.5 times higher than
activated carbon powder [19].

Ionic liquids (ILs) are tuneable non-molecular compounds made of ions with a melting
point less than 100 ◦C and possess appealing physicochemical properties, which include
very low vapour pressure at room temperature, advanced chemical and thermal stability
with high ionic conductivity, and high interactions with water at room temperature [28–30].
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The existence of cations and anions in ILs is a major contributor to their thermal stability.
ILs have an ability to interact with solutes in specific ways that can be achieved by changing
the combination of ions and cations and introducing functional groups to make task-specific
ionic liquids (TSILs) for a wide range of applications [31]. PILs are identified as excellent
adsorbents with suitable macromolecular structures [32]. PILs have been mostly employed
for carbon dioxide capture/separation applications, where Imidazolium-based ionic liquid
has been reported to have high CO2 solubility [33,34]. Tang et al. [35] investigated PILs and
reported a substantially improved CO2 sorption capacity and a fast sorption/desorption.

Previous research has shown that hydroscopic ILs have excellent physicochemical
properties that could make them excellent sorbents or utilised to develop highly efficient
adsorption composites to enhance composites’ thermal properties. In addition, there are no-
table improvements in the thermal properties of consolidated composites involving GNPs.
However, there is an important gap in developing consolidated composites with both
improved thermal properties and adsorption capacity, specifically IL/GNP consolidated
composites. Such composites are crucial to address the water–energy and cooling–energy
nexus for the cooling and desalination features of adsorption systems. Therefore, this work
is the first to study the hypothesis that IL-based consolidated composites employing ILs,
GNPs and PVA binder would enhance the adsorption and heat transfer performance for a
desalination-cum-cooling application to address the abovementioned challenges. Therefore,
the objectives of this study are to (1) develop a GP/IL consolidated composite employing
a PVA binder; (2) experimentally investigate the thermal and adsorption characteristics
of the developed consolidated composite; (3) investigate the impact of the PVA binder
and compressional force used in the development of the composites on the thermal and
adsorption properties of the developed composites; and (4) study the heat transfer and
water uptake of the consolidated composite at both the component level (adsorbent bed)
and system level using computational dynamics modelling and benchmark it against a
baseline widely employed adsorbent silica gel. The novelty of this work lies in developing
the enhanced IL/GP consolidated composites and investigating their performance at the
material-to-system level. The impact of this work is to address the challenges about utilising
cooling and desalination systems that can be potentially renewable-powered and promote
the energy efficiency of such systems as reported by Alsaman et al. [36].

2. Materials and Method

Graphene nanoplatelets (i.e., graphene-derivative at the nanoscale), ILs and PVA were
employed to develop the composites. Two ILs, Ethyl-methylimidazolium chloride (EMIM
Cl) and Ethyl-methylimidazolium methane sulfonate (EMIM CH3SO3), were sourced
from Sigma Aldrich (UK). The host matrix for the IL comprised few-layered pristine
graphene platelets of 1–5 layers and commercially known graphene nanoplatelets sourced
from Graphitene Ltd. (UK). The pristine GP was selected because of its superior thermal
diffusivity of 22.3 mm2/s and high BET surface area of 56.8978 m2/g compared to other
graphene derivatives [37]. The PVA was sourced from ThermoFisher Scientific (UK). The
developed composites were benchmarked against Fuji Silica gel (SG) of 0.18–1 mm particle
size, representing a widely used adsorbent in several applications.

While the ionic liquids (EMIM CH3SO3) and (EMIM Cl) have advanced properties that
can enhance adsorption performance, they are expensive, specifically, because they were
initially developed for other purposes (e.g., solvents, electrolysis, separation, heat transfer
fluid), which can increase the overall cost of water desalination and cooling. However, this
can be addressed by large-scale production of the ionic liquid, which will enhance value
for money in the case of large-scale adoption.

Figure 1 shows a two-bed adsorption desalination and cooling system that was used
to computationally study the performance of the developed composites at the system level.
The basic structure of the adsorption desalination and cooling system comprises a packed
finned adsorbent bed as the main component, an evaporator and a condenser. In the
adsorption system, the driving potential is adsorption and desorption reactions that occur
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between the adsorbent material and water vapour. Saline or brackish water is supplied to
the evaporator. Valve 1 opens to allow water vapour into adsorbent bed 1 because of the
pressure difference between the heat exchangers. During the adsorption process, cooling
water is supplied to reduce the heat generated by the exothermic adsorption process. Once
the adsorption is completed, valve 1 is closed and hot water is supplied to the adsorbent bed
to regenerate adsorbent material (i.e., the desorption process) in the saturated adsorbent
bed, which brings the adsorbent bed pressure to condenser pressure. Valve 2 opens during
desorption to allow desorbed water vapour to enter the condenser, where it is condensed
by the cooling water flows in the condenser. When most of the water on the adsorbent is
driven off, cold water is circulated in the bed to reduce the pressure back to the evaporator
pressure. The cooling effect is obtained at the evaporation process as a by-product of water
desalination. For continuous operation, vapour from the evaporator enters adsorbent bed 2
through valve 3 when valve 1 is closed.
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Figure 1. Schematic diagram of a two-bed adsorption cooling and water desalination system [38].

Composite Preparation

There are two processes for developing composite adsorbents, namely physical mixing
or impregnation and the chemical process [39]. The impregnation process was employed
to prepare the consolidated composite tablets because of its simplicity and the ability to
provide high bulk/interfacial deposit onto the host matrix [37]. The synthesis process
involved several steps as shown in Figure 2. First, 1 g of the host material GNP was heated
in an oven at 150 ◦C for 12 h to remove the moisture content and impurities. Second, the
ILs were mixed with purified water to form aqueous solutions at 30 wt% concentration.
The host matrix from the oven was then immersed into the IL aqueous solution and stirred
for 1 h until a homogeneous mix was achieved. The binder solution was prepared by
mixing PVA with pure water to utilise various binder concentrations of 2, 5 and 10%. The
binder solution was added to the GNP/IL mixture, and the composite were compressed in
a shaping mould using predefined weights to provide the required compression. Three
different compression pressures of 1, 1.5 and 2 MPa were used to investigate the effect of
varying the compression pressure on the composite. The application of these compression
pressures was crucial in giving the desired tablet form and ensured that the constituents
of the composites (IL and PVA) were not completely driven out during the compression.
Finally, the compressed composite samples were dried in an oven at 150 ◦C for 12 h. The
dry sample masses ranged from 0.2 to 0.3 g. The samples’ diameter was 12.7 mm with a
thickness of 2.5 mm. It is noteworthy that the 30 wt% IL concentration was regarded as
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the optimal concentration from previous research that investigated concentrations of 10–40
wt% of powdery GP/IL composites [37].
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3. Composite Experimental Analysis
3.1. Heat Transfer Properties

An experimental investigation of the thermal diffusivity was performed to determine
the dynamic thermal response of the consolidated composites. The NETZSCH LFA 467
Hyper Flash Laser flash analyser (LFA) was used. A tablet form composite of a 12.7 mm
diameter and 2.5 mm thickness was inserted into the LFA machine for the thermal test. The
experiments were performed three times with five laser shots at each trial to determine
repeatability. A standard deviation of 0.01 was achieved for the repeated measurements and
the mean values of three tests for each composite were used as the thermal diffusivity values.
The thermal properties experimentation protocol is reported in previous studies about the
powdery graphene-based composites and graphene oxide adsorbents and is also available
in the Supplementary Material [37,38]. Table 1 shows the range of developed composites,
thermal diffusivities, PVA concentration and compression force per unit area used for
composite consolidation. Figure 3 shows the comparison of the developed composites’
thermal diffusivities and their material-level physical significance compared to silica gel as
a baseline material.

Table 1. Thermal diffusivities, PVA composition and compression pressure of developed composites.

Composite Thermal Diffusivity
(mm2/s) Composite Thermal Diffusivity

(mm2/s)

PVA
Concentration

(%)

Compression
Pressure

(MPa)

GP-CL-30-CP1 3.679 GP-CH3SO3-30-CP1 3.517 2 1

GP-CL-30-CP2 3.479 GP-CH3SO3-30-CP2 3.052 5 1

GP-CL-30-CP3 2.734 GP-CH3SO3-30-CP3 2.073 10 1

GP-CL-30-CP4 3.694 GP-CH3SO3-30-CP4 3.582 2 1.5

GP-CL-30-CP5 3.540 GP-CH3SO3-30-CP5 3.475 5 1.5

GP-CL-30-CP6 3.362 GP-CH3SO3-30-CP6 2.482 10 1.5
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Table 1. Cont.

Composite Thermal Diffusivity
(mm2/s) Composite Thermal Diffusivity

(mm2/s)

PVA
Concentration

(%)

Compression
Pressure

(MPa)

GP-CL-30-CP7 4.652 GP-CH3SO3-30-CP7 4.431 2 2

GP-CL-30-CP8 3.922 GP-CH3SO3-30-CP8 3.895 5 2

GP-CL-30-CP9 3.779 GP-CH3SO3-30-CP9 3.619 10 2

Silica gel 0.365 Silica gel [40] 0.312 - -
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Figure 3. Comparison of developed consolidated composite thermal diffusivities with SG (a) GP-CL-
30-CP1-9 and (b) GP-CH3SO3-30-CP1-9.

The thermal diffusivities of all the developed consolidated composites were sub-
stantially higher than the SG baseline adsorbent. The higher the compression applied
during preparation of the composites, the higher the thermal diffusivities. The highest
compression was 2 MPa for GP-CL-30-CP7 and GP-CH3SO3-30-CP7, where GP-CL-30-CP7
showed the highest thermal diffusivity, 12.7 times higher than the SG. The increase in
thermal diffusivity of consolidated composite tablets with the increase in the compression
is attributed to reducing the interlayer voids by compression and enhancing the contact
between the graphene layers and ILs for better heat transfer. This agrees with the findings
by Wu et al. [41] in their study of composite bricks made from silica gel and copper nano
powder and PVA binder, showing that compression closed intra-particle space and im-
proved contact area, increasing the heat transfer. Another noteworthy effect of increasing
the compression is increasing the overall density of the developed composite, resulting in
the contradicting effect of decreasing the thermal diffusivity.

The PVA concentration also influenced the overall thermal diffusivity of the developed
composites. The composites GP-CL-30-CP7 and GP-CH3SO3-30-CP 7 showed the highest
thermal diffusivities where the lowest PVA concentration of 2% was used, followed by
composites with 5% and 10% PVA concentrations. This is attributed to the relatively low
heat transfer properties of PVA with a thermal conductivity of 0.31 W m−1 K−1 [42]. This
agrees with the findings reported by Younes et al. [20] in their investigation of silica gel
composites with polymer binders.
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3.2. Composite Adsorption Properties

The materials’ adsorption properties were determined using the dynamic vapour
sorption (DVS) gravimetric analyser DVS Resolution™. The gravimetric technique was
used following the method reported in previous studies and is also in the Supplementary
Material [37,38]. The adsorption property measurement requires a small weight sample
size, and therefore samples of 5 mm diameter were utilised in the adsorption character-
istics to fit in the sample holder and meet the DVS test sample mass requirements. The
adsorption isotherms were given as the water uptake corresponding to vapour pressure
values obtained by measuring the adsorbent mass at that condition, where the adsorbent
mass does not change at a specific temperature and water vapour pressure ratio. The
detailed information on the adsorption determination and equipment are given in the
Supplementary Material. Figure 4 shows the adsorption isotherms of the consolidated
composites benchmarked against silica gel.

3.2.1. Adsorption Isotherms

Adsorption isotherms were developed by measuring the adsorbent mass at the condi-
tion of no change in mass at a defined water vapour pressure ratio and 25 ◦C adsorption
temperature.

Isotherm modelling is imperative to further analyse the adsorption at component and
system levels. There are three predictive modelling approaches, including empirical mod-
elling, machine learning and molecular modelling [43]. Empirical modelling is applicable
when fitting adsorption isotherms and developing empirical correlations [44]. Therefore,
empirical modelling was preferred in this study since it is simple and reliable to implement.

Empirical isotherm models like Langmuir, Freundlich, Sips, Dubinin-Astakhov (D-A),
Tóth, Temkin and Hill–de Boer are widely used to determine the isotherm characteristics
based on the heat of adsorption, solid saturation loading, adsorption equilibrium constant
and temperature-dependent saturation [45–49]. The developed consolidated composites
exhibited a type-II isotherm, where the D-A model stated in Equation (1) was the most
appropriate for emulating the experimental data.

q = qo exp
[
−
{

RT
E

ln
(

P
Ps

)}n]
(1)

where q (kg/kg) denotes adsorption uptake at a temperature and the corresponding pres-
sure ratio; qo is the equilibrium uptake (kg/kg); E is the characteristic energy of adsorption
(KJmol−1); Ps (kPa) is the saturation pressure at the corresponding temperature; and the
index n is the heterogeneity coefficient.

Non-linear isotherm models give a high correlation value (R2) and describe equilib-
rium data with a high accuracy compared to linearised models [50]. To ensure that the
adsorption isotherms had a good correlation with the experimental values, a non-linear
optimisation method was used to determine the D-A model parameters. Tables 2 and 3
show the parameters for the D-A model utilised in isotherm experimental data empirical
modelling for the developed composites with a root-mean-square deviation (RMSD) of less
than 5% and regression parameter R2 of 0.98. The experimental adsorption isotherms and
the isotherm model had a 0.05 mean deviation, showing a good agreement, as shown in
Figure 5.

The experimental isotherm data showed that the IL had a substantial influence on
the water uptake of the composites. All composites had higher water uptake compared to
the baseline SG. When ILs were the only sorption material, GP-CL-30-CP1 was the most
outperforming composite at 64% compared with SG. Such a composite experienced the least
compression of 1MPa and lowest PVA concentration of 2%. However, the water uptake
for the consolidated composites was less than that of the previously studied powdery
composite of the same GP/IL composites, without PVA [37]. The low water uptake for the
consolidated composites compared to powder form is attributed primarily to the leakage
of ILs during the composite compression, hence reducing the IL contents. In addition, the
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PVA binder reduces the sorbate molecular mobility, hence reducing adsorption capacity,
as reported by Rocky et al. [39]. The presented results agree with the analogous study
conducted by Pal et al. [13] about comparing Maxsorb III activated carbon utilising PVA-
and IL-based binders.
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Table 2. GP-CL-30 composite model fitting parameters.

Adsorbent

D-A Model Fitting Parameters

RMSD
[%]

Maximum
Uptake

[kg kg−1]

Characteristics
Energy (E)
[kJ kg−1]

Heterogeneity
Parameter (n)

[-]

GP-CL-30-CP1 0.62 50.626 0.68 2.80

GP-CL-30-CP2 0.657 50.626 0.68 2.33

GP-CL-30-CP3 1.01 50.626 0.68 2.69

GP-CL-30-CP4 0.79 50.626 0.68 2.31

GP-CL-30-CP5 1.12 50.626 0.68 3.33

GP-CL-30-CP6 1.03 50.626 0.68 2.96

GP-CL-30-CP7 0.67 50.626 0.68 1.91

GP-CL-30-CP8 0.84 50.626 0.68 2.57

GP-CL-30-CP9 0.75 50.626 0.68 2.61

Table 3. GP-CH3SO3-30 D-A model fitting parameters.

Adsorbent

D-A Model Fitting Parameters

RMSD
[%]

Maximum
Uptake

[kg kg−1]

Characteristics
Energy

[kJ kg−1]

Heterogeneity
Parameter

[-]

GP-CH3SO3-30-CP1 0.845 48.321 0.74 2.21

GP-CH3SO3-30-CP2 0.65 48.321 0.74 1.82

GP-CH3SO3-30-CP3 0.75 48.321 0.74 1.92

GP-CH3SO3-30-CP4 0.61 48.321 0.74 1.55

GP-CH3SO3-30-CP5 0.49 48.321 0.74 1.38

GP-CH3SO3-30-CP6 0.70 48.321 0.74 1.86

GP-CH3SO3-30-CP7 0.73 48.321 0.74 1.85

GP-CH3SO3-30-CP8 0.66 48.321 0.74 2.17

GP-CH3SO3-30-CP9 1.48 48.321 0.74 3.95

3.2.2. Adsorption Kinetics

Linear driving force (LDF) was used to determine the adsorption and desorption rate.
It is a simplified model and overlooks the inter-particle mass transfer resistance, yet it is
accurate and widely utilised to represent the sorption kinetics [51]. The LDF model utilising
the Arrhenius equation to calculate the diffusion time constant is shown in Equation (2).

∂ω

∂t
= ksαν(w∗ − w) (2)

ksαν = 15
Ds

R2
p

(3)

Ds = Dsoexp
(
− Ea

RT

)
(4)

Equation (4) can be rearranged, as shown in Equation (5).

ln Ds= ln Dso−
Ea

RT
(5)
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where ksαν is the diffusion time constant. The equilibrium uptake w∗ (kg/kg) is determined
from the D-A and modified Freundlich models for GP/IL and SG, respectively; w is the
uptake at a time; Dso (m2 s−1) is the pre-exponential coefficient; Ea (kJ/kg) is the activation
energy; R (kJ.kmol−1K−1) is the universal gas constant; Ds (m2 s−1) is the surface diffusivity;
Rp is the particle radius (m); and T (K) is the adsorbent temperature. The constant 15 was
used, since SG particles are spherical, as reported by Zhang et al. [52], and as it also seems
suitable for the developed composites. The values of Dso and Ea were determined by the
Arrhenius plot in which ln Ds is plotted against (1/T). The slope of the plot represents
Ea
R and the intercept gives the constant Dso based on Equation (4) [21]. The LDF model’s

coefficients are given in Table 4.
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Figure 5. Experimental isotherm of the consolidated composite modelled with the D-A model;
(a–c) GP-CL-30-CPx composites and (d–f) GP-CH3SO3-30-CPx composites.
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Table 4. The empirical constants for the LDF model.

Parameter
Value

UnitGP/IL Composite Silica Gel

Dso 4.4 × 10−4 2.54 × 10−4 m2/s
Ea 48.32–50.62 42 kJ/mol
Rp 2.9 × 10−4 0.16 × 10−5 m

3.2.3. Isosteric Heat of Sorption

The isosteric heat of sorption is defined as the heat released when vapour is adsorbed
onto a solid surface at constant temperature and it represents the quantity of heat exchanged
between adsorption and desorption, which is crucial to determine the energy involved in
the adsorption system [53]. The Clausius–Clapeyron equation is used to calculate the heat
of adsorption. However, it does not capture the full extent of the heat of adsorption and
is mostly valid at low pressures, making it inapplicable for high pressures. Chakraborty
et al. [54] proposed an equation for calculating isosteric heat of adsorption (Qst), called the
Chakraborty–Saha–Koyama (C-S-K) which captures the full extent of the heat of adsorption
and applicable at high pressure [54]. The C-S-K was developed based on the principle of
equilibrium chemical potential between the adsorbed and the gaseous phase, the equations
of state and the Maxwell relations [53]. The Qst for the investigated composite adsorbents
was calculated as a function of the sorption potential gradients of pressure and temperature
concerning entropy and specific volume. Equation (6) defines the C-S-K equation to
calculate the isosteric heat or adsorption enthalpy. The calculated isosteric heat for the
developed consolidated composites is presented in Table 5.

QST = RT2

[(
∂(lnP)

∂T

)
q

]
+Tυg

dP
dT

(P, T) (6)

where R (J g−1 K−1) denotes the gas constant; υg (m3 kg−1) is the specific volume of
the adsorbate; q is the uptake kg/kg; and T (K) is the adsorption temperature at the
corresponding pressure P (kPa).

Table 5. Isosteric heat of sorption of the developed composites.

Material Heat of Sorption
(J/mol) Material Heat of Sorption

(J/mol)

GP-CL-30-CP1 26,547 GP-CH3SO3-30-CP1 26,424

GP-CL-30-CP2 26,596 GP-CH3SO3-30-CP2 26,641

GP-CL-30-CP3 26,572 GP-CH3SO3-30-CP3 26,720

GP-CL-30-CP4 26,646 GP-CH3SO3-30-CP4 26,398

GP-CL-30-CP5 26,609 GP-CH3SO3-30-CP5 26,640

GP-CL-30-CP6 26,566 GP-CH3SO3-30-CP6 26,631

GP-CL-30-CP7 26,576 GP-CH3SO3-30-CP7 26,587

GP-CL-30-CP8 26,533 GP-CH3SO3-30-CP8 26,767

GP-CL-30-CP9 26,663 GP-CH3SO3-30-CP9 26,635

Fuji silica gel 26,078 Fuji silica gel [55] 26,790

The isosteric heat of sorption for both the GP-CL-30-CP1-9 and GP-CH3SO3-30-CP1-9
consolidated composites decreases as the uptake increases, as shown in Figure 6. The higher
isosteric heat of sorption is realised at the initial stages where the adsorbate molecules
are adsorbed on to higher energy sorption sites, distributing higher heat energy and
hence higher adsorption enthalpy [37]. However, as the water uptake increases, the
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high energy sites became saturated, resulting in the water molecules being adsorbed
on to those available sites possessing lower energy, resulting in the gradual decrease in
adsorption energy.

Energies 2024, 17, x FOR PEER REVIEW 12 of 39 
 

 

The isosteric heat of sorption for both the GP-CL-30-CP1-9 and GP-CH3SO3-30-CP1-
9 consolidated composites decreases as the uptake increases, as shown in Figure 6. The 
higher isosteric heat of sorption is realised at the initial stages where the adsorbate mole-
cules are adsorbed on to higher energy sorption sites, distributing higher heat energy and 
hence higher adsorption enthalpy [37]. However, as the water uptake increases, the high 
energy sites became saturated, resulting in the water molecules being adsorbed on to 
those available sites possessing lower energy, resulting in the gradual decrease in adsorp-
tion energy. 

 
(a) 

 
(b) 

Figure 6. Isosteric heat of adsorption of the developed consolidated composites (a) GP-CL-30-CP1-
9 and (b) GP CH3SO3-30-CP1-9. 

2400

2450

2500

2550

2600

2650

2700

0 0.2 0.4 0.6 0.8 1

Ad
so

rp
tio

n 
en

th
al

py
 [k

J/
kg

]

Fractional Uptake [-]

GP-CL-30-CP1 GP-CL-30-CP2
GP-CL-30-CP3 GP-CL-30-CP4
GP-CL-30-CP5 GP-CL-30-CP6
GP-CL-30-CP7 GP-CL-30-CP8
GP-CL-30-CP9

2450

2500

2550

2600

2650

2700

2750

2800

0 0.2 0.4 0.6 0.8 1

Ad
so

rp
tio

n 
en

th
al

py
 [k

J/
kg

]

Fractional Uptake[-]

GP-CH3SO3-30-CP1 GP-CH3SO3-30-CP2
GP-CH3SO3-30-CP3 GP-CH3SO3-30-CP4
GP-CH3SO3-30-CP5 GP-CH3SO3-30-CP6
GP-CH3SO3-30-CP7 GP-CH3SO3-30-CP8
GP-CH3S03-30-CP9

Figure 6. Isosteric heat of adsorption of the developed consolidated composites (a) GP-CL-30-CP1-9
and (b) GP CH3SO3-30-CP1-9.



Energies 2024, 17, 4856 13 of 39

4. Composite Cyclic Performance

This section investigates the material-level cyclic performance of the developed com-
posites and the impact of the developed composites on the component- and system-level
performance utilising 2D multi-physics modelling. The emphasis is on two evaporation
temperatures of 12 ◦C and 30 ◦C. The high evaporation temperature of 30 ◦C was effective
in situations where desalination was prioritised over cooling to avoid the inferior sorption
properties at low vapour pressures.

4.1. Material-Level Cyclic Performance

The water uptake potential of the developed composites was determined by perform-
ing a material-level cyclic analysis of the experimentally developed isotherms compared to
the baseline adsorbent silica gel. Figure 7a,b show the adsorption cooling and desalination
cycle (1-2-3-4-1). Two evaporation temperatures at 12 ◦C and 30 ◦C, a 35 ◦C condensa-
tion temperature and a 85 ◦C regeneration temperature were utilised for the assessment.
The highest-performing composites with low compressional pressure applied and low
PVA concentration, i.e., GP-CL-30-CP1 and GP-CH3SO3-30-CP1, were investigated. At
the low evaporator temperature of 12 ◦C, corresponding to a vapour pressure of 1.4 kPa,
the silica gel water uptake performance potential was higher than that of GP-CL-30-CP1
and GP-CH3SO3-30-CP1, in contrast to the performance when the evaporator temperature
was 30 ◦C corresponding to (Pv = 4.2 kPa). At the 12 ◦C evaporator temperature, the net
cyclic water uptake was 0.169 kgw/kgads for SG, 0.157 kgw/kgads for GP-CL-30-CP1 and
0.132 kgw/kgads for GP-CH3SO3-30-CP1. At 3.2 kPa, the GP-CL-30-CP1 isotherm intersects
SG while the CH3SO3-30-CP1 isotherm intersects the SG isotherm at 3.8 kPa. As the vapour
pressure increases, the net cyclic equilibrium uptake for GP-CL-30-CP1 and CH3SO3-30-
CP1 increases by 63% and 51% respectively, as shown in Figure 7b. This showed that higher
vapour pressures and evaporation temperatures produce more freshwater at the expense
of lowering the cooling temperature.
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4.2. Component-Level Cyclic Performance

The water uptake potential of the consolidated composites was further investigated to
understand the combined impact of their thermal and adsorption characteristics at the com-
ponent level compared to the baseline adsorbent SG. A 2D multi-physics model reported
in a previous study by Banda et al. [38] was employed for this analysis. Computational
dynamic modelling is crucial for component- and system-level investigation [56]. The simu-
lation was performed for 400 s and 800 s cycle times, including a switching time of 30 s. The
same simulation process used is reported in the previous publication by Banda et al. [38].

The ANSYS workbench Fluent 2019 R2 was used to simulate the flow in porous media
to envisage the heat and mass transfer. The geometry for the simulation was a circular
finned tube heat exchanger, where the consolidated adsorbent blocks are assumed to fill
the gaps between the fins. The simulated finned tube adsorbent bed, the axisymmetric
computational domain and the mesh replicating the simulated geometry are shown in
Figure 8. The axisymmetric computational domain was half the space between two fins.
The geometry parameters and operating conditions used for the modelling are shown in
Tables 6 and 7.

Table 6. Simulation geometry dimensions.

Parameter Value

Tube outer diameter (d0) 27 mm
Tube inner diameter (di) 24 mm
Fin height (hf) 10 mm
Fin thickness (δ) 0.54 mm
Fin pitch (p) 3.8 mm
Length of the finned tube (l) 500 mm
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Figure 8. Schematic finned tube and axisymmetric geometry of the simulated adsorbent bed, where
the consolidated adsorbent fills the spaces between the fins.

Table 7. Operating conditions and parameters for the simulation.

Parameter Value Unit

MGP/IL 0.2 kg
MSG 0.22 kg
Mhex 2.02 kg
Ads/des bed flow rate 0.036 kg/s
Cond flow rate 0.018 kg/s
Evap flow rate 0.048 kg/s
Tdes 65–85 ◦C
Tads 35 ◦C
Tchw 35 ◦C
Tevap 12–30 ◦C
Tcw 35 ◦C
Tcond 35 ◦C
Cycle time 400–800 s

The governing equations used in the computational modelling, including the adsorbate
diffusion, mass conservation, adsorbate mass balance continuity, momentum conserva-
tion and energy, are detailed in the Supplementary Material. The boundary conditions
for the vapour to the adsorbent upper surfaces during adsorption were considered as a
pressure inlet and pressure outlet for the desorption process. A better convergence was
achieved by using known pressure boundary conditions. Convection heat transfer occurred
between the heating/cooling water (heat transfer fluid) and the inner tube walls. Between
the finned tube walls and the adsorbent, the no-slip boundary condition was employed.
The calculated heating/cooling water flow rate to maintain adsorption and desorption
temperature was 0.036 kg/s. The water temperature in the tube was input as a polynomial
function and introduced onto Fluent as the free stream temperature using UDFs. The heat
transfer coefficient for the convection heat transfer was determined using the Dittus and
Boelter correlation.

The results show the physical significance of the developed composites at the com-
ponent level compared to utilising the baseline silica gel. Although the isotherm cyclic
performance analysis showed that SG outperformed the composites at low evaporator
temperatures and low vapour pressure, the dynamic simulation showed that the consoli-
dated composites outperformed SG in terms of the heat thermal response, hence promoting
the adsorption performance. The improved adsorption performance of the consolidated
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composite was attributed to the enhanced heat transfer properties. The temperature dy-
namic profiles in Figure 9 shows changes occurring in the adsorbent bed at 12 ◦C and 30 ◦C
evaporator temperatures. The outcome of the simulation shows the high performance
of all consolidated composites compared to SG over the entire cycle. At the evaporator
temperature of 12 ◦C, the net cyclic water uptake was 70% and 68% higher than SG for
GP-CL-30-CP1 and CH3SO3-30-CP1. Figure 10 shows that the 30 ◦C evaporation tempera-
ture resulted in a significant improvement in the thermal and adsorption capacity of the
composite, leading to high water production between 60 and 75% over the entire cycle
compared to SG. These findings agree with the previously developed GP/IL composites by
Banda et al. [38]. The different colour maps show the adsorbent segments’ temperature
and uptake for a full cycle, which includes the adsorption/desorption process. The time
allocated for each colour map is for the full adsorption and desorption cycle, rather than
the half cycle time.

4.3. Exergy Destruction

An exergy analysis was undertaken for the adsorption cooling and desalination system
utilising the GP-CL-30-CP1-9 and GP-CH3SO3-30-CP1-9 consolidated composites as the
adsorbents compared to silica gel. The exergy destruction of each component and process
are stated in Tables 8 and 9. The exergy destruction showed that the desorption process
utilised most of the energy and the adsorbent bed, the main component involved with the
adsorption/desorption process, showed the highest exergy destruction. Of the two pro-
cesses in the adsorbent bed, the desorption showed the highest exergy destruction because
of its higher temperature heat of desorption, i.e., regeneration. The higher heat transfer rate
in the case of GP-CL-30-CP1-9 and GP-CH3SO3-30-CP1-9 composites resulted in higher
exergy destruction than SG. The 16.6% lower exergy efficiency in SG shows that less en-
ergy is used for useful energy in water and cooling production compared to 42.2% of the
highest performing composite GP-CL-30-CP1. These agree with a previous study by Banda
et al. [37] and confirm the outperforming thermal properties of the developed composites.
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Figure 9. Dynamic temperature profiles and contour colour maps at different flow times for GP-CL-
30-CP1-9 and GP-CH3SO3-30-CP1-9.
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Table 8. Exergy destruction of GP-CH3S 3-30-CP1-9 and silica gel.

Component/
Process

CH3SO3-30-CP1-9
Silica Gel

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Exergy Destruction (kW)

Adsorption at 35 ◦C 6.05 6.88 6.55 6.21 6.70 6.87 7.4 7.26 7.19 7.17

Desorption at 85 ◦C 8.58 8.20 8.82 8.76 8.38 8.01 9.35 9.14 8.95 9.50

Condenser at 35 ◦C 1.12 1.2 1.22 1.21 1.22 1.3 1.30 1.00 1.10 1.20

Evaporator at 30 ◦C 1.31 1.05 1.00 1.16 1.08 1.01 1.28 1.24 1.20 1.30

System overall

17.1 17.3 18.7 17.6 17.4 17.5 19.3 18.6 18.44 19.17

Exergy efficiency (%)

40.9 37.2 30.8 38.8 34.3 29.7 35.8 32.8 28.6 16.6

Table 9. Exergy destruction of GP-CL-30-CP1-9 composites and silica gel.

Component/Process

GP-CL-30-CP1-9
Silica Gel

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Exergy Destruction (kW)

Adsorption at 35 ◦C 6.37 6.69 6.04 6.87 6.48 6.20 7.41 7.24 7.01 7.17

Desorption at 85 ◦C 8.29 8.94 8.53 8.60 8.50 8.71 9.10 8.91 8.72 9.5

Condenser at 35 ◦C 1.11 1.08 1.01 1.12 1.09 1.04 1.22 1.17 1.15 1.2

Evaporator at 30 ◦C 1.27 1.2 1.1 1.31 1.22 1.16 1.43 1.39 1.35 1.3

System overall

17.0 17.9 16.7 17.9 17.3 19.2 17.4 18.7 18.23 19.17

Exergy efficiency (%)

42.2 39.0 32 40.4 36 29.9 37.5 34.5 28.7 16.6

4.4. The Effect of Cycle Time

The effect of cycle time on the adsorbent bed performance was computationally
investigated utilising two cycle times of 400 s and 800 s, with a switching time of 30 s each.
Evaporation temperatures of 12 ◦C and 30 ◦C were considered, as shown in Figures 11–14.
The cooling water inlet temperature for adsorption and condensation was 35 ◦C and the
desorption temperature was 85 ◦C. This section also shows the physical significance of the
developed composites at the system level, in terms of cooling and clean water production,
thermal response, and energy conversion efficiency.

The observed results showed that the net cyclic water uptake for the 400 s cycle
operating at a 30 ◦C evaporator temperature was higher for all composites compared to
that of SG. The system utilising the GP-CL-30-CP1 composite showed the highest net
cyclic uptake of 0.95 kgw/kgads, while that for SG was 0.2 kgw/kgads. The same trend was
observed for the 800 s cycle. System utilises GP-CL-30-CP1 showed the highest net cyclic
uptake of 0.74 kgw/kgads compared to 0.24 kgw/kgads for SG. The results show that the
cyclic uptake is influenced by the adsorbent’s thermal properties, where GP-CL-30-CP1
led to a faster thermal response than SG, and hence a quick temperature change within the
adsorbent bed of the GP-CL-30-CP1 led to more adsorption uptake during the cycle.

It can be observed that the highest net cyclic temperature rise was 65% for the GP-CL-
30-CP1-based system compared to 51% for SG. The same trend was observed for the 800 s
cycle, as utilising GP-CL-30-CP1 led to a net cyclic temperature rise of 75% compared to 58%
for SG. The dynamic temperature profile of the system utilising the consolidated composites
showed a steep temperature rise during the first 100 s for both the 400 s and 800 s, showing
their ability to reach the desired temperature faster, hence improving cyclic performance.
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Figure 11. Dynamic water uptake profiles for GP-CL-30 CP1 to CP9 and-CH3SO3-30 CP1 to CP9 at
(a) Tev = 12 ◦C temperature tcycle = 400 s; (b) Tev = 30 ◦C temperature tcycle = 400 s; (c) Tev = 12 ◦C
temperature tcycle = 400 s (d) Tev = 30 ◦C temperature tcycle = 400 s; (e) Tev = 12 ◦C temperature
tcycle = 800 s, (f) Tev = 30 ◦C temperature tcycle = 800 s; (g) Tev = 12 ◦C temperature tcycle = 800 s; and
(h) Tev = 30 ◦C temperature tcycle = 800 s.

The same trend was observed when the system operated at a 12 ◦C evaporation
temperature, where the net cyclic water uptake for the system utilising GP-CL-30-CP1
showed the highest performance of 0.42 kgw/kgads and 0.10 kgw/kgads when utilising SG.
The similar trend was observed on the 800 s cycle time systems, where the net cyclic uptake
was high in all the composites, with the GP-CL-30-CP1 showing 0.4942 kgw/kgads. The
system utilising SG showed 0.12 kgw/kgads.
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Figure 12. Dynamic temperature profiles for GP-CL-30 CP1to CP9 at (a) Tev = 12 ◦C temperature
tcycle = 400 s; (b) Tev = 30 ◦C temperature tcycle = 400 s; (c) Tev = 12 ◦C temperature tcycle = 400 s;
(d) Tev = 30 ◦C temperature tcycle = 400 s. (e) Tev = 12 ◦C temperature tcycle = 800 s; (f) Tev = 30 ◦C
temperature tcycle = 800 s. and (g) Tev = 12 ◦C temperature tcycle = 800 s; (h) Tev = 30 ◦C temperature
tcycle = 800 s.
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Figure 13. The effect of changing cycle time on SDWP for GP-CL-30–CP1-9, at (a) Tev = 12 ◦C and
(b) Tev = 30 ◦C and for GP-CH3SO3-30-CP1-9 and SG at (c) Tev = 12 ◦C and (d) Tev = 30 ◦C.

The net cyclic temperature rises were 76 ◦C and 62 ◦C for GP-CL-30-CP1 and SG when
operating at a 400 s cycle time and 12 ◦C evaporation temperature. The trend of the dynamic
temperature profile for both the 400 s and 800 s times showed a steep rise primarily in the
first 100 s, showing a rapid heat transfer to the adsorbent bed, followed by a moderate
change in temperature in all composites. Such a moderate change reflects the slower heat
transfer as the adsorbent bed is closer to the thermal equilibrium than the initial 100 s. SG
exhibited a gradual cyclic temperature change with steeper change in the temperature near
the end of the adsorption compared to the desorption. Such a steeper change is attributed
to more stored heat in the silica gel slowing the thermal equilibrium compared to the
developed composites, since the developed composites have better thermal diffusivity. The
net cyclic uptake and net cyclic temperature rise was higher in the longer cycle time for
the 12 ◦C and 30 ◦C evaporation temperatures. These findings agree with the findings by
Li et al. [57].

More investigation was performed on the influence of varying the cycle time on the
system performance, as shown in Figures 13–16. Increasing the cycle time increased the
SDWP, SCP, COP and the exergy efficiency by utilising all investigated materials because of
the increased time for water adsorption. The increased water uptake results in a gradual
increase in specific cooling power, specific water production, COP and exergy efficiency
within the investigation range. The developed composite outperformed SG when operated
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at a 12 ◦C evaporation temperature. The highest-performing composite was GP-CL-30-CP1,
showing higher SDWP, SCP, COP and exergy efficiency than SG by orders of 53%, 29%,
18% and 21.5%. Operating at the 30 ◦C evaporation temperature increased SDWP, SCP,
COP, and exergy efficiency for the GP-CL-30-CP1 by 57%, 32%, 20% and 24% compared
with SG, respectively.
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Figure 14. The effect of changing cycle time on SCP for GP-CL-30 CP1-CP9 at (a) Tev = 12◦C and
(b) Tev = 30 ◦C and GP-CH3SO3-30 CP1-CP9 and SG time at (c) Tev = 12 ◦C and (d) Tev = 30 ◦C.

The improved overall system performance reflects the enhanced thermal properties by
utilising the developed composites that prompted the adsorption properties. The enhanced
exergy efficiency reflects the enhanced energy utilisation of the developed composites. The
results agree with previous work by Cao and Chung [58], which studied the influence of
cycle time on performing the silica gel/water adsorption cooling system. The changes
in the system performance by varying the cycle time from 400 s to 800 s and across the
investigated range (100–800 s) are quantified and outlined in Table 9.
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Figure 15. The effect of changing cycle time on COP for GP-CL-30 CP1-CP9 and SG at (a) Tev = 12 ◦C
and (b) Tev = 30 ◦C and GP-CH3SO3-30 CP1-CP9 and SG time at (c) Tev = 12 ◦C and (d) Tev = 30 ◦C.

4.5. The Effect of Heat Source Temperature

The impact of varying the heat source temperature from 60 ◦C to 85 ◦C was inves-
tigated, while the evaporation temperatures of 12 ◦C and 30◦C and the cooling water
temperature of 35◦C were used for adsorption and condensation, and the cycle time was
800 s. The effect of increasing heating water temperature on the SDWP is shown in Figure 17.
Utilising a 12 ◦C evaporation temperature, the increase in heat source temperature from
60 ◦C to 85 ◦C increased the SDWP and the highest-performing composite was GP-CL-30-
CP1, showing a 60% increase in SDWP (from 9 to 33 m3/day/ton) compared to 53% (from
3.1 to 6.6 m/day/ton) for the SG-based system.

The SDWP for all composites and SG increased by increasing the heating water
temperature from 60 ◦C to 85 ◦C, while the evaporation temperature was kept at 30 ◦C.
Utilising GP-CL-30-CP1 showed an increase of 77% (from 10 to 34.6 m3/day/ton) in SDWP,
while SG showed a 73% increase (from 5.2 to 19.5 m3/day/ton), meaning GP-CL-30-CP1
outperformed SG by 42%.
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Figure 16. The effect of changing cycle time on exergy efficiency for GP-CH3SO3-30 CP1-CP9 and
GP-CL-30 CP1-CP9 (a) Tev = 12 ◦C and (b) Tev = 30 ◦C and SG time at (c) Tev = 12 ◦C and (d) Tev = 30 ◦C.

Figure 18 shows the effect of increasing the heating water temperature from 60 ◦C to
85 ◦C on the SCP. The highest-performing composite was GP-CL-30-CP1, which outper-
formed SG by 32% when operated at a 12 ◦C evaporation temperature and by 40% when
operated at a 30 ◦C evaporation temperature. The improved performance of GP-CL-30-CP1
confirmed the enhanced thermal properties of the developed composites, leading to pro-
moting the adsorption potential, and hence the SDWP performance. Increasing the heating
water temperature from 60 ◦C to 85 ◦C enhanced the SCP for GP-CL-30-CP1 by 305% (from
260 to 912.2 W/kg) compared to 200.8% (from 9.2 to 75.47 W/kg) for SG when operated
at a 12 ◦C evaporation temperature. The observed results in which system performance
increased in terms of SDWP and SCP with increases in heat source temperature agree with
the previous findings by Youssef et al. [59].

Figures 19 and 20 show the impact of heating water temperature on the system-level
COP and exergy efficiency. It can be observed that increasing the heating water temperature
(heat source) enhanced the COP but showed an inferior impact on the exergy efficiency.
Enhancing the COP is attributed to increasing the cooling capacity regarding a lower
increase in the heat utilised for regeneration. As for the exergy efficiency, the higher the
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heating source temperature, the higher the exergy destruction in the adsorbent bed, which
reduced the system’s overall exergy efficiency.
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Figure 17. SDWP at different heating water temperatures for GP-CH3SO3-30 CP1-CP9 (a) Tev = 12 ◦C
and (b) Tev = 30 ◦C and GP-CL-30 CP1-CP9 (c) Tev = 12 ◦C and (d) Tev = 30 ◦C.

The COP of GP-CL-30-CP1 increased by 102% (from 0.40 to 0.85) and by 40.8% for SG
(from 0.154 to 0.40) at the 12 ◦C evaporation temperature, whilst at the 30 ◦C evaporation
temperature an improvement of 79.4% (from 0.478 to 0.75) was seen for GP-CL-30-CP1 and
72.5% (from 0.261 to 0.65) was seen for SG when the heat source temperature increased
from 60 ◦C to 85 ◦C. The decrease in exergy efficiency for the GP-CL-30-CP1 was 42% (from
0.405 to 0.32) and 44.5% (from 0.218 to 0.121) for SG operating at the 12 ◦C evaporation
temperature, while at 30 ◦C the decrease was 29.6% (from 0.248 to 0.126) for GP-CL-30-CP1
and 74.3% (from 0.248 to 0.101) for SG when the heat source temperature increased from
60 ◦C to 85 ◦C. The average COP for GP-CL-30-CP1 was 76% and 70% higher than the SG-
based system operating at 12 ◦C and 30 ◦C evaporation temperatures. The GP-CL-30-CP1
has a higher exergy efficiency because of its high adsorption capacity and rapid thermal
response, resulting in a high energy conversion rate to produce more cooling and water.
SG showed lower exergy efficiency, caused by its inefficiencies in heat transfer and low
adsorption capacity, resulting in less cooling and water production than GP-CL-30-CP1
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utilising the same heat source temperature. These findings agree with the parametric study
undertaken by Cao and Chung [58].
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Figure 18. SCP at different heating temperatures for GP-CL-30 CP1-CP9 at (a) Tev = 12 ◦C and
(b) Tev = 30 ◦C and GP-CH3SO3-30 CP1-CP9 and SG at (c) Tev = 12 ◦C and (d) Tev = 30 ◦C.
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Figure 19. COP at different heating temperatures for GP-CL-30 CP1-CP9: (a) Tev = 12 ◦C and
(b) Tev = 30 ◦C and GP-CH3SO3-30 CP1-CP9 and SG at (c) Tev = 12 ◦C and (d) Tev = 30 ◦C.
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Figure 20. Exergy efficiency at different heating temperatures for GP-CL-30 CP1-CP9 at (a) Tev = 12 ◦C
and (b) Tev = 30 ◦C and GP-CH3SO3-30 CP1-CP9 and SG at (c) Tev = 12 ◦C and (d) Tev = 30 ◦C.
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5. Conclusions

This study aimed to develop and investigate consolidated adsorption composites
comprising a GP host matrix and ILs: EMIM CH3SO3 and EMIMCl separately. The
composites with 30 wt% ILs and PVA binder at various concentrations (2, 5 and 10%
compressed under three different pressures (1, 1.5 and 2 MPa) were investigated for cooling
and desalination applications. The determined thermal and adsorption characteristics of
the developed composites were compared with broadly utilised SG as a baseline adsorbent.
A 2D multi-physics dynamic computational model was employed to analyse the impact
of the developed composites’ heat and mass transfer properties on the adsorbent bed and
system levels. The following can be concluded and summarise the novel findings.

• The developed composites showed significantly improved thermal diffusivity com-
pared to SG, with the GP-CL-30-CP7 composite showing the highest thermal diffusivity
of 4.65 mm2/s, a 12.7-fold increase over SG.

• The composite GP-CL-30-CP1 showed the highest water uptake of 0.9648 kg, a 174%
enhancement compared to SG.

• Increasing the cycle time resulted in significantly higher exergy efficiency for GP-CL-
30-CP1 compared to SG, attributed to the composites’ high thermal and solvation
properties and IL.

• Increasing the heat source temperature improved SDWP, SCP and COP while reducing
exergy efficiency. However, the exergy efficiency of the composites, including GP-CL-
30-CP1, was higher than SG over the entire range of investigated temperatures by
80.7% and 70% on average at 12 ◦C.

Overall, the consolidated form of the ionic liquid graphene sorbent composites showed
a significant improvement in heat transfer properties. However, the utilisation of the
PVA binder was challenging because of its inferior thermal properties that affected the
performance of the developed composites. This work also fosters the importance of the
material-level thermal properties in adsorption systems, which enable the unleashing the
sorption potential of the adsorbent at the system level.
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Nomenclature

Cp Specific heat capacity [kJ kg−1 K−1]
d Tube diameter [mm]
D_s Surface diffusivity [m2 s−1]
D_so Pre-exponential coefficient [m2 s−1]
Ea Activation energy [kJ mol−1]
h Enthalpy [kJ kg−1]
h Height [mm]
l Tube length [mm]
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K Thermal conductivity [W m−1 K−1]
Ko Adsorption constant [KPa−1]
ks αν Diffusion time constant [-]
M Mass [kg]
ṁ Mass flowrate [kg s−1]
P Pressure [Pa]
p Fin pitch [mm]
Q Heat transmitted [J]
Qst Heat of adsorption [kJ kg−1]
R Gas law constant [kJ kmol−1 K−1]
t Time [s]
T Temperature [K] [◦C]
q Uptake [kg kg−1]
q(o) Equilibrium uptake [kg kg−1]
R_p Particle radius [m]
Greek
µ Dynamic viscosity [Pa s]
ρ Density [kg m−3]
α Thermal diffusivity [mm2 s−1]
δ Fin thickness [mm]
νg Specific volume [m3 kg−1]
Subscripts
ad adsorbent
ads adsorption
cw cooling water
chw chilled water
cond condenser
des desorption
evap evaporator
f fin
hex heat exchanger
hw heating water
i inner
in inlet
o outer
out outlet
sat saturation
SG silica gel
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