An Experimental and Kinetic Modeling Study of the Laminar Burning Velocities of Ammonia/n-Heptane Blends
Abstract
:1. Introduction
2. Experimental Section
3. Kinetic Modeling
4. Results and Discussions
4.1. Effects of Ammonia–Energy Ratios on the Laminar Burning Velocities of Ammonia/n-Heptane Blends
4.2. Effects of Ambient Temperatures on the Laminar Burning Velocities of Ammonia/n-Heptane Blends
4.3. Effects of Ambient Pressures on the Laminar Burning Velocities of Ammonia/n-Heptane Blends
4.4. Sensitivity Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Reiter, A.J.; Kong, S.C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 2011, 90, 87–97. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrogen Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Mounaïm-Rousselle, C.; Brequigny, P. Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow’s Passenger Cars. Front. Mech. Eng. 2020, 6, 1–5. [Google Scholar] [CrossRef]
- Okafor, E.C.; Naito, Y.; Colson, S.; Ichikawa, A.; Kudo, T.; Hayakawa, A.; Kobayashi, H. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combust. Flame 2018, 187, 185–198. [Google Scholar] [CrossRef]
- Mørch, C.S.; Bjerre, A.; Gøttrup, M.P.; Sorenson, S.C.; Schramm, J. Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system. Fuel 2011, 90, 854–864. [Google Scholar] [CrossRef]
- Reiter, A.J.; Kong, S.C. Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions. Energy Fuels 2008, 22, 2963–2971. [Google Scholar] [CrossRef]
- Grannell, S.M.; Assanis, D.N.; Gillespie, D.E.; Bohac, S.V. Exhaust emissions from a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. In Proceedings of the ASME 2009 Internal Combustion Engine Division Spring Technical Conference, Milwaukee, WI, USA, 3–6 May 2009; pp. 135–141. [Google Scholar]
- Ronney, P.D. Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity. Combust. Sci. Technol. 1988, 59, 123–141. [Google Scholar] [CrossRef]
- Pfahl, U.J.; Ross, M.C.; Shepherd, J.E.; Pasamehmetoglu, K.O.; Unal, C. Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3-N2O-O2-N2 mixtures. Combust. Flame 2000, 123, 140–158. [Google Scholar] [CrossRef]
- Jabbour, T.; Clodic, D.F. Burning velocity and refrigerant flammability classification. ASHRAE Trans. 2004, 110, 522–533. [Google Scholar]
- Law, C.K.; Sung, C.J. Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 2000, 26, 459–505. [Google Scholar] [CrossRef]
- Hayakawa, A.; Goto, T.; Mimoto, R.; Arakawa, Y.; Kudo, T.; Kobayashi, H. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel 2015, 159, 98–106. [Google Scholar] [CrossRef]
- Zhou, S.; Cui, B.; Yang, W.; Tan, H.; Wang, J.; Dai, H.; Li, L.; ur Rahman, Z.; Wang, X.; Deng, S.; et al. An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature. Combust. Flame 2023, 248, 112536. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Costa, M.; Sun, Z.; He, Y.; Cen, K. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combust. Flame 2019, 206, 214–226. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; He, Y.; Liu, Y.; Zhu, Y.; Konnov, A.A. The temperature dependence of the laminar burning velocity and superadiabatic flame temperature phenomenon for NH3/air flames. Combust Flame 2020, 217, 314–320. [Google Scholar] [CrossRef]
- Ichikawa, A.; Hayakawa, A.; Kitagawa, Y.; Kunkuma Amila Somarathne, K.D.; Kudo, T.; Kobayashi, H. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures. Int. J. Hydrogen Energy 2015, 40, 9570–9578. [Google Scholar] [CrossRef]
- Zuo, S.; Chen, G.; Zhang, A.; Deng, H.; Wen, X.; Wang, F. Effect of diluent N2 addition on NH3/H2/air combustion characteristics. Fuel 2023, 352, 129106. [Google Scholar] [CrossRef]
- Lavadera, M.L.; Han, X.; Konnov, A.A. Comparative effect of ammonia addition on the laminar burning velocities of methane, n-heptane, and iso-octane. Energy Fuels 2021, 35, 7156–7168. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Hu, Y.; Huang, Y.; Xiang, L.; Cheng, X. Experimental and numerical studies of the evaporation and combustion characteristics of large-angle impinging sprays. Appl. Therm. Eng. 2024, 246, 122918. [Google Scholar] [CrossRef]
- Parsinejad, F.; Matio, M.; Metghalchi, M. A mathematical model for schlieren and shadowgraph images of transient expanding spherical thin flames. J. Eng. Gas Turbines Power 2004, 126, 241–247. [Google Scholar] [CrossRef]
- Wu, Y.; Panigrahy, S.; Sahu, A.B.; Bariki, C.; Beeckmann, J.; Liang, J.; Mohamed, A.A.; Dong, S.; Tang, C.; Pitsch, H.; et al. Understanding the antagonistic effect of methanol as a component in surrogate fuel models: A case study of methanol/n-heptane mixtures. Combust. Flame 2021, 226, 229–242. [Google Scholar] [CrossRef]
- Lhuillier, C.; Brequigny, P.; Contino, F.; Mounaïm-Rousselle, C. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions. Fuel 2020, 269, 117448. [Google Scholar] [CrossRef]
- Dong, S.; Wang, B.; Jiang, Z.; Li, Y.; Gao, W.; Wang, Z.; Cheng, X.; Curran, H.J. An experimental and kinetic modeling study of ammonia/n-heptane blends. Combust. Flame 2022, 246, 112428. [Google Scholar] [CrossRef]
- Glarborg, P.; Miller, J.A.; Ruscic, B.; Klippenstein, S.J. Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 2018, 67, 31–68. [Google Scholar] [CrossRef]
- Sahu, A.B.; Mohamed, A.A.E.-S.; Panigrahy, S.; Saggese, C.; Patel, V.; Bourque, G.; Pitz, W.J.; Curran, H.J. An experimental and kinetic modeling study of NOx sensitization on methane autoignition and oxidation. Combust. Flame 2022, 238, 111746. [Google Scholar] [CrossRef]
- Mohamed, A.A.E.S.; Panigrahy, S.; Sahu, A.B.; Bourque, G.; Curran, H. The effect of the addition of nitrogen oxides on the oxidation of ethane: An experimental and modelling study. Combust. Flame 2022, 241, 112058. [Google Scholar] [CrossRef]
- Alturaifi, S.A.; Mathieu, O.; Petersen, E.L. An experimental and modeling study of ammonia pyrolysis. Combust. Flame 2022, 235, 111694. [Google Scholar] [CrossRef]
- CHEMKIN-PRO. Reaction Design, version 15101; Ansys: San Diego, CA, USA, 2010. [Google Scholar]
Test | Ammonia–Energy Ratio | Initial Pressure/ MPa | Initial Temperature/ K | Equivalence Ratio |
---|---|---|---|---|
1 | 100% | 0.1 | 373 | 0.8–1.3 |
2 | 80% | 0.1 | 373 | 0.8–1.3 |
3 | 60% | 0.1 | 373 | 0.8–1.3 |
4 | 60% | 0.1 | 338 | 0.8–1.3 |
5 | 60% | 0.1 | 408 | 0.8–1.3 |
6 | 60% | 0.2 | 373 | 0.8–1.3 |
7 | 60% | 0.5 | 373 | 0.8–1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Wang, A.; Feng, Y.; Li, X.; Hu, Y.; Dong, S.; Zhang, Y.; Zhao, F. An Experimental and Kinetic Modeling Study of the Laminar Burning Velocities of Ammonia/n-Heptane Blends. Energies 2024, 17, 4874. https://doi.org/10.3390/en17194874
Liang J, Wang A, Feng Y, Li X, Hu Y, Dong S, Zhang Y, Zhao F. An Experimental and Kinetic Modeling Study of the Laminar Burning Velocities of Ammonia/n-Heptane Blends. Energies. 2024; 17(19):4874. https://doi.org/10.3390/en17194874
Chicago/Turabian StyleLiang, Jinhu, Anwen Wang, Yujia Feng, Xiaojie Li, Yi Hu, Shijun Dong, Yang Zhang, and Fengqi Zhao. 2024. "An Experimental and Kinetic Modeling Study of the Laminar Burning Velocities of Ammonia/n-Heptane Blends" Energies 17, no. 19: 4874. https://doi.org/10.3390/en17194874
APA StyleLiang, J., Wang, A., Feng, Y., Li, X., Hu, Y., Dong, S., Zhang, Y., & Zhao, F. (2024). An Experimental and Kinetic Modeling Study of the Laminar Burning Velocities of Ammonia/n-Heptane Blends. Energies, 17(19), 4874. https://doi.org/10.3390/en17194874