Methodological Review of Methods and Technology for Utilization of Spent Carbon Cathode in Aluminum Electrolysis
Abstract
:1. Introduction
2. Spent Carbon Cathode from Aluminum Electrolysis
2.1. Emission Properties of SCC
2.2. Resource and Environmental Properties of SCC
3. Disposal of SCC from Aluminum Electrolysis
3.1. Hydrometallurgy
3.1.1. Flotation
3.1.2. Water Leaching Method
3.1.3. Chemical Leaching Method
Methods | Reagents | Recovered Products/% | Merits | Defects | References |
---|---|---|---|---|---|
Flotation | Kerosene gasoline; cetylpyridinium bromide; kerosene. | Carbon content: 82.3, electrolyte purity: 93.2; Carbon content: 90, electrolyte purity: 95; Carbon content: 80.67. | Simple process, low cost, high efficiency, achieves preliminary recovery of graphite carbon and electrolytes. | Low content of recovered carbon, produces waste water and harmful gas. | [46] [63] [49] |
Alkali flotation | Kerosene Diesel | Carbon content: 85.6, electrolyte purity: 85.1. Carbon content: 95.21, electrolyte purity: 95 CaF2:94.96. | High efficiency, recycling of flotation waste water, achieves separation of aluminosilicates and safe disposal of toxic substances. | Complex process, low purity of recovered carbon, secondary pollution risk exists. | [47] [48] |
3.2. Pyrometallurgy
3.2.1. Vacuum Distillation Method
3.2.2. Molten Salt Roasting Method
3.2.3. High-Temperature Roasting Method
3.3. Collaborative Disposal
3.3.1. Red Mud
3.3.2. Copper Slag
3.3.3. Coal Gangue
3.4. High-Value Utilization
3.5. Comparison of Different Disposal Methods
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stojanovic, B.; Bukvic, M.; Epler, I. Application of aluminum and aluminum alloys in engineering. Appl. Eng. Lett. J. Eng. Appl. Sci. 2018, 3, 52–62. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Allahverdi, A. Hazardous aluminum dross characterization and recycling strategies: A critical review. J. Environ. Manag. 2018, 223, 452–468. [Google Scholar] [CrossRef] [PubMed]
- Kvande, H.; Drabløs, P.A. The Aluminum Smelting Process and Innovative Alternative Technologies. J. Occup. Environ. Med. 2014, 56, S23–S32. [Google Scholar] [CrossRef] [PubMed]
- Novak, B.; Tschöpe, K.; Ratvik, A.P.; Grande, T. Fundamentals of aluminium carbide formation. Light Met. 2016, 2012, 1343–1348. [Google Scholar]
- Zhao, H.; Liu, F.; Xie, M.; Liu, W.; Sohn, H.Y. Recycling and utilization of spent potlining by different high temperature treatments. J. Clean. Prod. 2021, 289, 125704. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, G.; Liu, J.; Xie, W.; Evrendilek, F.; Buyukada, M. (Co-) combustion behaviors and products of spent potlining and textile dyeing sludge. J. Clean. Prod. 2019, 224, 384–395. [Google Scholar] [CrossRef]
- Holywell, G.; Breault, R. An overview of useful methods to treat, recover, or recycle spent potlining. JOM 2013, 65, 1441–1451. [Google Scholar] [CrossRef]
- Rajulwar, V.V.; Shyrokykh, T.; Stirling, R.; Jarnerud, T.; Korobeinikov, Y.; Bose, S.; Bhattacharya, B.; Bhattacharjee, D.; Sridhar, S. Steel, aluminum, and FRP-composites: The race to zero carbon emissions. Energies 2023, 16, 6904. [Google Scholar] [CrossRef]
- Yury, I.; Martirosyan, A. The development of the soderberg electrolyzer electromagnetic field’s state monitoring system. Sci. Rep. 2024, 14, 3501. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Li, X.; Wang, B.; Teng, Z.; Han, K. Study on Slagging Characteristics of Co-Combustion of Meager Coal and Spent Cathode Carbon Block. Energies 2023, 16, 736. [Google Scholar] [CrossRef]
- Zhang, J.; Teng, Z.; Han, K.; Li, Y.; Wang, M. Co-combustion characteristics and kinetics of meager coal and spent cathode carbon block by TG-MS analysis. Arab. J. Chem. 2021, 14, 103198. [Google Scholar] [CrossRef]
- Adrien, R.J.; Besida, J.; Pong, T.K. A process for treatment and recovery of spent potliner (SPL). In Light Metals; Anglesey Aluminum Metal Ltd.: North Wales, UK, 1996; p. 1261. [Google Scholar]
- Zuo, Z.; Lv, H.; Li, R.; Liu, F.; Zhao, H. A new approach to recover the valuable elements in black aluminum dross. Resour. Conserv. Recycl. 2021, 174, 105768. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, L. Hazardous waste treatment for spent pot liner. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; p. 042023. [Google Scholar]
- Zolochevsky, A.; Hop, J.; Servant, G.; Foosnaes, T.; Øye, H. Rapoport–Samoilenko test for cathode carbon materials: I. Experimental results and constitutive modelling. Carbon 2003, 41, 497–505. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, J.; Xia, H.; He, W. A novel industrial magnetically enhanced hydrogen production electrolyzer and effect of magnetic field configuration. Appl. Energy 2024, 367, 123402. [Google Scholar] [CrossRef]
- Luo, M.Y.; Gu, X.P.; Qu, T.; Shi, L.; Dai, Y.; Lv, F.; Tian, Y. Vacuum distillation of spent aluminum electrolysis cathode blocks for separating carbon and electrolyte. Nonferrous Metall. Eng. 2020, 10, 47–52. [Google Scholar]
- Breault, R.; Poirier, S.; Hamel, G.; Pucci, A. A ‘green’ way to deal with spent pot lining. Alum. Int. Today 2011, 23, 22. [Google Scholar]
- Liu, M. Research on Molten Salt Roasting Treatment of Spent Aluminum Electrolysis Cathode Blocks. Master’s Thesis, Guizhou Normal University, Guiyang, China, 2022. [Google Scholar]
- Li, R.; Lu, T.; Xie, M.; Liu, F. Analysis on thermal behavior of fluorides and cyanides for heat-treating spent cathode carbon blocks from aluminum smelters by TG/DSC-MS & ECSA®. Ecotoxicol. Environ. Saf. 2020, 189, 110015. [Google Scholar]
- Li, W.; Chen, X. Chemical stability of fluorides related to spent potlining. In Light Metals-Warrendale-Proceedings, 2008; TMS: Pittsburgh, PA, USA, 2008; p. 855. [Google Scholar]
- Li, W.; Chen, X. Running results of the SPL detoxifying pilot plant in Chalco. In Proceedings of the Light Metals 2006, San Antonio, TX, USA, 12–16 March 2006; pp. 219–222. [Google Scholar]
- Chen, X. Recent Advances in the Treatment Technologies for Spent Aluminum Electrolysis Cell Linings. Light Met. 2011, 4, 21–24+29. [Google Scholar]
- Andrade, L.; Campos, J.; Davide, L. Cytogenetic alterations induced by SPL (spent potliners) in meristematic cells of plant bioassays. Ecotoxicol. Environ. Saf. 2008, 71, 706–710. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zhang, T.-A. A comprehensive review of aluminium electrolysis and the waste generated by it. Waste Manag. Res. 2023, 41, 1498–1511. [Google Scholar] [CrossRef]
- Sun, G. Study on the Thermal Treatment Characteristics of Spent Cathode Carbon Blocks from Aluminum Electrolysis and the Detoxification Mechanism of Fluorides. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2020. [Google Scholar]
- Ding, N.; Yang, J.; Liu, J. Substance flow analysis of aluminum industry in mainland China. J. Clean. Prod. 2016, 133, 1167–1180. [Google Scholar] [CrossRef]
- Feng, N. Co-penetration of crolyte melt and Na in carbon block of aluminum electrolytic cathode. Acta Met. Sin. 1999, 3, 611–617. [Google Scholar]
- Chauke, L.; Garbers-Craig, A.M. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data. Carbon 2013, 58, 40–45. [Google Scholar] [CrossRef]
- Jun, Z.; Xue, J.-L.; Zhang, Y.-N.; Xiang, L.; Tong, C. Ambient electrical conductivity of carbon cathode materials for aluminum reduction cells. Trans. Nonferrous Met. Soc. China 2015, 25, 3753–3759. [Google Scholar]
- Yuan, J.; Xiao, J.; Tian, Z.; Yang, K.; Yao, Z. Optimization of Spent Cathode Carbon Purification Process under Ultrasonic Action Using Taguchi Method. Ind. Eng. Chem. Res. 2018, 57, 7700–7710. [Google Scholar] [CrossRef]
- Yuan, J.; Xiao, J.; Li, F.; Wang, B.; Yao, Z.; Yu, B.; Zhang, L. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC. Ultrason. Sonochem. 2018, 41, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Renó, M.L.G.; Torres, F.M.; da Silva, R.J.; Santos, J.J.C.S.; Melo, M.D.L.N.M. Exergy analyses in cement production applying waste fuel and mineralizer. Energy Convers. Manag. 2013, 75, 98–104. [Google Scholar] [CrossRef]
- Nie, Y.; Guo, X.; Guo, Z.; Tang, J.; Xiao, X.; Xin, L. Defluorination of spent pot lining from aluminum electrolysis using acidic iron-containing solution. Hydrometallurgy 2020, 194, 105319. [Google Scholar] [CrossRef]
- Yang, K.; Gong, P.; Tian, Z.; Lai, Y.; Li, J. Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes. J. Clean. Prod. 2020, 261, 121090. [Google Scholar] [CrossRef]
- Yuan, J.; Xiao, J.; Tian, Z.; Yang, K.; Yao, Z.; Yu, B.; Zhang, L. Optimization of purification treatment of spent cathode carbon from aluminum electrolysis using response surface methodology (RSM). Asia-Pac. J. Chem. Eng. 2018, 13, e2164. [Google Scholar] [CrossRef]
- Ospina, G.; Hassan, M.I. Spent pot Lining characterization framework. JOM 2017, 69, 1639. [Google Scholar] [CrossRef]
- Agrawal, A.; Kumar, C.; Meshram, A. Recovery of carbon rich material:-Recycling of spent pot lining: A review. Mater. Today Proc. 2021, 46, 1526–1531. [Google Scholar] [CrossRef]
- Palmieri, M.J.; Andrade-Vieira, L.F.; Campos, J.M.S.; dos Santos Gedraite, L.; Davide, L.C. Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays. Ecotoxicol. Environ. Saf. 2016, 133, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Sleap, S.B.; Turner, B.D.; Sloan, S.W. Kinetics of fluoride removal from spent pot liner leachate (SPLL) contaminated groundwater. J. Environ. Chem. Eng. 2015, 3 Pt A, 2580–2587. [Google Scholar] [CrossRef]
- GB5085.3-2007; Identification standards for hazardous wastes Identification for extraction toxicity. State Environmental Protection Administration: Beijing, China, 2007.
- Yao, Z. Research on the Separation and Extraction of Valuable Components during the Clean Disposal of Spent Cathode Carbon Blocks from Aluminum Electrolysis. Ph.D. Thesis, Central South University, Changsha, China, 2022. [Google Scholar]
- Yalcin, E.; Kelebek, S. Flotation kinetics of a pyritic gold ore. Int. J. Miner. Process. 2011, 98, 48–54. [Google Scholar] [CrossRef]
- Harvey, P.A.; Nguyen, A.V.; Evans, G.M. Influence of electrical double-layer interaction on coal flotation. J. Colloid Interface Sci. 2002, 250, 337–343. [Google Scholar] [CrossRef]
- Chen, Y.; Truong, V.N.; Bu, X.; Xie, G. A review of effects and applications of ultrasound in mineral flotation. Ultrason. Sonochem. 2020, 60, 104739. [Google Scholar] [CrossRef]
- Li, N. Research on separation process of carbon and electrolyte from waste cathode of aluminum electrolysis by flotation. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2015. [Google Scholar]
- Angelopoulos, P.M.; Koukoulis, N.; Anastassakis, G.N.; Taxiarchou, M.; Paspaliaris, I. Selective recovery of graphite from spent potlining (SPL) by froth flotation. J. Sustain. Metall. 2021, 7, 1589–1602. [Google Scholar] [CrossRef]
- Liu, Z.D.; Yu, X.H.; Xie, G.; Tian, L.; Tang, H. Study on the process of treating waste aluminum electrolytic cathodes by alkali leaching and flotation method. J. Light Met. 2012, 3, 30–33+59. [Google Scholar]
- Yuan, J.; Chen, W.; Yang, X. Experimental study on the flotation of waste aluminum electrolytic cathodes. J. Carbon Technol. 2022, 41, 49–52+60. [Google Scholar]
- Zhao, J.; Zhang, B.; Bao, L.; Tang, W.; Shi, R.; Fang, Z. Study on the leaching of fluorides from waste aluminum electrolytic cells. J. Nonferrous Met. (Smelt. Sect.) 2015, 3, 30–32+40. [Google Scholar]
- Liu, F.; Yang, X.; Zhang, Y.; Li, R.; Li, A. Study on the leaching kinetics of sodium fluoride from waste aluminum electrolytic cathode carbon blocks. J. Nonferrous Met. (Smelt. Sect.) 2021, 3, 93–98. [Google Scholar]
- Yang, K.; Li, J.; Huang, W.; Zhu, C.; Tian, Z.; Zhu, X.; Fang, Z. A closed-circuit cycle process for recovery of carbon and valuable components from spent carbon cathode by hydrothermal acid-leaching method. J. Environ. Manag. 2022, 318, 115503. [Google Scholar] [CrossRef]
- Bo, Z. Migration Law of F− in the Disposal Process of Waste Aluminum Electrolytic Cells. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2015. [Google Scholar]
- Pong, T.K.; Adrien, R.J.; Besida, J.; O’Donnell, T.A.; Wood, D.G. Spent Potlining—A Hazardous Waste Made Safe. Process Saf. Environ. Prot. 2000, 78, 204–208. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Xie, G.; Tian, L.; Tang, H. Study on alkaline leaching and flotation process to deal with spent pot linings. Light Met. 2012, 3, 30–35. [Google Scholar]
- Chen, Y.; Li, P.; Bu, X.; Chelgani, S.C.; Kong, Y.; Liang, X. Resource utilization strategies for spent pot lining: A review of the current state. Sep. Purif. Technol. 2022, 300, 121816. [Google Scholar] [CrossRef]
- Lisbona, D.F.; Steel, K.M. Recovery of fluoride values from spent pot-lining: Precipitation of an aluminium hydroxyfluoride hydrate product. Sep. Purif. Technol. 2008, 61, 182. [Google Scholar] [CrossRef]
- Wu, Y.S.; Zhang, D.; Li, M.C.; Bi, S.W.; Yang, Y.H. Periodical attenuation of Al(OH)3 particles from seed precipitation in seeded sodium aluminate solution. Trans. Nonferrous Met. Soc. China 2010, 20, 528–532. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, Y.; Qiu, Z. Calculation of thermodynamic properties of LiF AlF3, NaF AlF3 and KF AlF3. Calphad 2001, 25, 31–42. [Google Scholar] [CrossRef]
- Xiong, F.; Tian, J.; Liu, W.; Zu, Z.; Chen, L.; Yao, Z. Treatment of waste aluminum electrolytic cathode carbon blocks by high-pressure alkali leaching method. J. Nonferrous Met. (Smelt. Sect.) 2022, 30–37. [Google Scholar]
- Maleki, A.; Aghaie, M. Ultrasonic-assisted environmentally-friendly synergetic synthesis of nitroaromatic compounds in core/shell nanoreactor: A green protocol. Ultrason. Sonochem. 2017, 39, 534–539. [Google Scholar] [CrossRef]
- Saterlay, A.J.; Hong, Q.; Compton, R.G.; Clarkson, J. Ultrasonically enhanced leaching: Removal and destruction of cyanide and other ions from used carbon cathodes. Ultrason. Sonochem. 2000, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xie, G.; Gao, L.; Wang, Z.; Hou, Y.; Li, R.; Yu, Z. Optimization of flotation conditions to improve the flotation index of waste aluminum electrolytic cathode. Light Met. 2014, 7, 29–32. [Google Scholar]
- Shi, Z.; Wei, L.; Hu, X.; Ren, B.; Gao, B.; Wang, Z. Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching. Trans. Nonferrous Met. Soc. China 2012, 22, 222–227. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Y.; Lv, X.; Gao, L.; Chattopadhyay, K. Vacuum distillation-treated spent potlining as an alternative fuel for metallurgical furnaces. J. Occup. Med. 2019, 71, 2978. [Google Scholar] [CrossRef]
- Yuan, J.; Ding, S.; Li, H. Purification of spent cathode carbon from aluminum electrolysis cells by alkali fusion-acid leaching process. J. Mater. Cycles Waste Manag. 2022, 24, 2608–2619. [Google Scholar] [CrossRef]
- Xiao, J.; Yuan, J.; Tian, Z.; Yang, K.; Yao, Z.; Yu, B.; Zhang, L. Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis. Ultrason. Sonochem. 2018, 40, 21. [Google Scholar] [CrossRef]
- Nemmour, A.; Ghenai, C. Performance analysis of the gasification of spent pot lining (SPL) carbonaceous solid waste materials generated from the primary aluminum industry. Carbon Manag. 2021, 12, 439–449. [Google Scholar] [CrossRef]
- Shi, Z.; Li, W.; Ren, B.; Wang, Z.; Gao, B. Study on reclaiming spent pot lin-ing of aluminium electrolysis cells by alkaline leaching and acid leaching. Rare Met. 2009, 28, 728–731. [Google Scholar]
- Zhang, X.; Liu, D.; Jiang, W.; Xu, W.; Deng, P.; Deng, J.; Yang, B. Application of multi-stage vacuum distillation for secondary resource recovery: Potential recovery method of cadmium telluride photovoltaic waste. J. Mater. Res. Technol. 2020, 9, 6977–6986. [Google Scholar] [CrossRef]
- Pierce, R.; Caldwell, T.; Pak, D. Application of vacuum salt distillation technology for the removal of fluoride and chloride from legacy fissile materials. Sep. Sci. Technol. 2012, 47, 2065–2073. [Google Scholar]
- Xie, M.; Zhao, H.; Wu, Z.; Liu, W.; Li, R.; Liu, F. Study on kinetics of vacuum heat treatment process of the spent cathode carbon blocks from aluminum smelters. J. Sustain. Metall. 2020, 6, 715–723. [Google Scholar] [CrossRef]
- Jian, X.; Huang, J.; Cai, Z.; Zhang, Y.; Liu, T.; Liu, H. Effect of alkaline fusion on muscovite decomposition and the vanadium release mechanism from vanadium shale. R. Soc. Open Sci. 2018, 5, 180700. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Qu, J.; Qi, T.; Wei, G.; Han, B. Activation pretreatment of limonitic laterite ores by alkali-roasting method using sodium carbonate. Miner. Eng. 2011, 24, 825–832. [Google Scholar] [CrossRef]
- Yao, Z.; Zhong, Q.; Xiao, J.; Ye, S.; Tang, L.; Zhang, Z. An environmental-friendly process for dissociating toxic substances and recovering valuable components from spent carbon cathode. J. Hazard. Mater. 2021, 404, 124120. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, X.; Li, X.; Zhou, J.; You, Z.; Liu, M.; Liu, W.; Zhong, Q. An efficient and clean treatment of spent carbon cathode via fluorination roasting: Deep separation strategy for insoluble aluminosilicates. Sep. Purif. Technol. 2024, 338, 126546. [Google Scholar] [CrossRef]
- Lu, T.; Wang, J.; Li, R.; Zhao, H.; Xie, M.; Liu, F. Numerical investigation on effective thermal conductivity and heat transfer characteristics in a furnace for treating spent cathode carbon blocks. JOM 2020, 72, 1971–1978. [Google Scholar] [CrossRef]
- Yang, K.; Li, Z.; Wang, T.; Peng, K.; Tian, Z.; Lai, Y. Upcycling of spent carbon cathode (SCC) into SCC-2600@ rGO facilitates ultrastable and fast lithium storage. J. Alloys Compd. 2021, 877, 160196. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, Z.; Xin, X.; Tian, Z.; Peng, K.; Lai, Y. Graphitic carbon materials extracted from spent carbon cathode of aluminium reduction cell as anodes for lithium ion batteries: Converting the hazardous wastes into value-added materials. J. Taiwan Inst. Chem. Eng. 2019, 104, 201–209. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, L.; Han, Z.; Liu, J.; Zhang, L.; Yang, C.; Xu, Z.; Liu, P. Defluorination study of spent carbon cathode by microwave high-temperature roasting. J. Environ. Manag. 2022, 302, 114028. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Zhang, S.; Yang, P. Recycling of spent pot lining first cut from aluminum smelters by utilizing the two-step decomposition characteristics of dolomite. Materials 2020, 13, 5283. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Zhao, J.; Hu, A.; Wang, Z.; Kang, Y.; Ren, M.; Li, B.; Tang, W. High-temperature vacuum treatment of aluminum electrolytic spent carbon cathode. J. Sustain. Metall. 2022, 8, 1204–1214. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; He, F.; Gao, P.; Yuan, S. Characteristic, hazard and iron recovery technology of red mud-A critical review. J. Hazard. Mater. 2021, 420, 126542. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, X.; Zhang, Z.; Wang, Y.; Xue, Y.; Wang, M. Applications of red mud as a masonry material: A review. Bull. Environ. Contam. Toxicol. 2022, 109, 215–227. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, A.; Zhao, Y.; Xu, Q.; Ding, Y. A Mini Review on Sewage Sludge and Red Mud Recycling for Thermal Energy Storage. Energies 2024, 17, 2079. [Google Scholar] [CrossRef]
- Kong, H.; Zhou, T.; Yang, X.; Gong, Y.; Zhang, M.; Yang, H. Iron Recovery Technology of Red Mud—A review. Energies 2022, 15, 3830. [Google Scholar] [CrossRef]
- Lu, F.; Su, X.; Huang, F.; Wang, J.; Wang, H. Co-treatment of spent pot-lining and red mud for carbon reutilization and recovery of iron, aluminum and sodium by reductive roasting process. Metall. Mater. Trans. B 2020, 51, 1564–1575. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, F.; Liu, J.; Bi, X.; Huang, Z.; Li, Y.; Chen, D.; Zou, H.; Sun, S. Synergistic reutilization of red mud and spent pot lining for recovering valuable components and stabilizing harmful element. J. Clean. Prod. 2020, 243, 118624. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, G.; Liu, J.; Evrendilek, F.; Buyukada, M.; Xie, W. Thermal behaviors of fluorine during (co-) incinerations of spent potlining and red mud: Transformation, retention, leaching and thermodynamic modeling analyses. Chemosphere 2020, 249, 126204. [Google Scholar] [CrossRef]
- Heo, J.H.; Chung, Y.; Park, J.H. Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process. J. Clean. Prod. 2016, 137, 777–787. [Google Scholar] [CrossRef]
- Shen, T.; Zhang, F.; Yang, S.; Wang, H.; Hu, J. Investigation of Pyrolysis Kinetic Triplet, Thermodynamics, Product Characteristics and Reaction Mechanism of Waste Cooking Oil Biodiesel under the Influence of Copper Slag. Energies 2023, 16, 2137. [Google Scholar] [CrossRef]
- Yong, Y.; Hua, W.; Jianhang, H. Co-treatment of electroplating sludge, copper slag, and spent cathode carbon for recovering and solidifying heavy metals. J. Hazard. Mater. 2021, 417, 126020. [Google Scholar] [CrossRef]
- Lyu, H.; Gong, Y.; Tang, J.; Huang, Y.; Wang, Q. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environ. Sci. Pollut. Res. 2016, 23, 14472–14488. [Google Scholar] [CrossRef]
- Liu, F.; Xie, M.; Yu, G.; Ke, C.; Zhao, H. Study on calcination catalysis and the desilication mechanism for coal gangue. ACS Sustain. Chem. Eng. 2021, 9, 10318–10325. [Google Scholar] [CrossRef]
- Feng, G.; Wang, G.; Xie, H.; Hu, Y.; Meng, T.; Li, G. A Review of Exploration and Development Technologies for Coal, Oil, and Natural Gas. Energies 2024, 17, 3600. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R.; Elumalai, S.P. Recovery of trace and heavy metals from coal combustion residues for reuse and safe disposal: A review. J. Occup. Med. 2016, 68, 2413. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, S.; Li, X.; Hong, C.; Zhang, X. Synthesis, properties, and multifarious applications of SiC nanoparticles: A review. Ceram. Int. 2022, 48, 8882–8913. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, L.; Yuan, J.; Yao, Z.; Tang, L.; Wang, Z.; Zhang, Z. Co-utilization of spent pot-lining and coal gangue by hydrothermal acid-leaching method to prepare silicon carbide powder. J. Clean. Prod. 2018, 204, 848–860. [Google Scholar] [CrossRef]
- Liao, H.; Li, L.; Mao, S. Study on the preparation of silicon carbide from carbon in waste cathodes. Mater. Res. Express 2022, 9, 095603. [Google Scholar] [CrossRef]
- Yu, D.; Chattopadhyay, K. Numerical simulation of copper recovery from converter slags by the utilisation of spent potlining (SPL) from aluminium electrolytic cells. Can. Metall. Q. 2016, 55, 251–260. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, B.; Hong, S.; Huang, H.; Liu, F.; Sohn, H.Y. Recovery of Copper and Cobalt from Converter Slags via Reduction–Sulfurization Smelting Using Spent Pot Lining as the Reductant. ACS Sustain. Chem. Eng. 2021, 9, 4234–4246. [Google Scholar] [CrossRef]
- Zhong, M.; Yan, J.; Wang, L.; Huang, Y.; Li, L.; Gao, S.; Tian, Y.; Shen, W.; Zhang, J.; Guo, S. Hierarchic porous graphite/reduced graphene oxide composites generated from semi-coke as high-performance anodes for lithium-ion batteries. Sustain. Mater. Technol. 2022, 33, e00476. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; Li, G.; Zhang, J.; Bouhadja, M.; Liu, Z.; Skelton, A.A.; Barati, M. ReaxFF Molecular Dynamics Simulation for the Graphitization of Amorphous Carbon: A Parametric Study. J. Chem. Theory Comput. 2018, 14, 2322–2331. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Naixiang, F.; Qingren, N.; Hua, H.; Liguo, H.; Jianzhuang, Y. Study on graphitization of cathode carbon blocks for aluminum electrolysis. Light Met. 2016, 2012, 1355–1357. [Google Scholar]
- Xu, L.; Wang, S.; Xi, L.; Li, Y.; Gao, J. A Review of Thermal Management and Heat Transfer of Lithium-Ion Batteries. Energies 2024, 17, 3873. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Jiang, Y.; Zeng, B.; Zhao, C.; Zhang, M.; Zeng, B.; Zhu, X.; Su, X.; Romanovski, V. Recovery of carbon from spent carbon cathode by alkaline and acid leaching and thermal treatment and exploration of its application in lithium-ion batteries. Environ. Sci. Pollut. Res. 2023, 30, 114327–114335. [Google Scholar] [CrossRef]
Methods | Conditions | Recovered Product/% | Merits | Defects | References |
---|---|---|---|---|---|
Acid leaching | Liquid–solid ratio 25 mL/g, temperature 140 °C, time 270 min, and acid concentration 4 mol/L; Liquid–solid ratio 15 mL/g, temperature 60°C, time 120 min, and acid concentration 4 mol/L. | Carbon content: 97.3 CaF2, NaCl Na3AlF6; Carbon content–ash content < 1%. | Simple operation; large processing capacity; mild processing conditions; high grade; high recovery rate; achieves recovery of graphite carbon and fluoride salts. | Releases toxic and harmful gases; prone to secondary pollution from slag; generates acid wastewater. | [52] [66] |
Alkali leaching | Liquid–solid ratio 5.5 mL/g, temperature 100 °C, time 3 h; Alkali concentration 1.5mol/L, temperature 200 °C, liquid–solid ratio 20 mL/g, time 8 h; Temperature 60 °C, time 60 min, liquid–solid ratio 5mL/g, ultrasonic power 300 W. | Carbon content: 84%; Carbon content: 88.63 Na3AlF6; Carbon content: 97.53 SiC; Carbon content: 80. | High processing capacity; no harmful gases; low cost; capable of directly producing high-value products (Na3AlF6). | Low recovery rate; produces secondary pollution residue; high energy consumption (ultrasonic-assisted alkali leaching). | [55] [60] [67] [68] |
Combined leaching | NaOH 1.5 mol/L, HClO4 2.5 mol/L, liquid–solid ratio 2.5 mL/g, temperature 50 °C; Particle size 0.15 mm, temperature 80–85 °C, time 3 h, liquid–solid ratio 4:1, stirring rate 600 rpm, 500 g sodium hydroxide and 1000 mL concentrated hydrochloric acid; Acid leaching: leaching temperature 60 °C, liquid–solid ratio 5:1, initial acid concentration 3 mol/L, ultrasonic power 300 W, time 60 min; Temperature 60 °C, time 50 min, liquid–solid ratio 10 mL/g, alkali concentration 1 mol/L, particle size < 0.15 mm. | Carbon content: 96.4 NaF, CaF2, NaCl, Na3AlF6; Carbon content: 94.39. | Simple operation; high resource-utilization efficiency; low energy consumption; minimal pollution; mature process. | Lengthy process; high cost; difficult treatment of generated acid and alkali waste liquids. | [69] [31] |
Methods | Conditions | Recovered Product/% | Merits | Defects | References |
---|---|---|---|---|---|
Vacuum distillation | Particle size, 3–5 mm, temperature 1700 °C, time 2 h, pressure 3000 pa; Particle size < 2 cm, temperature 1200 °C, air pressure <10 pa, time 1.5 h; Temperature 700 °C, time 90 min, pressure 60 pa; Particle size 1–3 mm, temperature 1000 °C, time 2 h, pressure 10 pa. | Carbon content: 97.89; Carbon content: 91.2; Carbon content: 67.08; Carbon content: 89.89. | Recovery and utilization of graphite carbon, efficient separation of electrolyte components. | Low purity, high energy consumption, high equipment investment costs, generates highly corrosive fluorine-containing exhaust gases. | [72] [81] [65] [82] |
Molten salt roasting | Milling speed 250 rpm, ball-to- material mass ratio 6:1, milling time:4 h, NaOH-to-Na2CO3 ratio: 1:4; Mixed alkali to SPL ratio: 1:1, temperature 900 °C, time 3 h, particle size < 0.15 mm, NH4F-to SCC mass ratio 2:1, roasting temperature 250 °C, time 1 h, heating time 50 min, leaching temperature of 60 °C, leaching time 60 min, liquid–solid ratio 28:1, stirring rate 1200 rpm. | Carbon content: 96.98 Na3AlF6, NaF; Carbon content: 99.52. | Selects valuable materials for separation, low energy consumption, low calcination temperatures. | Produces waste liquid, causes equipment corrosion. | [75] [76] |
High-temperature roasting | Temperature 2600 °C, time 0.5 h; Temperature 1400 °C, time 2 h; Temperature 1600 °C, time 1 h, particle size < 0.074 mm. | Carbon content: 100; Carbon content: 93.7; Carbon content: 97.22. | Simple process, achieves the recovery and high-value utilization of graphite carbon, efficient separation of non-carbon impurities. | High energy consumption, high equipment investment costs, generates highly corrosive fluorine-containing flue gas, does not recover electrolyte components. | [78,79] [35] |
Solid Waste | Principles | Merits | Defects | References |
---|---|---|---|---|
Red mud | C + Fe2O3→Fe; F− + CaO/SiO2→CaF2/Ca4Si2F2O7; F + CaO/SiO2→CaF2/Ca4Si2F2O7 CN− + O2→N2 + CO2. | Simple process, comprehensive utilization of graphite carbon, stable solidification of fluorides, safe disposal of certain toxic substances. | Low fluoride fixation rate, release of HF/CO2 gas, low utilization value of residues. | [87] [88] [89] |
Copper slag | C + (Cu,Fe,Ni)(Fe,Cr)2O4→Cu-Ni-Fe-Cr F− + CaO→CaF2; C + Cu2O/CoO/Fe3O4→Cu/Co-Fe F− + CaO→CaF2 CN−→N2 + CO2. | Simple process, recovery of Cu/Ni/Fe/Cr/Co, achieves safe disposal of toxic substances and comprehensive utilization of graphite carbon. | Emission of HF gas, wastage of fluoride salt resources, low residual utilization value. | [101] [102] |
Coal gangue | F− + H + →HF HF + Al2Si2O5(OH)4→AlF3 + 2H2SiF6 C + SiO2→SiC. | Simple process, achieves resourceful utilization of graphite carbon, fluoride salts, and aluminum–silicon components. | Produces HCN gas, acid leaching wastewater, secondary pollution exists. | [99] |
Textile dyeing sludge | C + O2→CO2 F− + CaO→CaF2 CN− + O2→N2 + CO2. | Simple process, achieves comprehensive utilization of graphite carbon and safe disposal of some toxic substances. | Emission of HCN/NH3/HF/CO2 gases, waste of fluoride salt resources, low residue utilization value. | [6] |
Application Areas | Resource Properties | Merits | Defects | References |
---|---|---|---|---|
Lithium-ion Batteries | Rich graphite carbon structure. | High economic value, excellent product performance. | Complex process, high cost. | [78,79] |
Carbon anode | Low electrical resistance, high density, and high strength of graphite carbon. | Simple process, easy operation, saves processing costs, achieves recycling of graphite carbon and fluoride salt. | Lacks theoretical guidance for blending, no consideration of fluoride precipitation during prebaked anode baking, corrosion on equipment. | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Yao, Z.; Sun, K.; Tian, Z.; Li, J.; Zhong, Q. Methodological Review of Methods and Technology for Utilization of Spent Carbon Cathode in Aluminum Electrolysis. Energies 2024, 17, 4866. https://doi.org/10.3390/en17194866
Zhou L, Yao Z, Sun K, Tian Z, Li J, Zhong Q. Methodological Review of Methods and Technology for Utilization of Spent Carbon Cathode in Aluminum Electrolysis. Energies. 2024; 17(19):4866. https://doi.org/10.3390/en17194866
Chicago/Turabian StyleZhou, Liuzhou, Zhen Yao, Ke Sun, Zhongliang Tian, Jie Li, and Qifan Zhong. 2024. "Methodological Review of Methods and Technology for Utilization of Spent Carbon Cathode in Aluminum Electrolysis" Energies 17, no. 19: 4866. https://doi.org/10.3390/en17194866
APA StyleZhou, L., Yao, Z., Sun, K., Tian, Z., Li, J., & Zhong, Q. (2024). Methodological Review of Methods and Technology for Utilization of Spent Carbon Cathode in Aluminum Electrolysis. Energies, 17(19), 4866. https://doi.org/10.3390/en17194866