Effect of Reactive Power Generation in Photovoltaic Installations on the Voltage Value at the Inverter Connection Point
Abstract
:1. Introduction
2. Materials and Methods
short-circuit power | 100 MVA |
short-circuit current | 3.85 kA |
short circuit impedance ratio (Xk/Rk) | 2 |
rated power | 100 kVA |
rated overvoltage | 15.75 kV |
rated lower voltage | 0.42 kV |
connection group | Dyn5 |
short circuit voltage | 4.5% |
load loss | 1.6 kW |
idle losses | 0.26 kW |
active power | 2 kW |
reactive power | 0.66 kvar |
power factor cosφ | 0.95 |
active power | 10 kW |
reactive power | −10 ÷ 10 kvar |
3. Results and Discussion
- for 35 mm2 cross-sectional line
- for 50 mm2 cross-sectional line
- for 70 mm2 cross-sectional line
- for 35 mm2 cross-sectional line
- for 50 mm2 cross-sectional line
- for 70 mm2 cross-sectional line
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Achilles, S.; Schramm, S.; Bebic, J. Transmission System Performance Analysis for High-Penetration Photovoltaics; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2011. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, M.; Gao, L.; Mao, R.; Li, S.; Ma, N. An Analysis Method of the Influence of Distributed PV Location on Voltage and Harmonic Distribution of the Distribution Network. In Proceedings of the 2020 10th International Conference on Power and Energy Systems (ICPES), Chengdu, China, 25–27 December 2020; pp. 104–108. [Google Scholar] [CrossRef]
- Chen, J.; Hu, H. Techno-Economic Model-Based Capacity Design Approach for Railway Power Conditioner-Based Energy Storage System. IEEE Trans. Ind. Electron. 2022, 69, 4730–4741. [Google Scholar] [CrossRef]
- Stoyanov, I.; Iliev, T. Harmonic Distortion by Single-Phase Photovoltaic Inverter. In Proceedings of the 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 28–30 March 2019. [Google Scholar] [CrossRef]
- Vadlamudi, B.; Anuradha, T. Review of islanding detection using advanced signal processing techniques. Electr. Eng. 2023, 106, 181–202. [Google Scholar] [CrossRef]
- Madaeni, S.H.; Sioshansi, R.; Denholm, P. Comparing capacity value estimation techniques for photovoltaic solar power. IEEE Trans. Photovolt. 2014, 3, 407–415. [Google Scholar] [CrossRef]
- Fischer, D.; Surmann, A.; Lindberg, K.B. Impact of emerging technologies on the electricity load profile of residential areas. Energy Build. 2019, 208, 109614. [Google Scholar] [CrossRef]
- Rehman, W.; Bo, R.; Mehdipourpicha, H.; Kimball, J.W. Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation. Appl. Energy 2022, 313, 118745. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, B.; Liu, M.; Mao, S. Analysis of Grid-Connected Stability of VSG-Controlled PV Plant Integrated with Energy Storage System and Optimization of Control Parameters. Electronics 2024, 13, 1343. [Google Scholar] [CrossRef]
- Fumin, Z.; Song, B.A.I.; Zhankai, L.I. Control Strategy for Microgrid Storage System’s State of Charge Based on Virtual Synchronous Generator. Power Syst. Technol. 2019, 43, 2109–2116. [Google Scholar] [CrossRef]
- Shin, H.; Roh, J.H. Framework for Sizing Energy Storage System Supplementing Photovoltaic Generation in Consideration of Battery Degradation. IEEE Access 2020, 8, 60246–60258. [Google Scholar] [CrossRef]
- Lu, S.; Diao, R.; Samaan, N.; Etingov, P. Capacity, Value of PV and Wind Generation in the NV Energy System; PNNL-22117; U.S. Department of Energy: Washington, DC, USA, 2012. [Google Scholar]
- Alshamrani, A.; Majumder, P.; Das, A.; Hezam, I.M.; Božanić, D. An Integrated BWM-TOPSIS-I Approach to Determine the Ranking of Alternatives and Application of Sustainability Analysis of Renewable Energy. Axioms 2023, 12, 159. [Google Scholar] [CrossRef]
- Gonzalez, P.; Romero-Cadaval, E.; Gonzalez, E.; Guerrero, M.A. Impact of grid-connected photovoltaic system in the power quality of a distribution network. In Technological Innovation for Sustainability, Proceedings of the Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, 22–24 February 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 466–473. [Google Scholar] [CrossRef]
- Ma, C.; Xiong, W.; Tang, Z.; Li, Z.; Xiong, Y.; Wang, Q. Distributed MPC-Based Voltage Control for Active Distribution Networks Considering Uncertainty of Distributed Energy Resources. Electronics 2024, 13, 2748. [Google Scholar] [CrossRef]
- Eftekharnejad, S.; Vittal, V.; Heydt, G.T.; Keel, B.; Loehr, J. ’Impact of increased penetration of photovoltaic generation on power systems. IEEE Trans. Power Syst. 2013, 28, 893–901. [Google Scholar] [CrossRef]
- Holdyński, G.; Skibko, Z.; Firlit, A.; Walendziuk, W. Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid. Energies 2024, 17, 623. [Google Scholar] [CrossRef]
- Uddin, M.; Rahman, M.; Hossain, T.R.; Rahman, H. Assessment by Simulation of Different Topological Integration of Solar Photovoltaic Plants in Medium Voltage Distribution Networks. Pertanika J. Sci. Technol. 2021, 29, 1159–1169. [Google Scholar] [CrossRef]
- Hołdyński, G.; Skibko, Z.; Firlit, A.; Borusiewicz, A. Analysis of the effect of symmetrical load on the value of negative voltage asymmetry factor in medium-voltage power networks. Przegląd Elektrotechniczny 2024, 289–294. [Google Scholar] [CrossRef]
- Holdyński, G.; Skibko, Z.; Borusiewicz, A. Analysis of the Influence of Load on the Value of Zero-Voltage Asymmetry in Medium-Voltage Networks Operating with Renewable Energy Sources. Energies 2023, 16, 580. [Google Scholar] [CrossRef]
- Alam, S.; Al-Ismail, F.S.; Salem, A.; Abido, M.A. High-Level Penetration of Renewable Energy Sources Into Grid Utility: Challenges and Solutions. IEEE Access 2020, 8, 190277–190299. [Google Scholar] [CrossRef]
- Wang, Y. Application of Solar Noise Barrier Power Generation System Envisaged on Urban Elevated Roads. J. Phys. Conf. Ser. 2020, 1549, 052118. [Google Scholar] [CrossRef]
- Ghaffari, A.; Askarzadeh, A.; Fadaeinedjad, R.; Siano, P. Mitigation of total harmonic distortion and flicker emission in the presence of harmonic loads by optimal siting and sizing of wind turbines and energy storage systems. J. Energy Storage 2024, 86 Pt B, 111312. [Google Scholar] [CrossRef]
- Li, F.; Xi, W.; Dai, X. 3D Modeling Technology Based on Computer Aided Environment Design. J. Phys. Conf. Ser. 2022, 2146, 012031. [Google Scholar] [CrossRef]
- Deng, Z.; Rotaru, M.D.; Sykulski, J.K. Harmonic Analysis of LV distribution networks with high PV penetration. In Proceedings of the 2017 International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 6–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Penangsang, O.; Seto Wibowo, R.; Ketut Aryani, N.; Dwi Prasetyo, M.; Nicky Arianto, M.; Amjad Lutfi, A. Harmonic assessment on two photovoltaic inverter modes and mathematical models on low voltage network power quality. Int. J. Electr. Comput. Eng. (IJECE) 2023, 13, 5951–5965. [Google Scholar] [CrossRef]
- Baier, C.R.; Melin, P.E.; Torres, M.A.; Ramirez, R.O.; Muñoz, C.; Quinteros, A. Developing and Evaluating the Operating Region of a Grid-Connected Current Source Inverter from Its Mathematical Model. Mathematics 2024, 12, 1775. [Google Scholar] [CrossRef]
- Peng, F.Z.; Liu, C.C.; Li, Y.; Jain, A.K.; Vinnikov, D. Envisioning the Future Renewable and Resilient Energy Grids—A Power Grid Revolution Enabled by Renewables, Energy Storage, and Energy Electronics. IEEE J. Emerg. Sel. Top. Ind. Electron. 2024, 5, 8–26. [Google Scholar] [CrossRef]
- Strunz, K.; Almunem, K.; Wulkow, C.; Kuschke, M.; Valescudero, M.; Guillaud, X. Enabling 100% Renewable Power Systems Through Power Electronic Grid-Forming Converter and Control: System Integration for Security, Stability, and Application to Europe. Proc. IEEE 2023, 111, 891–915. [Google Scholar] [CrossRef]
- Seifi, K.; Moallem, M. An Adaptive PR Controller for Synchronizing Grid-Connected Inverters. IEEE Trans. Ind. Electron. 2019, 66, 2034–2043. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Xu, M.; Li, S.; Zhang, Y.; Zhu, X.F.; Ouyang, X.; Alù, A. Digital non-Foster-inspired electronics for broadband impedance matching. Nat. Commun. 2024, 15, 4346. [Google Scholar] [CrossRef]
- Lubośny, Z. Wind Turbine Operation in Electric Power System. In Advanced Modelling; Springer: Berlin, Germany, 2003; ISBN 978-3-642-07317-5. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, X.; Chang, X.; Fan, G.; Chen, L.; Wang, Q.; Tang, Y.; Dai, J. The reactive power voltage control strategy of PV systems in low-voltage string lines. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Moondee, W.; Srirattanawichaikul, W. Study of Coordinated Reactive Power Control for Distribution Grid Voltage Regulation with Photovoltaic Systems. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; pp. 136–141. [Google Scholar] [CrossRef]
- Fukushima, K.; Nayuki, T.; Hatta, H.; Kobayashi, H. Voltage Regulation in Low-Voltage Distribution Grids with Reactive Power Control by Power Conditioning Subsystem Coordination. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Wang, W. A Two-layer Volt-var Control Method in Rural Distribution Networks Considering Utilization of Photovoltaic Power. IEEE Access 2020, 8, 118417–118425. [Google Scholar] [CrossRef]
- Bletterie, B.; Kadam, S.; Bolgaryn, R.; Zegers, A. Voltage Control with PV Inverters in Low Voltage Networks—In Depth Analysis of Different Concepts and Parameterization Criteria. IEEE Trans. Power Syst. 2017, 32, 177–185. [Google Scholar] [CrossRef]
- Ruiz-Tipán, F.; Barrera-Singaña, C.; Valenzuela, A. Reactive Power Compensation Using Power Flow Sensitivity Analysis and QV Curves. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ćetković, D.; Žutolija, J.; Komen, V. Voltage Rise Mitigation in Medium-Voltage Networks with Long Underground Cables and Low Power Demand. Energies 2024, 17, 3174. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Sun, H.; Liang, Y.; Wei, L.; Yan, C.; Xie, Y. A Review of Voltage Control Studies on Low Voltage Distribution Networks Containing High Penetration Distributed Photovoltaics. Energies 2024, 17, 3058. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, H.; Zhang, H.; Wang, Q.; Yang, Z.; Zhuo, F. Coordinated Reactive Power Margin Management of Multiple Photovoltaic Inverters for Voltage Regulation in Distribution Networks. In Proceedings of the 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, Guangdong, China, 4–7 November 2022; pp. 1598–1602. [Google Scholar] [CrossRef]
Cross-Section | mm2 | 35 | 50 | 70 |
---|---|---|---|---|
resistance for positive component R1 | Ω/km | 0.836 | 0.592 | 0.417 |
reactance for positive component X1 | Ω/km | 0.336 | 0.325 | 0.313 |
capacitance for positive component C1 | μF/km | 0.010 | 0.011 | 0.011 |
resistance for zero component R0 | Ω/km | 1.262 | 0.991 | 0.763 |
reactance for zero component X0 | Ω/km | 1.316 | 1.192 | 1.083 |
current carrying capacity | A | 175 | 220 | 275 |
Line Length | Voltage Increase (δU) Calculated via Relation (4) δUt(4) | Voltage Increase (δU) Calculated via Relation (5) δUt(5) | Ratio of Calculated Values δUt(5)/δUt(4) | ||||||
---|---|---|---|---|---|---|---|---|---|
35 mm² | 50 mm² | 70 mm² | 35 mm² | 50 mm² | 70 mm² | 35 mm² | 50 mm² | 70 mm² | |
[km] | [V/kvar] | [V/kvar] | [V/kvar] | [V/kvar] | [V/kvar] | [V/kvar] | [-] | [-] | [-] |
0.0 | 0.111 | 0.111 | 0.111 | 0.118 | 0.118 | 0.118 | 1.06 | 1.06 | 1.06 |
0.1 | 0.195 | 0.192 | 0.189 | 0.315 | 0.268 | 0.237 | 1.61 | 1.40 | 1.26 |
0.2 | 0.280 | 0.273 | 0.267 | 0.532 | 0.430 | 0.363 | 1.90 | 1.58 | 1.36 |
0.3 | 0.365 | 0.355 | 0.345 | 0.752 | 0.595 | 0.490 | 2.06 | 1.68 | 1.42 |
0.4 | 0.451 | 0.436 | 0.422 | 0.970 | 0.759 | 0.617 | 2.15 | 1.74 | 1.46 |
0.5 | 0.538 | 0.518 | 0.500 | 1.188 | 0.923 | 0.744 | 2.21 | 1.78 | 1.49 |
0.6 | 0.625 | 0.599 | 0.577 | 1.405 | 1.086 | 0.871 | 2.25 | 1.81 | 1.51 |
0.7 | 0.714 | 0.681 | 0.655 | 1.621 | 1.249 | 0.997 | 2.27 | 1.83 | 1.52 |
0.8 | 0.802 | 0.763 | 0.732 | 1.836 | 1.411 | 1.123 | 2.29 | 1.85 | 1.53 |
0.9 | 0.892 | 0.846 | 0.809 | 2.049 | 1.572 | 1.248 | 2.30 | 1.86 | 1.54 |
1.0 | 0.982 | 0.928 | 0.887 | 2.261 | 1.733 | 1.372 | 2.30 | 1.87 | 1.55 |
1.1 | 1.066 | 1.009 | 0.965 | 2.486 | 1.901 | 1.503 | 2.33 | 1.88 | 1.56 |
1.2 | 1.150 | 1.091 | 1.043 | 2.711 | 2.070 | 1.633 | 2.36 | 1.90 | 1.57 |
1.3 | 1.234 | 1.172 | 1.122 | 2.937 | 2.239 | 1.763 | 2.38 | 1.91 | 1.57 |
1.4 | 1.318 | 1.253 | 1.200 | 3.161 | 2.408 | 1.894 | 2.40 | 1.92 | 1.58 |
1.5 | 1.403 | 1.335 | 1.278 | 3.387 | 2.576 | 2.024 | 2.41 | 1.93 | 1.58 |
1.6 | 1.487 | 1.416 | 1.357 | 3.613 | 2.745 | 2.154 | 2.43 | 1.94 | 1.59 |
1.7 | 1.571 | 1.497 | 1.435 | 3.836 | 2.914 | 2.285 | 2.44 | 1.95 | 1.59 |
1.8 | 1.655 | 1.579 | 1.513 | 4.062 | 3.082 | 2.415 | 2.45 | 1.95 | 1.60 |
1.9 | 1.739 | 1.660 | 1.592 | 4.288 | 3.253 | 2.546 | 2.47 | 1.96 | 1.60 |
2.0 | 1.823 | 1.741 | 1.670 | 4.512 | 3.421 | 2.676 | 2.48 | 1.97 | 1.60 |
Line Length | Percentage Error of Voltage Increase Value Calculated via Relation (4) PE(4) | Percentage Error of Voltage Increase Value Calculated via Relation (5) PE(5) | ||||
---|---|---|---|---|---|---|
35 mm² | 50 mm² | 70 mm² | 35 mm² | 50 mm² | 70 mm² | |
[km] | [%] | [%] | [%] | [%] | [%] | [%] |
0.0 | −67.16 | −67.16 | −67.16 | −65.12 | −65.12 | −65.12 |
0.1 | −56.08 | −55.56 | −55.48 | −29.08 | −38.00 | −44.08 |
0.2 | −50.49 | −49.16 | −48.70 | −5.77 | −19.85 | −30.19 |
0.3 | −47.56 | −45.21 | −44.26 | 7.99 | −8.05 | −20.68 |
0.4 | −45.99 | −42.66 | −41.31 | 16.22 | −0.13 | −14.15 |
0.5 | −45.24 | −41.13 | −39.20 | 21.02 | 5.03 | −9.46 |
0.6 | −44.86 | −40.08 | −37.66 | 23.92 | 8.65 | −5.96 |
0.7 | −44.65 | −39.28 | −36.49 | 25.77 | 11.33 | −3.29 |
0.8 | −44.60 | −38.84 | −35.62 | 26.78 | 13.06 | −1.26 |
0.9 | −44.54 | −38.37 | −34.95 | 27.42 | 14.59 | 0.30 |
1.0 | −44.43 | −38.05 | −34.38 | 27.96 | 15.67 | 1.59 |
1.1 | −44.62 | −37.78 | −33.79 | 29.15 | 17.23 | 3.14 |
1.2 | −44.73 | −37.51 | −33.25 | 30.28 | 18.63 | 4.49 |
1.3 | −44.73 | −37.24 | −32.76 | 31.52 | 19.92 | 5.72 |
1.4 | −44.66 | −36.93 | −32.26 | 32.68 | 21.17 | 6.93 |
1.5 | −44.46 | −36.54 | −31.75 | 34.12 | 22.51 | 8.07 |
1.6 | −44.20 | −36.14 | −31.25 | 35.60 | 23.83 | 9.20 |
1.7 | −43.84 | −35.69 | −30.72 | 37.16 | 25.17 | 10.32 |
1.8 | −43.39 | −35.20 | −30.15 | 38.98 | 26.53 | 11.50 |
1.9 | −42.87 | −34.63 | −29.58 | 40.88 | 28.11 | 12.64 |
2.0 | −42.27 | −34.03 | −28.98 | 42.88 | 29.64 | 13.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hołdyński, G.; Skibko, Z.; Borusiewicz, A.; Marczuk, A.; Koniuszy, A. Effect of Reactive Power Generation in Photovoltaic Installations on the Voltage Value at the Inverter Connection Point. Energies 2024, 17, 4863. https://doi.org/10.3390/en17194863
Hołdyński G, Skibko Z, Borusiewicz A, Marczuk A, Koniuszy A. Effect of Reactive Power Generation in Photovoltaic Installations on the Voltage Value at the Inverter Connection Point. Energies. 2024; 17(19):4863. https://doi.org/10.3390/en17194863
Chicago/Turabian StyleHołdyński, Grzegorz, Zbigniew Skibko, Andrzej Borusiewicz, Andrzej Marczuk, and Adam Koniuszy. 2024. "Effect of Reactive Power Generation in Photovoltaic Installations on the Voltage Value at the Inverter Connection Point" Energies 17, no. 19: 4863. https://doi.org/10.3390/en17194863
APA StyleHołdyński, G., Skibko, Z., Borusiewicz, A., Marczuk, A., & Koniuszy, A. (2024). Effect of Reactive Power Generation in Photovoltaic Installations on the Voltage Value at the Inverter Connection Point. Energies, 17(19), 4863. https://doi.org/10.3390/en17194863