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Abstract: Combustion involves the study of multiphysics phenomena that includes fluid and chemical
kinetics, chemical reactions and complex nonlinear processes across various time and space scales.
Accurate simulation of combustion is essential for designing energy conversion systems. Nonetheless,
due to its multiscale, multiphysics nature, simulating these systems at full resolution is typically
difficult. The massive and complex data generated from experiments and simulations, particularly in
turbulent combustion, presents both a challenge and a research opportunity for advancing combustion
studies. Machine learning facilitates data-driven techniques to manage the substantial amount of
combustion data that is either obtained through experiments or simulations, and thereby can find
the hidden patterns underlying these data. Alternatively, machine learning models can be useful
to make predictions with comparable accuracy to existing models, while reducing computational
costs significantly. In this era of big data, machine learning is rapidly evolving, offering promising
opportunities to explore its integration with combustion research. This work provides an in-depth
overview of machine learning applications in turbulent combustion modeling and presents the
application of machine learning models: Decision Trees (DT) and Random Forests (RF), for the spatio-
temporal prediction of plasma-assisted ignition kernels, based on the initial degree of ionization, with
model validations against DNS data. The results demonstrate that properly trained machine learning
models can accurately predict the spatio-temporal ignition kernel profile based on the initial energy
deposition and distribution.

Keywords: machine learning; combustion; plasma; ignition; turbulence; DNS; DT; RF

1. Introduction

Combustion is a complex chemical process, comprising multiple stages (Figure 1) that
depend on the properties of combustible materials. It is an essential chemical event that
may be considered the ultimate step in the oxidation process of certain compounds. In
addition to the core chemical reactions, combustion involves physical processes such as
the transfer of mass and energy through diffusion and convection. These mechanisms are
crucial for the distribution of reactants and continuous reaction across both time and space
scales [1]. Aspects of fluid dynamics, turbulent and molecular transport [2], and chemistry
are closely interconnected in combustion mechanisms that affect the entire process from
the flame stability to its behavior [3].

Turbulent combustion is the result of many highly nonlinear and multiscale phenom-
ena with numerous chemical reactions involving hundreds of species, their molecular
and turbulent transport, radiative and convective heat transfer, strong density variations,
etc. Turbulent combustion in gaseous systems can lead to sudden detonation. This phe-
nomenon can be strongly influenced by geometric parameters, affecting detonation wave
behavior and the overall performance of a combustion system [4–8]. Managing this phase
is crucial for ensuring safety and stability during high-energy transitions [9]. Consequently,
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the combustion of solid material involves pyrolysis that produces volatile gases through
thermal decomposition and contributes to flame propagation [10,11]. In this process, turbu-
lent transfer significantly dominates the molecular transfer [12] through accelerating the
mixing of gases and the distribution of heat. Depending on the local conditions, different
phenomena contribute differently to the main variables of interest, such as heat release rate,
combustion stability, etc.
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Almost all the practical combustion systems, including those in energy generation,
aerospace, and combustion engines heavily rely on turbulent combustion. It plays a
pivotal role in various industrial applications, energy production, and environmental
processes [13]. Therefore, understanding combustion, particularly turbulent combustion, is
crucial for optimizing combustion systems and minimizing their environmental impact.
However, the knowledge of turbulent combustion processes remains incomplete, especially
the interaction between rapid oxidative chemical reactions, strong heat and mass transport
fluxes, and intense fluid-mechanical turbulence [14,15] (Figure 2).
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Conventional approaches of simulating a turbulent reacting flow encounter several
challenges that impact their accuracy and efficiency such as oversimplified assumptions,
inadequate physical description, unreliable data, mesh dependence, high computational
demand, etc. [16–19]. Machine learning (ML), however, offers the potential of revolutioniz-
ing the approach to understand and simulate this intricate phenomenon by overcoming
the conventional limitations. It uses simulation or experiment data to analyze and find pat-
terns for predicting results without any explicit physical model. This method offers a new
standard in turbulence modeling by utilizing data-driven algorithms to improve predicted
accuracy at lower computational costs and reduce the requirement for precise physical de-
scriptions. Furthermore, the continuous advancement in Neural Networks has introduced
new possibilities for addressing the complexities involved in modeling complex chemical
kinetic mechanisms in combustion processes. This has led to significant improvements in
both computational efficiency and accuracy under various conditions [20,21].

Turbulent reacting flow, with its widespread relevance across industries, presents
a unique opportunity for machine learning applications. It enhances predictive skills,
enabling more precise projections of flow patterns and assisting in the design and optimiza-
tion of combustion systems with better efficiency and reduced emissions [22]. Additionally,
this approach enables the development of simplified models and real-time control systems
that can reduce processing demands while maintaining the essential characteristics of
turbulent flows [22]. This integration not only simplifies operational processes but also
strengthens environmental compliance and safety in industry applications.

ML application in turbulent combustion systems is the key focus of this study. In
recent years, there has been an increasing interest in the application of machine learning
and deep learning techniques to the study of ignition [23] and turbulent combustion [24].
ML can improve the modeling of turbulent flame propagation significantly by enhancing
prediction skills and simplifying intricate simulations. Deep Neural Networks (DNNs)
provide an efficient prediction of flame behavior in turbulent conditions by effectively
capturing the key dynamics [25]. ML methods can assist creating sub-grid models for
turbulent combustion simulations. These methods help to overcome the difficulties of
combining fluid mechanics with chemical kinetics, resulting in enhanced accuracy and
computational efficiency [26]. These advancements provide essential tools for optimizing
combustion processes and building combustion systems that are safer and more efficient.

The ability of machine learning to learn directly from abundant data generated from
simulations and experiments presents a viable alternative for modeling unresolved terms
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in the complex transport equations governing turbulent reacting flows. The modeling of
unresolved terms in the highly non-linear transport equations of turbulent and reacting
flows is a complex and challenging task. However, the ability to “learn” directly from
the data generated from the simulations and experimental studies offers a promising
alternative [27]. Machine learning extracts useful information using the resolved database
from conventional simulation and creates new models for predicting results for different
input parameters.

This article aims to provide a comprehensive overview of the integration of machine
learning techniques in simulating turbulent reacting flow along with its inherent challenges
in applying these techniques and explore potential benefits, limitations, and future research
prospects. Additionally, this study will present ML models for predicting plasma-assisted
ignition kernel growth and a comparison of the predictions against Computational Fluid
Dynamics (CFD)-simulated results, providing an extensive evaluation.

2. Challenges in Turbulent Combustion

The chaotic and irregular fluctuations in the flow field present numerous challenges
for both the experimental studies and computational modeling of turbulent combustion.
Because of the complex nature of turbulent combustion, a variety of problems [3] are
associated with turbulent combustion, such as the following: (i) A thorough understanding
of the fluid-mechanical properties of the combustion system is essential to precisely trace
the transfer phenomena in turbulent flames, including heat transfer, molecular diffusion,
convection, and turbulent transport [2,28]. (ii) Detailed chemical reaction schemes are nec-
essary to accurately predict the fuel consumption rate, combustion products, and pollutant
formation [29,30]. (iii) Detailed chemistry knowledge is vital to estimate reaction zone,
ignition, stabilization, or extinction [29]. (iv) Multiphase (liquid and solid fuel) combustion
processes can be encountered in turbulent combustion [31,32]. (v) Radiative heat transfer is
produced within the turbulent flame and is carried by the flow motion [33–35].

The large and complex scales of turbulent combustion, from big flow structures to
small chemical reactions, require new and advanced solutions beyond traditional methods.

3. Conventional Turbulent Combustion Modeling

Due to the challenges associated with turbulent combustion, modeling this specific
type of combustion is a very broad subject. An estimated result of turbulent combustion
phenomenon in a realistic combustion system in which all turbulence scales are fully
resolved is exceedingly challenging with the available computational resources.

The turbulent combustion field has seen substantial advancements since the initial de-
velopment of turbulent combustion modeling. In the past few decades, turbulence models
based on the Reynolds-averaged Navier–Stokes (RANS) and Large-Eddy Simulation (LES)
frameworks have been developed and applied in various engineering applications [36].
The advancement of turbulence models for non-reactive flows has inspired similar ap-
proaches [37] for turbulent reactive flows that subsequently led to the development of
turbulent combustion models. However, the turbulence models require closure hypotheses
that are used for approximating unknown turbulent quantities. These unknown variables
are dependent on dimensional arguments and empirical data, which make turbulent com-
bustion modeling difficult due to the inherent uncertainties and variability in different flow
conditions, leading to potential inaccuracies [38].

The advent of CFD and the availability of more advanced combustion measurement
techniques have facilitated further developments in the field. This progress can be at-
tributed to several key factors. Firstly, the availability of advanced computational and
experimental resources has allowed for more realistic simulations of combustion, with
better descriptions of both flow dynamics and chemical reactions. It has also enabled the
development of new approaches in turbulent combustion simulations, enabling direct
computations of previously unresolved physical phenomena. Furthermore, the increasing
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need for designing efficient and clean combustion technologies has also motivated the
development of these advanced simulation techniques [39].

Nowadays, scientific computing provides an alternative method to collect multi-
scale information, with CFD serving as a pivotal role in the design process [40]. Com-
mon challenges encountered in the numerical modeling of turbulent combustion include
(i) complexity and diversity of spatio-temporal scales such as size and time scales [41],
(ii) high degree of nonlinearities in flow dynamics and chemical reactions, and (iii) unpre-
dictable nature and (iv) strong interaction among various subprocesses [24,42].

The critical need to address fluid engineering challenges has driven the development of
turbulence models, which can be systematically derived from the Navier–Stokes equations
to a certain extent. Although turbulence is a central and complex issue in classical physics,
it remains only partially understood. The conversion of chemical energy to thermal energy
through numerous chemical reactions within fluid turbulence makes turbulent combustion
an extraordinarily complex problem, both in terms of fundamental understanding and
predictive modeling.

4. Scopes of ML in Turbulent Combustion Models

Using the principal modeling strategies, turbulent combustion models can be catego-
rized based on different parameters, such as the following:

Flamelet Model: The flamelet model of turbulent combustion characterizes the turbulent
flame as a collection of laminar flame elements embedded within a turbulent flow. This
approach, based on either the RANS or LES framework, is still being developed to address
additional complexities, such as heat losses and spray dynamics. The integration of
machine learning with Flamelet-Generated Manifold (FGM) models can help researchers
automate the projection of one-dimensional flamelet solutions [43]. This approach makes
it easier to accurately measure and understand the chemical properties in fluid dynamics
simulations, enhance the prediction ability, and optimize combustion processes across
different scenarios [43,44].

Conditional Moment Closure Model: Conditional Moment Closure (CMC) methods are
relatively recent for turbulent reacting flows. Conceptually, it has been developed as a
mixture fraction-based method for modeling non-premixed turbulent combustion with
the fundamental concept of utilizing the strong correlation between reactive scalar species
and the mixture fraction [45]. Machine learning can be used to enhance the estimation of
conditional source terms, which is critical for accurate simulation. This strategy can use the
extensive datasets from past experiments or simulations to analyze intricate patterns to
increase the quality of predictions associated with reactive scalars and mixture fractions.

Probability Density Function Model: Probability Density Function (PDF) methods offer an
effective solution to closure problems by incorporating the effects of turbulent fluctuations
in both velocity and chemical composition within CFD models of turbulent reacting flows.
Machine learning can benefit PDF models, particularly through the improved modeling of
turbulent variations in velocity and chemical composition [46]. The integration of machine
learning methods, such as Gaussian Mixture Models [47], facilitates a more detailed and
accurate modeling of turbulent reactive flows and increases the credibility and precision of
CFD models. This approach offers a more advanced approach for capturing the intricate
dynamics within combustion systems.

Multiple Mapping Conditioning Model: Multiple Mapping Conditioning (MMC) is a
recent addition to the turbulent combustion modeling approach [48]. It integrates the
features of PDF, CMC, and mapping closure models. MMC serves as a framework for
turbulent combustion modeling, containing a general set of principles and equations that
can be adapted to develop specific MMC-based models tailored to particular turbulent
combustion challenges [49]. Machine learning has the potential to significantly improve
MMC models through enhancing the integration and modeling of the PDF, CMC, and map-
ping closure models [49]. By employing data-driven insights, machine learning can help
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these elements to enhance the accuracy of predictions in turbulent combustion scenarios
and, thus, improve the analytical abilities of MMC models.

Linear-Eddy Model: The Linear-Eddy Model (LEM) resolves the relevant advection–
diffusion–reaction couplings in one spatial dimension by introducing a “triplet map”,
which simulates the impact of an eddy turnover on property profiles along a hypothetical
line of sight [50]. Using Artificial Neural Networks (ANNs), the LEM can effectively
handle the complex coupling between turbulence and chemistry that takes place at smaller
scales [51,52]. This approach offers a flexible adaptation of model parameters in response
to new data, leading to accurate and efficient simulation.

One-Dimensional-Turbulence Model: The One-Dimensional Turbulence (ODT) model
offers an innovative and efficient multiscale approach to integrate the processes of reac-
tion, diffusion, and turbulent transport. ODT can be utilized independently for modeling
simple turbulent flows, and it supports various formats for describing both spatially and
temporally developing flows [53,54]. It can also be applied within a coupled multiscale
framework using the ODT-LES approach [55]. Deep learning methods, such as Neural
Networks, can facilitate the dynamic optimization of parameters in One-Dimensional Tur-
bulence models and improve their potential to correctly approximate intricate interactions
between turbulence and chemical processes within a simplified 1-D framework.

Unsteady Flame-Embedding Model: The Unsteady Flame-Embedding (UFE) model cap-
tures the transient flow–flame interactions, such as extinction, re-ignition, and historical
effects, through embedded simulations at the sub-grid scale [56]. Similar to the flamelet ap-
proach, it considers the flame as a collection of locally one-dimensional flames [56]. A series
of these elemental 1-D flames is used for directly representing the turbulent flame structure
at the sub-grid scale [57]. Machine learning can improve Unsteady Flame-Embedding
models by accurately and efficiently capturing complex sub-grid flame dynamics, such as
extinction and re-ignition. This can optimize the representation of combustion processes
within a reduced-order framework allowing the simulations to be much more precise
and faster.

5. Machine Learning Integration in Turbulent Combustion

ML algorithms process large sets of data to find patterns and underlying mecha-
nisms. By utilizing these insights, they can generate predictive models that are capable
of addressing complex problems and making data-driven decisions. In this digital era,
high-performance computing plays a crucial role in managing large volumes of data and
accelerating the simulation of physical phenomena, data mining, and Artificial Intelligence
(AI). The dominant performance of GPUs with their exceptional parallel computing capa-
bilities further improves the speed of computation and simulation tasks. Training machine
learning models on extensive datasets can, therefore, be efficiently executed on GPUs using
deep learning frameworks like TensorFlow and PyTorch with minimal effort [58]. Given
the rapid advancements in ML, its ease of deployment, and the improvements in hardware
performance, machine learning has increasingly spread into combustion research area,
offering solutions to many of the field’s most challenging problems.

Machine learning can be broadly categorized into three fundamental components:
models, learning criteria, and optimization. ML models undergo training through an
optimization process. Various optimization algorithms are employed, including gradient
descent, stochastic gradient descent, adaptive moment estimation, and Newton’s method.
A well-trained ML model should exhibit strong generalization capabilities [59]. Several
approaches, such as dataset splitting, cross-validation, and early stopping, are used to
improve a model’s generalization ability. Before training a machine learning model, the
dataset is typically divided into two sets: a training set and a test set. The training dataset
is used to train the model, while the test set is used to evaluate its generalization ability.
Cross-validation involves using different subsets of the data to alternately train and test
the model across multiple iterations. Early stopping is applied to achieve the minimum
error on the test dataset before the model begins to overfit.
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Recent advancements have established ML as a transformative tool in the study of
turbulent combustion, addressing a wide range of physical phenomena, such as turbulence,
chemical reactions, and heat transfer, which interact in complex and nonlinear ways. ML
algorithms utilize the vast amounts of combustion data to analyze and identify patterns
and correlations that are difficult to discern through traditional analysis methods. In the
context of turbulent combustion, ML algorithms are applied to the following:

• Predict turbulent flame behaviors: ML algorithms can be trained on large sets of
experimental or simulation data for predicting the behavior of turbulent flames under
different conditions. This can give a better understanding of flames’ reactions to
pressure, temperature, and fuel composition changes [60].

• Optimize combustion processes: ML can be utilized to optimize combustion processes
by predicting the optimal fuel–air ratio, the optimal temperature distribution, and
other parameters that can affect combustion efficiency and emissions [61–63].

• Develop reduced-order models: ML can simplify turbulent combustion models,
which can capture the essential physics of the problem while reducing computational
cost [64–66].

• Identify and classify combustion regimes: ML algorithms can identify and classify
different combustion regimes depending on the characteristics of the flame, such as
flame structure, stability, and extinction [67,68].

Machine learning models can primarily be categorized into three types: supervised
learning, unsupervised learning, and reinforcement learning, each involving various spe-
cific models [69].

Supervised Learning: Supervised learning (Figure 3) is one of the most widely used
ML techniques in turbulent combustion. In this approach, a model is trained on a labeled
dataset, where the input variables represent the features, and the output is the target or
label [70,71]. The purpose of this method is to develop a function that can map inputs
to outputs, enabling the model to make predictions on new, unseen data. Supervised
learning can be applied to predict various areas of interest in turbulent combustion, such as
flame speed, pollutant formation, or temperature profiles. Supervised learning algorithms
commonly applied in turbulent combustion include Linear Regression, Support Vector
Machines (SVMs), Decision Trees (DTs), and Neural Networks [65,70,71].
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A typical application of supervised learning in turbulent combustion is to use Neural
Networks, which are able to capture complex relationships between inputs and outputs.
With the ability to approximate complex functions in a flexible manner [72], Neural Net-
works have emerged as the most popular supervised learning method in recent times [69].
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Neural Networks can be either supervised or unsupervised, depending on the nature
of the objective function, although they most commonly appear in supervised learning
applications. In general, there are three key types of Neural Networks: Artificial Neural
Networks (ANNs), Convolutional Neural Networks (CNNs), and Recurrent Neural Net-
works (RNNs). The ANN approach, along with its hybrid variations, shows great promise
in handling the nonlinearities and complexities inherent in complex chemical processes [73],
such as turbulent combustion. Deep Neural Networks (DNNs) consist of additional layers,
neurons, and intricate architectures, enabling them to extract more features from raw input
data. CNNs and RNNs are widely used deep learning models that demand larger datasets
for training. CNN is mainly applied in the study of visual Neural Network representa-
tions [74] and has been applied to the combustion field, including areas such as unresolved
flame surface wrinkling and temperature distribution modeling [75]. RNN is inherently
well suited for handling time-series or sequential data and can be applied to predict the
progression of flames over time [76], such as temperature or pressure measurements, and
make predictions about future behavior.

Unsupervised Learning: Another ML technique used in turbulent combustion is unsu-
pervised learning (Figure 4). Unlike supervised learning, the unsupervised learning model
operates without any supervision. It involves training a model on an unlabeled dataset,
with the goal of discovering patterns and relationships within the data [77,78]. Unsuper-
vised learning can be used to analyze large sets of combustion data, such as temperature,
pressure, and species concentrations, to identify patterns and relationships between vari-
ables. A common application of unsupervised learning in turbulent combustion includes
the analysis of experimental or numerical simulations data to identify coherent structures,
such as vortices or flames, that are responsible for mixing, heat transfer, and chemical
reactions [52].
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Unsupervised learning models are used for tasks like clustering data points based
on similarity, detecting anomalies, identifying latent variables, reducing dimensionality,
and generative modeling. Unsupervised learning algorithms used in turbulent combustion
include clustering, principal component analysis, deep autoencoders, etc. The clustering
process organizes a set of objects into multiple groups based on their similarities, without
requiring labeled data, making it useful for pattern recognition and data compression.
Popular clustering techniques include K-means clustering [79] and Self-Organizing Map
(SOM) [80]. Clustering algorithms can group similar patterns and reveal the spatial and
temporal organization of turbulent flows [81,82]. These algorithms are useful tools for
grouping combustion data and thereby enhancing the training process of supervised
learning models. Dimension reduction converts data from a high-dimensional space into a
lower-dimensional space. Principal Component Analysis (PCA) is a widely used method
for feature extraction and dimensionality reduction that identifies the most important
variables in the dataset. An autoencoder is a type of Artificial Neural Network (ANN) used
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for dimensionality reduction in an unsupervised approach, and it can also be applied for
tasks such as anomaly detection and image denoising. Additionally, generative modeling
is an unsupervised learning technique that can be trained to generate new examples that
share the same statistical properties as the training data. In combustion research, generative
modeling can convert low-resolution combustion images to high-resolution images.

Reinforcement Learning: Reinforcement Learning (RL) (Figure 5) is a machine learning
approach where an agent is trained to make decisions by receiving feedback from its envi-
ronment. It involves learning through trial-and-error exploration. Four key components
in this process are the agent, environment, actions, and rewards [83,84]. Throughout the
learning process, the agent learns to take actions within the environment that maximize
the cumulative rewards. In turbulent combustion, RL is used for optimizing combustion
processes in real time by training an agent to make decisions that maximize a specific
objective like fuel efficiency or emissions reduction [64,85].
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A core challenge in applying RL to turbulent combustion is managing the high-
dimensional state space and action space, which makes it difficult to learn an optimal
policy using traditional RL algorithms [86]. To address this challenge, researchers have
developed a variety of advanced RL techniques. Reinforcement Learning algorithms
can generally be categorized into two classes- model-based and model-free [87,88]. In
model-free reinforcement learning, the agent learns through direct interaction with the
actual environment, whereas in model-based reinforcement learning, the agent learns
by engaging with a model of the real world. One approach to applying Reinforcement
Learning to turbulent combustion involves modeling the combustion system as a Markov
Decision Process (MDP). In this approach, the system’s state is defined by the current
values of relevant variables, such as temperature, pressure, and species concentrations [89].
The agent then takes actions that change the state of the system and receives rewards or
penalties based on the resulting changes. Reinforcement Learning can also be used to
optimize control policies for complex combustion systems, such as those with multiple
inputs and outputs. In this case, the agent learns a mapping from the current state of the
system to the optimal action, which can be used to develop closed-loop control systems
that can adapt to changing operating conditions. Another type of Reinforcement Learning
(RL) is known as Deep Reinforcement Learning. This type of RL employs Deep Neural
Networks to estimate the value function or policy function. A comparison of these different
algorithms in the context of turbulent combustion is briefly described in Table 1.
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Table 1. Types of machine learning algorithm and their applications in turbulent combustion.

Description Applications in Turbulent Combustion Comments

Supervised
Learning

Model is trained using labeled
data, meaning correct output
is known for each input. The
model then uses this training
to predict results based on
new, unseen data.

Supervised learning can be used to
classify different types of turbulent
combustion behavior, such as premixed
vs. non-premixed flames. It can also be
used to predict combustion emissions
based on input parameters such as fuel
type and temperature [90].

Pros: High accuracy, direct
feedback mechanism,
interpretable models, and wide
real-world applicability.
Cons: Dependency on labeled
data, potential for overfitting,
time-consuming labeling, and
limited to training data patterns.

Unsupervised
Learning

In the unsupervised learning
process, the model is provided
with unlabeled data, and it
independently identifies
patterns or relationships
within that data.

Unsupervised learning is applied to
identify clusters or patterns in data,
collected from turbulent combustion
processes, such as grouping the same
kind of flame structures or identifying
common forms of combustion instability.
It can also produce high-resolution
combustion images from low-resolution
ones [64].

Pros: No label dependency, data
structure discovery, feature
extraction capability, and anomaly
detection suitability.
Cons: Indeterminate outcomes,
potential prediction inaccuracy,
algorithmic complexity, and
subjective evaluation challenges.

Reinforcement
Learning

Reinforcement Learning is a
process where learning occurs
through trial and error, with
feedback provided in the form
of rewards or penalties for
specific actions. Over time
and with adjustments,
Reinforcement Learning
models learn to make
decisions that
maximize rewards.

Reinforcement Learning optimizes the
operation of a turbulent combustion
system, such as by controlling the
air/fuel ratio or adjusting the combustion
chamber geometry to minimize
emissions or maximize efficiency. It could
also be used to develop control strategies
for mitigating the turbulent combustion
instability [86].

Pros: Optimized for
decision-making, environment
adaptability,
exploration-exploitation balance,
and real-time feedback
incorporation.
Cons: Extended training periods,
reward function intricacies, and
training instability.

6. Machine Learning Applications in Turbulent Combustion Modeling

Researchers have developed machine learning techniques with an aim to improve tur-
bulence modeling particularly emphasizing predicting the nonlinear interactions between
turbulence and combustion. Some approaches for modeling turbulent combustion, such
as the steady flamelet and FGM methods, rely on precomputed simulations of laminar
flames (Figure 6). In contrast, other techniques require the real-time calculation of the
chemical source term at each grid node and time step [91]. These methods are Direct
Numerical Simulation (DNS), PDF, unsteady flamelet, CMC, MMC, LEM, Thickened Flame
Model, Partially Stirred Reactor (PaSR) method, etc. [92–94]. Flames are mostly turbulent
in practical combustion chambers. The burning velocity of flames increases with the rise
in turbulence intensity [95]. Without the use of any additional combustion model, using
DNS for turbulent combustion simulation coupled with a detailed chemical mechanism is
nearly impossible because of the unstable nature of turbulent combustion, the enormous
demand for computational resources, the absence of comprehensive chemical mechanisms,
and the limited applicability of the models [64]. Possible lower-resolution simulations
require closure models. However, current state-of-the-art closure models often fail to accu-
rately capture key dynamics in certain turbulent combustion regimes, leading to potential
inaccuracies in predictions [96].
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The use of machine learning methods for chemical reaction calculations offers
two major advantages: increased calculation speed and reduced memory usage [97]. Since
a machine learning model primarily stores its structural information and activations, it
typically requires minimal storage space. Furthermore, ML methods offer greater accuracy
compared to traditional tabulation techniques [64]. Machine learning algorithms, such
as Naive Bayes, SVMs, logistic regression, and others, can suggest adjustments to the
operating parameters of a scientific model for a complex system, based on related post-
operational data [98]. The established methods for the simulation of turbulent combustion
typically involve one or more of the following three strategies: (1) chemistry representation;
(2) sub-grid scale modeling; (3) surrogate/specialized solver [22].

Direct Numerical Simulation (DNS) databases, combined with machine learning
techniques, particularly Neural Networks, serve as effective tools for extracting valuable
information and identifying patterns within these databases for modeling purposes [99].
Lapeyre et al. [75] applied the results of the DNS simulation of a premixed turbulent
flame to train a CNN model to approximate the sub-grid flame surface density. Similarly,
Barwey et al. [15] used a CNN model to predict the three velocity components within
premixed flames in a swirl combustor based on a series of time-resolved Planar Laser-
Induced Fluorescence (PLIF) images of hydroxyl radicals (OH). The flamelet and PDF-like
models generate data in real time and can be utilized to calculate unconditional means for
reactive scalars and their associated chemical source terms [100]. An et al. [101] employed
ANN to accelerate the computations of hydrogen/hydrocarbon combustion chemistry in
a supersonic engine environment, achieving computation speed-ups ranging from 8 to
20 times compared to a conventional Ordinary Differential Equation (ODE) solver. Mal’sagov
et al. [21] presented a five-layer Neural Network to simulate hydrogen combustion at
varying pressures, achieving two to three times faster computation time than traditional
methods while maintaining high accuracy and a mean standard error. Weymouth et al. [102]
introduced a model that uses deep learning, based on the spanwise-averaged Navier–Stokes
equations. This approach aims to decrease the computational costs associated with the
inherently three-dimensional nature of turbulence by applying dimensionality reduction.
In the case studied, the model achieved 90-92% correlation to the original 3-D system while
using only 0.5% of the CPU time.

6.1. ML Application Using Image Processing

One of the approaches of using machine learning in turbulent combustion is to analyze
flame images (Figure 7) [103]. Lee et al. [104] applied transfer learning to train a CNN model
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for classifying impinging jet flames into four distinct regimes characterized by unique
thermoacoustic oscillations. The CNN model achieved 93.6% accuracy in this classification
task. Some limitations of their study came from the Particle Image Velocimetry (PIV) flow
field patterns and the necessity of testing each regime at least once. Shamsudheen et al. [105]
used K-Nearest Neighbors (KNN) and SVM models to classify combustion events in a
Homogeneous Charge Compression Ignition (HCCI) engine. The study found that the
SVM method outperformed KNN, achieving higher accuracy and better generalization,
with a 93.5% accuracy compared to KNN’s 89.2%.

Energies 2024, 17, x FOR PEER REVIEW 12 of 33 
 

 

6.1. ML Application Using Image Processing 
One of the approaches of using machine learning in turbulent combustion is to ana-

lyze flame images (Figure 7) [103]. Lee et al. [104] applied transfer learning to train a CNN 
model for classifying impinging jet flames into four distinct regimes characterized by 
unique thermoacoustic oscillations. The CNN model achieved 93.6% accuracy in this clas-
sification task. Some limitations of their study came from the Particle Image Velocimetry 
(PIV) flow field patterns and the necessity of testing each regime at least once. 
Shamsudheen et al. [105] used K-Nearest Neighbors (KNN) and SVM models to classify 
combustion events in a Homogeneous Charge Compression Ignition (HCCI) engine. The 
study found that the SVM method outperformed KNN, achieving higher accuracy and 
better generalization, with a 93.5% accuracy compared to KNN’s 89.2%. 

Gobyzov et al. [106] discussed the use of CNN to classify combustion regimes (Figure 
7) based on flame imaging. The CNN achieved an average accuracy of 97.9% in classifying 
the flame images into various combustion regimes. The model was particularly effective, 
with most combustion regimes classified with an accuracy close to 99%. However, certain 
regimes (specifically regimes 0, 3, 4, 7, and 8 in Figure 7) showed slightly less accuracies 
ranging from 95% to 97%, mainly due to the visual similarity of these flame images. Com-
parison with other datasets was performed to validate the overall performance of the CNN 
model. It was also trained and tested on standard datasets like Modified National Institute 
of Standards and Technology (MNIST) and Canadian Institute for Advanced Research-10 
(CIFAR-10), achieving accuracies of 99.4% and 85.6%, respectively.  

 
Figure 7. Examples of the flame images representing the captured combustion regimes. Reprinted 
with permission from [106]. Copyrights 2018 AIP Publishing. 

6.2. ML Application in Chemical Composition 
Combustion chemistry is crucial in designing an efficient and low-emission combus-

tion system. Although supercomputing methodologies are continuously progressing, the 
degrees of freedom necessary to fully describe detailed combustion chemistry cannot be 
fully implemented in numerical simulations of large-scale combustion systems. To ad-
dress this problem, various methods have been proposed to simplify and optimize exten-
sive chemical kinetic schemes. These methods include Quasi-Steady State Approximation 
(QSSA), partial equilibrium, Directed Relation Graph (DRG), Directed Relation Graph 
with error propagation, DRG-Aided Sensitivity Analysis (DRGASA), and the elimination 
of unimportant reactions [107]. One of the primary challenges in combustion modeling 
with detailed chemistry mechanisms in CFD methods is the enormous computational de-
mand resulting from the need to solve numerous nonlinear stiff chemical kinetics equa-
tions. Even after reducing the number of differential equations to be solved, the stiff nature 
of these differential systems associated with combustion chemistry requires substantial 
CPU time for their integration, limiting the ability to perform numerous simulations 

Figure 7. Examples of the flame images representing the captured combustion regimes. Reprinted
with permission from [106]. Copyrights 2018 AIP Publishing.

Gobyzov et al. [106] discussed the use of CNN to classify combustion regimes (Figure 7)
based on flame imaging. The CNN achieved an average accuracy of 97.9% in classifying
the flame images into various combustion regimes. The model was particularly effective,
with most combustion regimes classified with an accuracy close to 99%. However, certain
regimes (specifically regimes 0, 3, 4, 7, and 8 in Figure 7) showed slightly less accuracies
ranging from 95% to 97%, mainly due to the visual similarity of these flame images.
Comparison with other datasets was performed to validate the overall performance of the
CNN model. It was also trained and tested on standard datasets like Modified National
Institute of Standards and Technology (MNIST) and Canadian Institute for Advanced
Research-10 (CIFAR-10), achieving accuracies of 99.4% and 85.6%, respectively.

6.2. ML Application in Chemical Composition

Combustion chemistry is crucial in designing an efficient and low-emission combus-
tion system. Although supercomputing methodologies are continuously progressing, the
degrees of freedom necessary to fully describe detailed combustion chemistry cannot be
fully implemented in numerical simulations of large-scale combustion systems. To address
this problem, various methods have been proposed to simplify and optimize extensive
chemical kinetic schemes. These methods include Quasi-Steady State Approximation
(QSSA), partial equilibrium, Directed Relation Graph (DRG), Directed Relation Graph with
error propagation, DRG-Aided Sensitivity Analysis (DRGASA), and the elimination of
unimportant reactions [107]. One of the primary challenges in combustion modeling with
detailed chemistry mechanisms in CFD methods is the enormous computational demand
resulting from the need to solve numerous nonlinear stiff chemical kinetics equations.
Even after reducing the number of differential equations to be solved, the stiff nature of
these differential systems associated with combustion chemistry requires substantial CPU
time for their integration, limiting the ability to perform numerous simulations needed
for optimizing the combustion system design [108]. On top of that, the complex chemi-
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cal properties of different fuels lead to a significant increase in the number of reactants
and equations, making the integration of detailed mechanisms in combustion simulations
exceedingly difficult. The problem with integrating chemistry can be mitigated by using
tabulation, where the reaction source terms are retrieved from a database of precomputed
chemical integrations. The Look-Up Table (LUT) [109] tabulation method retrieves data
by interpolating from a table of precomputed values. However, the memory requirements
for this process increase exponentially with the number of species, making it suitable
only for small mechanisms. A more advanced technique involves combining Intrinsic
Low-Dimensional Manifolds (ILDMs) [110] with In-Situ Adaptive Tabulation (ISAT) [111],
where the table is generated during the simulation. While this approach can reduce CPU
time, it still demands significant memory resources.

These computational limitations have led to the adoption of machine learning ap-
proaches, specifically ANN, to address chemistry reduction, time integration, and the
development of data-driven models for turbulent combustion. ANN can be applied to
various tasks, including nonlinear regression. For a given chemical mechanism, species
concentrations after a reaction time step depend on the initial condition, and ANNs can
be trained to estimate these functions. Christo et al. [112] used ANN for combustion
chemistry tabulation by introducing ANN to represent a simplified three-step mechanism
for H2/CO2/O2 mixtures, which was further applied in PDF simulations of turbulent
flames [113,114]. The simulation results demonstrated strong alignment with the Direct
Integration (DI)-simulated results. As the number of species increases, the composition
space expands exponentially, making it challenging to tabulate the entire space with a single
ANN. To address this issue, Blasco et al. [115] proposed a partitioning method that splits
the composition space into multiple subdomains based on mixture fraction or temperature,
with each subdomain being modeled by a separate ANN. This approach was applied to
simulations of Plug-Flow Reactors (PFRs) and Partially Stirred Reactors (PaSRs), showing
reasonable results. In their study, they focused on implementing a Neural Network to
predict chemical reactions in H2/CO2 turbulent jet diffusion flames. The Neural Network
approach was compared with traditional methods like DI and LUT, highlighting improve-
ments in computational performance and accuracy. They also introduced a Self-Organizing
Map (SOM) to cluster the composition space into multiple subdomains [116]. Direct Inte-
gration (DI) requires the longest CPU time but offers lower accuracy. The Look-Up Table
method provides moderate CPU efficiency with improved accuracy. Neural Networks, on
the other hand, significantly reduce CPU time while delivering the highest accuracy among
these methods. (Table 2)

Table 2. Comparison of CPU Time and RAM requirements across various methods for managing
chemistry. Reused with permission from [113]. Copyrights 1996 Elsevier.

Jet Velocity (m/s) Method RAM (Megabytes) CPU Time (min) CPU Ratio

50
Look-Up Table 13.31 107 2.9
Neural Model 10.02 119 3.2

80
Look-Up Table 13.31 176 1.9
Neural Model 10.02 170 1.8

130
Look-Up Table 13.31 242 --
Neural Model 10.02 204 --

Here’s a table illustrating the comparison of computational efficiency and accuracy
among different methods used for simulating turbulent combustion chemistry:

Ideally, ANNs should possess strong generalization capabilities, enabling their appli-
cation to a wide range of real-world problems. However, in the studies mentioned earlier,
the same problem was used for generating the training dataset and to test the ANNs. As a
result, the problem must be simulated in advance using DI whenever ANNs are applied
to a new problem. However, that diminishes the speed advantage. To ensure ANNs have
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robust generalization ability, the training data must cover the appropriate composition
space that aligns with realistic simulations. Chatzopoulos et al. [117] presented an approach
of generating training data using an established problem that involved dynamic flamelet
simulations and a Rate-Controlled Constrained Equilibrium (RCCE)-reduced chemistry
mechanism. The training data were segmented into 400 subdomains using a SOM, with
each subdomain being fitted by an individual Multilayer Perceptron (MLP). This SOM-
MLP approach was further developed by Franke et al. [118] who incorporated extinction
events and combined it with the LES-PDF. The resulting LES-PDF-ANN methodology was
then applied to simulate the Sydney turbulent flame, which featured significant levels
of local extinction and re-ignition. The model showed a good agreement between the
ANN and DI. An et al. [101] also applied the SOM-MLP methodology to simulate the
hydrogen/carbon monoxide/kerosene mixture in a rocket-based combustor. The training
data were generated through a RANS simulation, after which the ANNs were applied in an
LES simulation, demonstrating strong agreement with the results from DI. Nikitin et al. [20]
used ANN architecture to model the chemical kinetics of hydrogen combustion, which
could predict the behavior of the chemical system over multiple time steps. The study
reported a significant threefold acceleration in computation time compared to traditional
numerical methods.

6.3. ML Application in Flamelet-Based Models

A flamelet is characterized as a thin, reactive-diffusive layer seamlessly integrated
within a predominantly non-reacting turbulent flow field. In flamelet-based modeling, the
turbulent diffusion flame is considered as a collection of stretched laminar flamelets [24].
Flamelet models offer a promising way of circumventing the computation of intensive
transport of chemical species in CFD simulations of turbulent combustion. The concept
is based on decoupling the chemistry from the physical space and solving them on a
reduced mixture fraction space where only the important scalars are solved to determine the
statistical moments of mass fractions and temperature. Instead of transporting all species
and chemistry to each cell, these methods retrieve chemistry from the multidimensional
manifold. These techniques can potentially minimize the computational costs by an order
of magnitude [119].

Terrapon et al. [120] were one of the earliest to implement the flamelet model for
supersonic combustion using a 3-dimensional manifold based on the steady flamelet
equations. Berglund et al. [121] conducted a comparison between 1-D and 2-D manifold
predictions for the LES of supersonic hydrogen combustion within a scramjet engine model.
Overmann et al. [122] created a 3D-manifold-based flamelet model. In all these methods,
compressibility effects were considered by tabulating the species’ mass fractions and using
a transport equation for total enthalpy. The species mass fractions were determined using
the flamelet manifold, and the temperature was derived from the species mass fractions
and enthalpy. Many scramjet simulations have been conducted using this similar Flamelet
Progress Variable (FPV) approach [123,124]. However, these methods do not account
for all the compressibility effects. The change in chemistry with respect to pressure is
not captured accurately by these manifolds as the flamelet manifolds are generated for a
constant pressure. Some of the studies used scaling relations to account for the differences
in pressures. Quinlan et al. [125–127] carried out detailed studies with the FPV approach
and demonstrated the importance and implementation of the pressure as an additional
dimension. Ladeinde et al. [128,129] analyzed the impact of constant pressure manifolds
and scaling relations to demonstrate the importance of pressure dependent manifolds for
supersonic combustion. Also, many of these methods do not account for the unsteady
flamelet formulation that plays a crucial role in auto-ignition events.

The study of turbulent flame evolution has gained significant attention, particularly
in areas such as flame ignition, flame propagation, quenching, and pollutant formation,
etc. [25]. The accurate prediction of turbulent flame evolution is, therefore, highly desirable.
Direct Numerical Simulation (DNS) resolves both turbulence and flame scales in turbulent
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flames, and many such studies have been conducted using DNS. For instance, Aspden
et al. [130] have conducted a study on the turbulence effects on lean premixed hydrogen
focusing on the roles of molecular and turbulent mixing processes. Gruber et al. [131]
investigated flashback phenomena in premixed hydrogen/air flames at the boundary
layer of a fully developed turbulent channel flow. Wang et al. [132–134] performed a
series of DNS studies on experimental premixed jet flames, analyzing the structure and
stabilization of flames, and turbulence–flame interactions. However, such DNS studies
require substantial computational resources that highlight the need for more efficient
methods to reduce the cost of predicting turbulent flame evolution.

For the CFD simulation, species’ mass fractions are gained from the table as functions
of the reaction coordinate via interpolation. While this leads to significant savings in run-
time compared to a detailed chemistry approach, flamelet tables suffer from the problem of
dimensionality as the table size increases. Hence, the memory requirements grow expo-
nentially with the increase in input dimensions. The computational cost and complexity of
interpolation also increase rapidly with additional input variables. So, rendering tabulated
flamelet models are only feasible for low-dimensional tables.

One of the promising ways to solve these issues is the use of machine learning models
to learn the flamelet tables where these models are trained to take the control variables as
inputs and output the dependent variables. The primary advantage of this approach is
the memory efficiency and incorporation of larger flamelet tables in CFD simulations of
turbulent combustion. Machine learning models, such as ANN and CNN, can find complex
and hidden patterns in data. By forming the highly nonlinear relationships, these models
are applied in regressions and classifications. Therefore, machine learning can accurately
and efficiently capture the dynamic flame characteristics of combustion systems.

According to the flamelet assumption, the turbulence reaction rate depends on the
flame surface area. Therefore, it is crucial to evaluate the flame surface area in the sub-grid
scale of LES. For the estimation of sub-grid-scale contribution, Lapeyre et al. [75] developed
a CNN network designed to approximate sub-grid-scale flame surface density using the
topological information of the progress variable. The training data were sourced from the
DNS database of a methane–air slot burner. The input data for the CNN model consisted
of the 3D-filtered progress variable derived from DNS data, while the output was the
3D-normalized flame surface density. By training the CNN model inspired by the U-net
architecture [135], the model achieved high accuracy in predicting the flame surface density.

Ren et al. [25] studied predictive models for turbulent flame evolution using Long
Short-Term Memory (LSTM) and CNN-LSTM in which they focused on two configurations:
freely propagating turbulent premixed combustion and turbulent boundary layer premixed
combustion. The models were validated against DNS data to evaluate their performance,
and it was found that the CNN-LSTM model outperformed the LSTM model, as the CNN-
LSTM model captures both spatial and temporal features of the flames, whereas the LSTM
model only captures temporal features. The models’ errors were mainly concentrated in
regions with large scalar gradients.

Figure 8 describes the comparative analysis of the LSTM and CNN-LSTM models
used to predict the evolution of methane (CH4) mass fraction in freely propagating flames.
The flame dynamics was characterized by the changing formations known as “peninsulas”
of reactants and “pockets” of products. As time progressed, the size of the product pockets
increased while the peninsula of reactants decreased. The LSTM model effectively captured
the evolution of the pocket structures but encountered difficulties with the peninsula
structures. In contrast, the CNN-LSTM model exceled in accurately predicting the evolution
of both pocket and peninsula structures. Relative error metrics, defined as the difference
between predicted and actual DNS values normalized by the maximum DNS value, were
used to assess the model performance. The CNN-LSTM model exhibited smaller relative
errors compared to the LSTM model, particularly near the thin flame front where both
models tend to overestimate the CH4 mass fraction. Overall, the CNN-LSTM model showed
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better performance than the LSTM model in terms of predicting the complex dynamics of
freely propagating flames.
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Figure 9 shows the prediction of the CH4 reaction rate in freely propagating flames,
compared to DNS results and the distribution of relative errors. Figures 8b,c and 9b,c
demonstrate the flame structure predicted by the models that closely matched with the
DNS results, suggesting models’ ability to accurately capture the overall flame structure.
Figures 8d,e and 9d,e present the distributions of relative errors for both models, showing
similar error patterns. The relative errors for the CH4 reaction rate are notably larger than
those for the CH4 mass fraction likely due to the nonlinear nature of the reaction rates
and species mass fractions. The models tend to overestimate the CH4 reaction rate on the
product side of the flame while underestimating it on the reactant side. These discrepancies
suggest that, although the models are generally effective in replicating the flame structure,
they struggle in accurately predicting the precise distribution of the flame reaction zone.

Owoyele et al. [136] introduced the Mixture of Experts (MoE) approach, a divide-and-
conquer machine learning technique designed to learn flamelet tables. This method has
been demonstrated and validated within the context of the Unsteady Flamelet Progress
Variable (UFPV) model applied to Large-Eddy Simulations (LESs) of Engine Combustion
Network (ECN) Spray A. The approach involves a system of Neural Networks consisting
of a gating network classifier and multiple regression expert models. The gating network
splits the flamelet table, while the regression models specialize in making predictions
within specific regions of the manifold. The proposed model was then further validated
using UFPV model used in the Reynolds-Averaged Navier–Stokes (RANS) simulation of
Engine Combustion Network (ECN) Spray A [137]. Both of the validation showed that MoE
was able to capture both global and local flame characteristics while enabling significant
memory savings.
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Kempf et al. [138] used ANN models to demonstrate steady laminar flamelet solutions
and applied them to the LES of Sandia flame D. These models were later optimized by Ihme
et al. [139] and used in the LES of a bluff-body swirl-stabilized flame. Hansinger et al. [140]
trained an ANN model using FPV tables, which showed good agreement with conventional
tabulated FPV simulations. The FPV models, however, do not have the extremely high CPU
time demands for chemistry integration as seen in models where the chemistry is computed
in real time, which made the need for tabulation less critical for these methods. [91]. Emami
et al. [141] simulated a jet diffusion flame (CH4/H2 mixture) using a flamelet approach,
incorporating ANNs in place of direct chemistry integration. The input variables in this
approach included scalar dissipation, mixture fraction, and variance. This approach aligns
with methods previously proposed by Kempf et al. [138] and Ihme et al. [139]. Demir
et al. [119] presented the application of Deep Artificial Neural Networks to replace higher
dimensional manifolds focusing on the integration of the UFPV model into the Viscous
Upwind Algorithm for Complex Flow Analysis (VULCAN)-CFD code. To test and validate
the implementation of transport equations and the interpolation of a multidimensional
scheme, a supersonic hydrogen-air mixing layer was modeled. The UFPV-ANN approach
was then validated in a 1-D context and a supersonic mixing layer simulation. Using
the unsteady formulation, a multidimensional flamelet table was created, and a Deep
Artificial Neural Network was trained using this manifold. The results suggested that
the ANN approach could achieve the same outcomes as the memory-intensive Look-Up
Table method.

7. New Insights into ML for the Prediction of Plasma-Assisted Ignition Kernel Growth

This section presents the results of machine learning methods, specifically Decision
Trees (DTs) and Random Forests (RFs), for the spatio-temporal prediction of plasma-
assisted ignition kernels in a stoichiometric methane/air mixture based on the initial
degree of ionization. The training and testing were conducted using a 2-D DNS model
for the ignition of a stoichiometric methane–air mixture. The concept of ignition kernel
growth, which is the initial phase of the combustion process where a fuel–air mixture
begins to react chemically under an external energy source, forming a stable flame, was
applied. This stage is crucial as it dictates the characteristics of the resulting flame and,
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consequently, the overall efficiency of the combustion process. Various factors, such as
fuel type, mixture composition, and ignition source properties, influence ignition kernel
growth. The introduction highlights the importance of understanding these factors to
enhance combustion efficiency and reduce pollutant emissions. Plasma-assisted systems,
which include nanosecond pulse and laser discharge techniques, can produce higher
concentrations of reactive radicals, reduce the minimum ignition energy required, and ignite
leaner mixtures. These capabilities make plasma-assisted ignition a promising technology
for improving fuel economy and reducing Nitrogen Oxide (NOx) emissions. However,
traditional computational models used to study ignition kernel growth, such as CFD
integrated with chemical kinetics, are limited by their reliance on extensive experimental
data for validation. To address these limitations, this chapter proposes the integration
of machine learning techniques into ignition kernel modeling. ML models, including
Decision Tree (DT) and Random Forest (RF), offer new methodologies for predicting
complex combustion dynamics without heavily relying on large datasets. These models
can learn from limited data and generalize to new conditions, providing a powerful
tool for predicting ignition behavior under varied operational scenarios. To evaluate the
effectiveness of different ML models in predicting the growth and behavior of ignition
kernels, comparing their performance using various statistical measures to determine
their reliability and accuracy (Table 3). Several studies highlight the effectiveness of
machine learning (ML) in ignition modeling [142]. This chapter presents a two-dimensional
Direct Numerical Simulation (DNS) to analyze plasma-assisted ignition kernel growth,
which was trained using an ML model. Machine learning models such as Decision Trees
(DTs) and Random Forests (RFs) have been used to predict the behavior of key variables,
such as temperature and the concentrations of CH and OH species, at different energy
deposition levels.

Table 3. Comparison of Decision Tree and Random Forest model performance matrices for plasma-
assisted ignition exploring T, OH, and CH features.

T(K) CH OH

DT RF DT RF DT RF

Mean Squared Error (MSE) 7.06 × 102 8.24 × 102 2.53 × 10−12 2.68 × 10−12 5.25 × 10−9 6.44 × 10−9

Mean Absolute Error (MAE) 4.04 4.46 1.20 × 10−7 1.32 × 10−7 7.14 × 10−6 8.26 × 10−6

Root Mean Sq. Error (RMSE) 26.6 28.7 1.59 × 10−6 1.64 × 10−6 7.25 × 10−5 8.02 × 10−5

Normalized RMSE (NRMSE) 0.0436 0.0471 4.57 4.71 0.333 0.369
Normalized MAE (NMAE) 6.64 × 10−3 7.32 × 10−3 3.44 × 10−1 3.79 × 10−1 3.28 × 10−2 3.80 × 10−2

Minimum Absolute Error 0 0 1.71 × 10−17 9.81 × 10−13 0 2.33 × 10−13

Maximum Absolute Error 1.32 × 103 1.57 × 103 8.10 × 10−5 8.16 × 10−5 2.79 × 10−3 2.91 × 10−3

Correlation Coefficient 0.999 0.998 0.929 0.922 0.998 0.997
R2 (Coeff. of Determination) 0.997 0.997 0.859 0.850 0.996 0.995

The study uses detailed numerical simulations to model the dual-pulse laser-assisted
ignition kernel growth, developed using a custom-made OpenFOAM solver in C++ and
described in detail in Refs. [143,144]. A further testing of the model was conducted based
on stochastic error evaluation, as detailed by Smirnov et al. [145]. The total error was
de-termined by summing the relative errors in each direction, and, assuming a maximum
al-lowable error for the simulation, the maximum allowable number of time steps was
evalu-ated as described in [145]. The training datasets were obtained from the simulations
under different ionization conditions, using a modified Latin Hypercube Sampling (LHS)
tech-nique to ensure a broad range of conditions for model training. The grid index term
was defined for ML training, as shown in Figure 10, and corresponds to a specific point in
the domain where ignition kernel parameters, such as temperature, were labeled to track
and train data for various machine learning algorithms. The machine learning algorithms
were trained at energy deposition levels of ne,I(0), ne,II(0), and ne,III(0) at time intervals
of 30, 40, and 50 microseconds. The initial conditions for electrons and positive ions
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are given by the following form, ne = ne(0)exp(− x2

x2
ch
− y2

y2
ch
), where ne(0) are the initial

concentrations of electrons on the axis of the plasma channel, xch = 100 µm and ych = 500 µm
are the sizes of the initial ionization region created by the UV pulse. The goal was to
accurately predict performance metrics and spatio-temporal ignition kernels at a target,
ne,t(0), energy deposition [ne,I(0) = 0.85 ne,t(0), ne,II(0) = 1.15 ne,t(0), and ne,III(0) = 0.9 ne,t(0)]
(Figure 11). The electron temperature was initially set to 1 eV. The initial vibrational and
gas temperatures were both set to 500 K. The mathematical model and energy deposition
are described in [143–145].

Figure 11 illustrates a workflow for training and testing models to analyze plasma
properties using two machine learning methods: Decision Tree and Random Forest. The
training phase involves data from initial ionization levels ne,I(0), ne,II(0), and ne,II(0) with
features such as temperature (T), Hydroxyl Radical (OH), and Hydrocarbon (CH) at
three different time points: 30 µs, 40 µs, and 50 µs. The testing phase uses new initial
ionization data ne,t(0) and the same features at the corresponding times to validate the
models with the DNS model. The DNS results of Laminar Flame Speed and Damkohler
number at the targeted initial ionization data, ne,t(0) are presented in Figures 12 and 13.
Figure 12 shows the contour plots of the laminar flame speed (SL) of the ignition kernel
growth at 30, 40, and 50 microseconds in the baseline simulation. The laminar flame speed
was calculated based on the flame progress variable and thermal diffusivity. The flame
speed varies between 0 and 10 m/s, as indicated by the color bar. These contour plots
demonstrate the growth and evolution of the ignition kernel, with clear increases in flame
speed and structural complexity as the ignition kernel as time progresses.

The Damköhler number (Da), representing the ratio of the flow time scale to the
reaction time scale, is a key indicator of the balance between chemical reactions and flow
dynamics in ignition kernel growth. In regions with a high Damköhler number (≥50),
seen as red in the figures, chemical reactions occur much faster than the surrounding flow,
indicating rapid kernel growth and intense combustion. This is especially prominent at
the interface of the ignition kernel, where the temperature and reactant concentrations are
optimal for fast reactions. Over time (from 30 µs to 50 µs), the region of high Da expands
along the kernel boundary, indicating that chemical reactions dominate at the growing
interface. In contrast, lower Da regions both inside the kernel and in the surrounding area
suggest that flow or mixing dominates over reactions, leading to slower combustion in
those regions.
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The performance of the models was evaluated using several metrics such as Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), Normalized RMSE (NRMSE),
and Normalized MAE (NMAE). Both the Decision Tree (DT) and Random Forest (RF)
models showed comparable performance for temperature (T) predictions, with an MAE
of 4.04 and 4.46, respectively, and an RMSE of 26.6 and 28.7. The correlation coefficient
for temperature predictions was 0.999 for DT and 0.998 for RF, indicating an excellent
relationship between the predicted and actual values, while the R2 scores were both 0.997,
demonstrating a strong model fit.

For CH, both models achieved exceptionally low errors across all performance metrics,
with MSE values of 2.53 × 10−12 for DT and 2.68 × 10−12 for RF. The MAE values were
1.20 × 10−7 for DT and 1.32 × 10−7 for RF, and the RMSE values were in the range of
1.59 × 10−6 and 1.64 × 10−6. Both models achieved correlation coefficients around 0.929
and 0.922 for CH, with R2 scores of 0.859 and 0.850, indicating a good model fit. For
OH predictions, the models exhibited a slightly different performance. The RMSE values
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were 7.25 × 10−5 for DT and 8.02 × 10−5 for RF, while the NRMSE values were 0.333 for
DT and 0.369 for RF. The correlation coefficient for OH was 0.998 for DT and 0.997 for
RF, suggesting high predictive accuracy, with R2 values of 0.996 and 0.995, respectively.
Notably, both models demonstrated strong overall performance, with some minor dis-
crepancies. The combination of machine learning and DNS provides valuable insights
into predicting ignition kernel growth and energy deposition dynamics. Both models per-
formed well in predicting temperature and OH concentrations, with slightly higher errors in
CH predictions.

For the analysis, both DT and RF models were employed to predict plasma-assisted
ignition kernel growth, with a specific focus on temperature (T), CH, and OH species
concentration at 100% energy deposition. The models were trained on datasets at 85%, 90%,
and 115% energy deposition levels, and predictions were validated against a detailed DNS
model. The performance metrics show a high degree of accuracy for both models but with
some discrepancies.

7.1. Decision Tree Model (DT)

The DT model performed strongly, with an RMSE of 26.6 and an NRMSE of 0.0436 for
temperature predictions, indicating excellent predictive accuracy. For CH and OH species
concentrations, the DT model recorded RMSE values of 1.59 × 10−6 and 7.25 × 10−5,
respectively, indicating high precision. The MAE for the DT model was 4.04 for temperature
and ranged from 1.20 × 10−7 to 7.14 × 10−6 for CH and OH, further confirming the model’s
robust predictions. The correlation coefficient was 0.999 for temperature, showing a near-
perfect linear relationship between predicted and actual values.

7.2. Random Forest Model (RF)

The RF model exhibited a slightly higher error for temperature predictions, with an
RMSE of 28.7 and an NRMSE of 0.0471. For CH, the RF model achieved minimal error,
with an RMSE of 1.64 × 10−6 and zero error for certain metrics. The correlation coefficient
for temperature predictions was 0.998, while for CH and OH, it was 0.922 and 0.997,
respectively. The RF model displayed strong generalization, particularly around complex
regions such as the ignition kernel edges, and performed similarly to the DT model, with
minor variations in accuracy.

7.3. Comparative Analysis of DT and RF Models

A comparative analysis between the DT and RF models shows that both performed
well in predicting the ignition kernel growth, especially for temperature. However, the
RF model had a more uniform error distribution, making it slightly better at handling
predictions in regions with rapid changes in temperature, such as at the edges of the
ignition kernel. The DT model had lower RMSE and NRMSE values, indicating slightly
better precision, but higher error concentrations were noted near the kernel edges, where
the temperature gradients are more pronounced.

Both models demonstrated strong correlation coefficients and high R2 values, with
DT achieving 0.97 and RF showing similar results. The minimum absolute error for both
models was 0.0, indicating that under certain conditions, the models provided perfect pre-
dictions. While the RF model had a marginally higher RMSE and NRMSE, it demonstrated
better generalization across the kernel regions, which is particularly useful in predicting
temperature distributions with complex dynamics.

In Figures 14–16, the spatio-temporal comparisons for temperature, OH, and CH
patterns are displayed at three distinct time intervals (30 µs, 40 µs, and 50 µs) using both
Decision Tree (DT) and Random Forest (RF) models. Each figure provides critical insights
into how these models perform at capturing combustion characteristics in a domain of
2 mm × 2 mm. Figure 14 (Temperature Patterns) presents the temperature contours at
three time steps. The visual patterns reflect the growth of the ignition kernel over time.
Initially, a concentrated hot region forms, which expands outward as time progresses. Both
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models capture the kernel expansion; however, slight differences between the DT and RF
models can be observed in the smoothness and gradient transitions. The DT model displays
slightly smoother temperature gradients compared to the RF model, especially at the kernel
edges. This indicates that RF handles rapid temperature transitions with more uniformity,
which is critical for predicting the growth of the ignition kernel accurately. The Decision
Tree model has more error concentration at the edges where the temperature gradients
are pronounced.
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Figure 15 (OH Patterns) depicts the distribution of OH radicals, a key marker for
combustion, over time. The OH distribution reflects areas of active combustion, often
surrounding the ignition kernel. The shape of these distributions varies slightly between
DT and RF, with RF showing more evenly distributed OH concentrations. RF’s ability to
generalize across the kernel regions provides a better representation of OH distribution.
While both models track the radical distribution, the RF model shows a better handling of
rapid changes in OH concentration, an important aspect for modeling flame structure.

Figure 16 (CH Radical Patterns) distributions are presented at the same time intervals.
Like the OH patterns, the CH contours help to identify key regions in the flame where
intermediate combustion species are present. Both models show similar kernel growth,
but there are slight variations in how each model tracks the spread and intensity of CH
concentrations. As seen in the figure, the Decision Tree model has challenges in capturing
the exact spread of CH compared to the RF model, with a more pronounced difference seen
in the outer regions of the ignition kernel. This suggests that RF might be better at tracking
species like CH under varying temperatures and combustion conditions, which is critical
for accurately modeling flame chemistry.

In Figure 17, the performance of two machine learning models (DT and RF) is investi-
gated, and their sensitivity is presented in comparison to the DNS model for predicting
ignition-driven variables. The temperature comparison at different time scales, the points
scatter around the perfect sensitivity line (TML = TDNS), showing how closely the DT and RF
models predict temperature compared to the DNS. In the low-temperature range (roughly
500 K to 1500 K in the periphery of the kernel), both the Decision Tree (DT, red dots) and
Random Forest (RF, blue dots) predictions closely follow the perfect sensitivity line. This is
the region of smooth temperature transitions, characterized by lower gradients and gradual
curvature changes. This makes it easier for ML models to learn and make better predictions
based on the training data. In this region, the models are likely encountering more linear or
less complex relationships between the input features and temperature, making it easier
for both DT and RF to generalize well. In the high-temperature range (above 2000 K), the
predicted values from both models start to deviate significantly from the DNS values, with
more scattered points away from the perfect sensitivity line. High-temperature regions
typically correspond to the core region of the ignition kernel with a sharper temperature
gradient making it difficult to train for the ML models. High-temperature regions may
involve highly nonlinear processes, such as rapid chemical reactions, or changes in thermo-
physical properties. These nonlinearities are harder for models like Decision Trees and
even Random Forests to capture accurately.

Decision Trees are simple models that tend to overfit noisy data, especially in complex
regions. Random Forests, being an ensemble of Decision Trees, help to reduce overfitting,
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but they still may not capture all the intricate details of the high-temperature behavior. As
RFs perform better than DTs at low-temperature regions but still struggle to accurately
predict in the high-temperature region, this suggests that even though ensemble methods
reduce variance and improve predictions, the complexity of the underlying phenomena at
higher temperatures requires either more complex models or better data representation.
Gradient boosting methods and deep learning models, such as Neural Networks, may
more effectively capture the nonlinearities present in high-temperature regions compared
to Decision Trees or Random Forests. Additionally, incorporating more relevant features
or transforming existing ones could enhance the model’s ability to represent nonlinear
behavior, thereby improving prediction accuracy at elevated temperatures.

Figure 17 also compares the predictions of DT and RF for OH radical concentrations
(OHML) against the true OH concentrations obtained from DNS at time steps of 30 µs,
40 µs, and 50 µs. Both models perform well in the low and high OH concentration regions
but have difficulty accurately capture the behavior in the middle concentration range
(0.002 to 0.005), where the data points are more scattered. At a low concentration region
(0 to ~0.002), chemical reactions are relatively slow or in the quenching phase, making the
system’s dynamics simpler and more predictable. As a result, both models, particularly
the DT, predict OH concentrations with high accuracy. The relationships between input
features like temperature, pressure, and reaction rates are more straightforward and likely
linear, which allows both models to learn and generalize well. At high OH concentrations
region (above ~0.005), the chemical reactions may be approaching saturation or equilibrium,
leading to more stable system behavior. This stabilization simplifies prediction tasks for
both models, as OH concentrations change less drastically.

Consequently, both DT and RF show good agreement with DNS values, with Decision
Tree often showing slightly better performance in this range. Accurate predictions at high
OH concentrations are crucial because these regions are where active combustion occurs,
and modeling OH radicals precisely is vital for understanding combustion efficiency and
pollutant formation. The middle-concentration range (~0.002 to ~0.005, Poorly Captured)
exhibits more scatter and larger deviations from the perfect sensitivity line, indicating that
both models struggle to capture the true behavior of the DNS data. This region represents a
transitional phase between low and high OH concentrations, where the combustion process
is highly dynamic, with rapid changes in OH radical concentrations. These nonlinear and
complex interactions make it challenging for DT and RF to predict accurately. The transition
is inherently difficult to model, especially with decision-based models, as they may fail to
capture the nuances of these rapid changes.

In comparison, both models show good agreement with DNS data at low and high-
concentration regions. Decision Tree consistently performs better than Random Forest,
especially in the low and high-OH-concentration ranges, where its predictions are more
tightly clustered around the ideal line. In contrast, Random Forest shows more scatter in
the low-concentration range. The ability of Decision Tree to capture OH radical behavior
more accurately at high concentrations highlights its effectiveness in modeling critical
intermediates in combustion reactions. While both models provide good performance in
stable regions, their limitations in the middle-concentration range suggest the need for
more advanced approaches. To improve predictions in this region, more complex models,
such as gradient boosting or Deep Neural Networks, which are better equipped to handle
nonlinearities and dynamic interactions in combustion processes. Additionally, enhancing
feature engineering by introducing inputs that better capture the behavior of OH radicals
at mid concentrations, and including more training data in this range, could help improve
model accuracy. In conclusion, while Decision Tree outperforms Random Forest in both
low and high-OH-concentration ranges, both models could benefit from improvements
in handling the mid-range nonlinearity to provide more accurate and reliable predictions
across all regions of OH concentrations.
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To compare the CH radical concentrations (CHML) against the DNS values (CHDNS) at
time steps of 30 µs, 40 µs, and 50 µs, both models perform well in the low-concentration
range (approximately 0 to 5 × 10−5), closely matching the DNS data. However, at higher
concentrations, both models show significant deviations from the DNS values. This makes
it easier for both models, especially Random Forests, to generalize from the training data
and capture the behavior of the system accurately. The stable behavior in this region allows
the models to perform well without much complexity. One reason for the poor performance
in this region could be an imbalanced training dataset. As a result, both Decision Trees and
Random Forests deviate significantly from the true DNS values in the high-concentration
range. Decision Trees are particularly prone to overfitting, which could cause them to
capture the low-concentration region accurately while failing to model the complexities
of higher concentrations, leading to significant errors. Although Random Forests mitigate
overfitting by combining multiple Decision Trees, they may still underfit the more complex
high-concentration data, resulting in reduced performance in this range. Both models may
struggle to capture this behavior because they are trained on broader conditions that do
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not adequately represent this specific phase of the reaction dynamics. To improve model
performance in this range, more advanced machine learning techniques, such as deep
learning or gradient boosting, and better training data representation should be considered
to capture the nonlinearities, and intricate interactions present at higher CH concentrations.

8. Conclusions

Turbulent combustion plays a crucial role in various fields like energy production,
aerospace, environmental processes, and industrial applications. It is a highly dynamic
process involving complex interactions between chemical reactions and turbulent flow,
which make the process immensely chaotic and very difficult to predict. Key challenges of
turbulent combustion include resolving turbulent and chemical phenomena across a wide
range of spatial and temporal scales, precisely capturing the multiscale, nonlinear interac-
tions between turbulence and chemical kinetics, etc. Conventional modeling approaches
attempt to approximate turbulence and combustion dynamics but are often computation-
ally expensive and require simplifications that limit their accuracy. This is where machine
learning offers transformative impact. The integration of machine learning into turbulent
combustion modeling uses data-driven techniques that enhance the predictive accuracy
of conventional models and significantly reduce computational costs. Table 4 illustrates
the current scope of machine learning across various stages of combustion, encompassing
ignition through flame propagation.

Table 4. Application of machine learning at different stages of combustion.

Combustion
Stage Machine Learning Techniques Practical Implications References

Ignition
Artificial Neural Networks (ANNs),
Support Vector Machines (SVMs), Decision
Tree (DT), and Random Forest (RF)

• Predict ignition delay
• Optimize ignition conditions
• Ignition kernel profile

Molana et al. [142],
Tuan et al. [146],
Sharif et al. [23]

Flame Kernel
Development

Decision Tree (DT), Random Forest (RF),
and Convolutional Neural Network (CNN)

• Estimate flame kernel growth
• Optimize fuel–air mixture Johnson et al. [147]

Transition to
Turbulent

Flame

Convolutional Neural Network Long
Short-Term Memory (CNN-LSTM)

• Predict flame structure
• Improve flame evolution modeling Ren et al. [25]

Flame–
Turbulence
Interaction

Neural Networks, SVMs, Physics-Informed
Neural Networks (PINNs), Reinforced
Learning

• Optimize combustion behavior
• Capture flame turbulence interaction
• Optimize flame stability

Yan et al. [148],
Li et al. [149]

Flame
Propagation

Artificial Neural Networks (ANNs) and
Convolutional Neural Network Long
Short-Term Memory (CNN-LSTM)

• Predict flame speed
• Improve combustion efficiency
• Reduce emissions

Sadeq et al. [150],
Ren et al. [25]

Machine learning helps to identify key patterns in large combustion datasets, optimize
turbulent flame behavior, and provide real-time predictions for complex interactions in-
volved in turbulent combustion. At the ignition stage, techniques such as Neural Networks
and Support Vector Machines (SVMs) are commonly used to predict ignition delays that
help to optimize fuel efficiency and system reliability. Convolutional Neural Networks
(CNNs), Decision Tree (DT), and Long Short-Term Memory (LSTM) models can provide
predictions of flame growth and expansion to ensure efficient fuel–air mixture management.
Neural Networks are effective for capturing the complex flame–turbulence interactions
that allow better control over the flame dynamics. Convolutional Neural Networks and
Artificial Neural Networks (ANNs) are useful techniques to approximate turbulent flame
propagation for optimizing combustion efficiency and reducing emission. Thus, the appli-
cation of machine learning techniques at different stages of turbulent combustion improves
accuracy, increases efficiency, and optimizes the combustion dynamics.
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This study also presented the results of machine learning methods, specifically DT and
RF, for the spatio-temporal prediction of plasma-assisted ignition kernels in a stoichiometric
methane/air mixture based on the initial degree of ionization. The findings demonstrated
that well-trained machine learning models can accurately predict the spatio-temporal igni-
tion kernel profile based on the initial energy deposition and distribution. The integration
of machine learning in combustion simulation represents a promising interdisciplinary
approach that can substantially enhance predictive capabilities and deepen our understand-
ing of combustion phenomena. The simulation results of plasma-assisted ignition kernel
growth, acquired from the presented models, support this assertion effectively.
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FPV Flamelet Progress Variable GPU Graphics Processing Unit
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LEM Linear-Eddy Model LES Large-Eddy Simulation
LHS Latin Hypercube Sampling LSTM Long Short-Term Memory
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MDP Markov Decision Process ML Machine Learning
MLP Multilayer Perceptron MMC Multiple Mapping Conditioning
MoE Mixture of Experts NOx Nitrogen Oxide
ODE Ordinary Differential Equation ODT One-Dimensional Turbulence
OH Hydroxyl Radical PCA Principal Component Analysis
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PaSR Partially Stirred Reactor QSSA Quasi-Steady State Approximation
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RCCE Rate-Controlled Constrained Equilibrium RF Random Forest
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RNN Recurrent Neural Network SOM Self-Organizing Map
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