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Abstract: This study addresses the challenge of optimizing flat-plate solar collector design, tradi-
tionally reliant on trial-and-error and simplified engineering design methods. We propose using
physics-informed neural networks (PINNs) to predict optimal design conditions in a range of data
that not only characterized the highlands of Ecuador but also similar geographical locations. The
model integrates three interconnected neural networks to predict global collector efficiency by con-
sidering atmospheric, geometric, and physical variables, including overall loss coefficient, efficiency
factors, outlet fluid temperature, and useful heat gain. The PINNs model surpasses traditional
simplified thermodynamic equations employed in engineering design by effectively integrating
thermodynamic principles with data-driven insights, offering more accurate modeling of nonlinear
phenomena. This approach enhances the precision of solar collector performance predictions, making
it particularly valuable for optimizing designs in Ecuador’s highlands and similar regions with
unique climatic conditions. The ANN predicted a collector overall loss coefficient of 5.199 W/(m2·K),
closely matching the thermodynamic model’s 5.189 W/(m2·K), with similar accuracy in collector
useful energy gain (722.85 W) and global collector efficiency (33.68%). Although the PINNs model
showed minor discrepancies in certain parameters, it outperformed traditional methods in capturing
the complex, nonlinear behavior of the data set, especially in predicting outlet fluid temperature
(55.05 ◦C vs. 67.22 ◦C).

Keywords: solar energy; solar collectors; water heating; artificial neural networks

1. Introduction

In an era where the dialogue on climate action shifted from mere awareness to urgent
implementation, the study of renewable energy sources, particularly solar energy, assumes
critical importance [1–3]. Solar energy, harnessed for electricity production and water
heating, presents a feasible alternative in the quest to mitigate the global rise in fossil fuel
demand and the associated environmental degradation [4]. The current research pivots on
to assess the influence of the design parameters of flat-plate solar collectors in the overall
efficiency of the collector through the lens of thermodynamics-informed artificial neural
networks (ANN) in order to improve the efficiency of solar collectors, offering a synergy
between traditional engineering design and advanced machine learning concepts [5].

The utilization of solar thermal systems aligns closely with international energy
management policies, and notably, with those developing within the Ecuadorian energy
policy [6,7]. Despite the country’s advantageous equatorial position, which promises abun-
dant solar radiation, the integration of solar power into the national energy portfolio is
limited due to economical, social, and political reasons; consequently, there is limited
infrastructure that takes advantage of solar energy alternatives [8]. Recent governmental
initiatives indicate a paradigm shift towards incorporating solar power as a key renewable
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resource [9]. This strategic move focuses on reducing reliance on fossil fuel, leading to the
improvement of air quality, and thereby supporting the sustainable development goals [10].

Previous studies explored various methods to enhance the efficiency of solar water
heaters, focusing on distinct physical characteristics that contribute to system performance.
For instance, Riffat et al. [11] investigate the impact of the inner fluid’s thermal properties
on the overall heat transfer efficiency within solar collectors, emphasizing how fluid
composition can significantly influence energy absorption and retention. In another study,
Shariah et al. [12] examine the optimal tilt angle for solar collectors, providing detailed
analysis on how geographical location and seasonal variations affect incident solar radiation,
and thus, collector performance. Additionally, Recalde et al. [13] analyze fluid circulation
patterns across tube collectors, highlighting the importance of flow rate and uniform
distribution in maximizing thermal efficiency. Each of these studies underscores the
complexity of optimizing solar collectors through experimental methods, which often
involves managing numerous interdependent variables simultaneously. This inherent
complexity makes the experimental trial-and-error approach laborious and time-consuming,
thus delaying advancements in solar collector technology.

To address the limitations of traditional optimization methods, recent research increas-
ingly focused on utilizing ANNs for enhancing the performance of solar collectors [14].
While this represents significant progress, existing studies never fully exploited the poten-
tial of ANNs to optimize design parameters for maximizing thermal efficiency. Moreover, a
critical gap exists in the literature regarding the consideration of region-specific climatic
conditions, such as those in Ecuador, which play a pivotal role in the performance of
solar collectors.

A thorough review of the literature reveals several key insights. Yaici et al. (2015) [15]
demonstrated the effectiveness of ANNs in predicting the performance of solar thermal
systems under varying climatic conditions, reinforcing the need for region-specific models.
Kalogirou (2003) [16] similarly highlighted the potential of ANNs to optimize solar col-
lector efficiency by incorporating diverse environmental factors. However, despite these
promising developments, current research never sufficiently integrated ANN models to
optimize thermal efficiency design parameters in the unique climatic context of Ecuador.
Furthermore, the literature lacks a comprehensive approach that integrates thermodynamic
principles into ANN frameworks to address the specific performance variations caused
by Ecuador’s climatic conditions. This gap in region-specific modeling and the lack of
thermodynamics-informed ANN optimization forms the foundation of this study. Existing
research lacks comprehensive approaches that integrate thermodynamic principles into
ANN frameworks to account for the specific performance variations in solar collectors
under Ecuador’s climatic conditions. This gap, particularly in region-specific modeling
and thermodynamics-informed ANN optimization, is addressed by this study through
the use of physics-informed neural networks. By combining deterministic thermodynamic
processes with data-driven insights, PINNs offer a potential solution for modeling complex,
nonlinear behaviors often oversimplified in conventional approaches, improving predictive
accuracy for solar collectors in the Ecuadorian highlands.

The present research, therefore, seeks to bridge these gaps by employing ANN method-
ologies to evaluate the influence of components on thermal efficiency and thus be able to
quickly optimize the design of flat plate solar collectors. This approach is not only inno-
vative, but resonates with the need for computational models that can replicate complex
systems, thereby reducing the need for extensive physical testing and the associated costs.

The implications of this research are twofold: firstly, to affirm the validity of ANN as a
method for enhancing the design and efficiency of solar collectors; and secondly, to tailor
this method to the specific environmental conditions of Ecuador. The outcomes of this
study are anticipated to extend beyond theoretical contributions, opening scope to practical
applications and design frameworks that can be implemented within a similar Ecuadorian
context and that could serve for solar collector studies [17,18], thereby exemplifying a
tailored approach to renewable energy design methods.



Energies 2024, 17, 4978 3 of 27

The research addresses the following key questions:

1. How can ANN methodologies be applied to optimize the design parameters of flat-
plate solar collectors for improved thermal efficiency?

2. What impact do the specific climatic conditions of Ecuador have on the performance
of solar collectors, and how can these be integrated into ANN models for enhanced
design optimization?

By incorporating artificial neural networks into the design process, this study ad-
dresses the inherent nonlinearities in solar collector performance, which are often challeng-
ing to capture using purely analytical or empirical models. In particular, physics-informed
neural networks are lever-aged to not only account for these nonlinear behaviors, but also
to integrate thermodynamic equations directly into the model. This combined approach
allows for a more accurate prediction of key parameters, such as temperature and efficiency,
ultimately optimizing the solar collector design. Focusing on Ecuador’s unique climatic
conditions further enhances the study’s relevance, providing region-specific solutions for
improving the thermal efficiency of solar collectors. This dual contribution, both to the-
oretical advancements in modeling and to practical engineering applications, positions
the research as impactful for the development of tailored solar energy solutions in diverse
environmental contexts.

1.1. Artificial Neural Networks

Artificial neural networks represent a cornerstone of computational science, inspired
by the biological neural networks that constitute animal brains [19]. At their core, ANNs
are systems of interconnected nodes, or “neurons”, which process data inputs through a
series of transformations to produce outputs. The strengths of these connections, known as
weights, are adjusted during the training process to minimize the discrepancy between the
ANN’s output and the known data, a process facilitated by a loss function [20]. This function
quantifies the error of the network’s predictions, guiding the optimization algorithm, often
a variant of gradient descent, to adjust the weights in a direction that reduces the loss [21].

Generalization, the ability of an ANN to perform well on unseen data, is a hallmark of
a well-trained network. This aspect is particularly critical, as it determines the network’s
utility in practical applications [22,23]. To avoid overfitting, or the memorization of training
data at the expense of generalization, techniques such as regularization are employed,
where additional constraints or penalties are introduced to the learning process. Activation
functions imbue the network with non-linearity, allowing it to capture complex patterns.
The bias term in each neuron is akin to an intercept in linear regression, enabling the neuron
to fit the data better [24]. In the context of engineering design, the implications of ANNs
are profound. They offer a paradigm shift from traditional deterministic or empirical
design methodologies to data-driven, adaptive approaches. In design processes, ANNs can
analyze complex data sets, recognize patterns, and make predictions or decisions with high
accuracy [25]. They facilitate the exploration of vast design spaces, optimize performance
criteria, and can even lead to the discovery of novel design principles or configurations.
The application of ANNs to engineering design transcends mere automation; it is a trans-
formative tool that enables engineers to harness the power of data and computation to
innovate and solve problems with unprecedented efficiency and creativity [26].

Beyond this description, the proposed artificial neural network is not merely an
abstract computational model; it is also designed to mirror the physical laws that govern
solar collectors in the highland regions of the Andes of Ecuador [27]. Our approach is
grounded in a theoretical thermodynamics’ framework, which was utilized to generate
synthetic data sets. These data sets encapsulate the nuanced dynamics of solar energy
conversion and the thermal behavior characteristic of high-altitude environments. By
integrating this theoretical underpinning into the training of our ANN, we ensure that the
model’s predictions are not only data-driven, but also physics-informed, a key characteristic
of the proposed ANN-based model.
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This synergy between computational intelligence and thermodynamic principles
enhances the ANN’s predictive capabilities, ensuring that the model accurately reflects
real-world physical interactions [28]. It allows the ANN to anticipate the performance
of solar collectors with high precision, considering variables such as solar irradiance,
ambient temperature, and material properties that are specific to the Andean highland
context. Consequently, the ANN becomes a powerful tool for designing solar collectors,
providing engineers with a data-driven yet physically anchored methodology. This method
is expected to yield designs that are not only optimized for efficiency, but also contextualized
to the unique environmental conditions of the Andes, thus contributing to engineering
practices in renewable energy systems.

1.2. Physics-Informed Neural Networks

Physics-informed neural networks (PINNs) represent an innovative fusion of deep
learning with the physical principles governing phenomena of interest in science and
engineering [29,30]. Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations.
This approach integrates physical laws and principles, typically expressed in the form
of equations or data, directly into one or more stages of the neural network model
generation process.

By doing so, PINNs not only learn from available data, but also incorporate prior
knowledge about the underlying behavior of the system they are modeling. This allows
them to make more accurate predictions and better generalize to unseen situations, even
with limited or noisy data sets.

The applications of PINNs are vast, spanning from fluid dynamics to structural
engineering and particle physics, offering a powerful tool to solve complex problems where
physical knowledge is crucial.

The stages in the neural network modeling process are described below [30]:

• Defining the Problem: what we are modeling.
• Curating Data: what data will inform the model.
• Designing the Neural Network Architecture: layers and activation functions.
• Defining an Optimization Function: loss function.
• Optimization.

To create a physics-informed neural network (PINN) based on the provided stages of
a conventional ANN modelling process, we can introduce physics concepts and constraints
at any of the steps [28].

2. Method

The strategy used in this study to introduce the physics of the problem focuses on
the problem definition and data stages that inform the neural network model. The data
are generated from mathematical models based on thermodynamic principles that allow
for training the network and establishing fundamental parameters for the design of solar
collectors in high Andean zones.

2.1. Conceptual PINN Model for the Design of Solar Collectors
2.1.1. Step 1. The Problem: What Are We Modeling?

Harnessing the computational power of artificial neural networks, we delve into a
detailed analysis of flat-plate solar collectors with a focus on water heating applications.
The predictive analytics derived from ANNs are vital in advancing the efficiency predic-
tion of solar collectors, which is a significant step toward bolstering the sustainability of
urban infrastructure.

To concretize the utility of ANNs, we apply them to refine the design of flat-plate
solar collectors. These devices are crucial in the transformation of solar energy into heat
and their performance is subject to wide fluctuations due to varying environmental con-
ditions [11]. The capacity of ANNs to assimilate and learn from these environmental
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parameters, and to dynamically fine-tune operational factors, is instrumental in achieving
marked enhancements in the prediction of global collector efficiency.

In our approach, we encapsulate the fundamental physics governing solar collectors
within a synthetic data set derived from a comprehensive thermodynamic framework [31].
This data set informs or feeds into our neural network model, enabling it to internalize
the underlying physical phenomena [30]. Consequently, the ANN is not only trained on
empirical data, but is also steeped in the theoretical principles of solar energy conversion.
Leveraging this hybrid model, we extract critical design parameters for the solar collectors,
thus bridging the gap between theoretical physics and practical engineering design.

This revision adds clarity on the integration of thermodynamic principles with ANN
(i.e., PINN model) training and the goal of obtaining design parameters, providing a
comprehensive view of the modeling problem and the methodology applied to address it.

Engineering design requires that the dimensions and materials of a solar collector
be optimized for maximum efficiency, cost-effectiveness, and alignment with existing
infrastructure standards. Achieving the optimal temperature for residential hot water,
typically ranging between 55 and 70 degrees Celsius [32], necessitates reliable performance
under varying regional climatic conditions. Figure 1 illustrates the essential components of
a flat-plate solar collector, highlighting the crucial elements that ensure its effective design
and operation.
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Figure 1. Flat-plate collector: thermodynamic description.

2.1.2. Step 2. The Neural Network Architecture: A Thermodynamics-Based Approach

The thermodynamic characterization of solar collectors follows the foundational
models described in the previous sections [7,11,31]. These models are integral to the
neural system’s development for predicting and optimizing the performance of solar
thermal systems (Figure 2). A critical aspect of this characterization is the convective heat
transfer coefficient between the collector’s tube and the fluid, which was computed using
dimensionless parameters.

The thermal equilibrium in the water heating process via solar energy is quantified by
the equation:

HTAe = HTAe(1 − (α·τ)e) + Qu + Ql +
∂V
∂t

(1)

where HTAe is the incident solar radiation, HT global solar irradiation, Ae plate area,
HTAe(1 − (α·τ)e) is the reflected solar radiation, Qu collector useful energy gain, Ql heat
loss, ∂V

∂t stored heat, α plate absorptance, and τ cover transmittance. Based on this fun-
damental thermodynamic balance equation, three interconnected neural network models
were developed (Figure 3). These models, along with corresponding data sets for train-
ing, validation, and testing, were executed sequentially to map specific solar collector
design parameters.
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Figure 3. Conceptual diagram used in data generation and modeling based on ANN. The figure
shows the conceptual structure used for the generation of synthetic data informed by thermodynamic
principles. Each ANN is associated with a sequential generalization task. These mappings represent
specific tasks or outputs that each network is designed to perform or predict based on its respective
training data.

ANN 01: The Environmental and Solar Radiation-Informed ANN Model

The first ANN model (ANN 01) maps a set of variables to the collector overall co-
efficient. The variables under consideration form a comprehensive set that is crucial for
optimizing the design and performance of solar collectors through the proposed ANN
modeling. These parameters include environmental factors such as global solar irradia-
tion, wind speed, and ambient temperature, which directly affect the energy capture and
thermal dynamics of the system. The design-specific variables, such as the collector tilt,
plate emittance, and absorptance, along with the physical dimensions of the plate, play
pivotal roles in maximizing the efficiency of solar radiation absorption and minimizing heat
loss. Additionally, the characteristics of the cover, including the number of covers, their
emittance, transmittance, and the insulation properties (thermal conductivity, along with
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lower and lateral insulation thickness), are integral in managing the thermal insulation of
the system. Together, these variables enable precise modelling of solar collector systems
to enhance their effectiveness and adaptability to various environmental conditions and
design requirements, fostering more sustainable and efficient energy solutions. The set of
variables is used for the prediction of the collector overall loss coefficient.

ANN 02: The Design and Operational Efficiency-Informed ANN Model

The second mapping (ANN 02) facilitates the prediction of critical factors such as
collector heat removal and collector efficiency, which are integral to the design process of
solar collectors. This set of variables, crucial for both design and operational efficiency,
includes the collector overall loss coefficient, indicating the rate of heat loss per unit area
and temperature difference, essential for assessing thermal performance. Additionally, the
mass flow rate is key for optimizing fluid dynamics within the system, ensuring efficient
heat transfer. The configuration of the number of parallel tubes, along with the outside
and inside tube diameters, critically affects fluid distribution and the thermal contact area,
which is vital for effective heat exchange. Variables such as plate thermal conductivity,
plate thickness, plate length, and plate width are fundamental in defining the collector’s
heat conduction properties, structural integrity, and the surface area available for solar
absorption. Collectively, these parameters support a comprehensive and nuanced approach
to modeling and optimizing solar collector systems, enhancing energy collection and
thermal efficiency through targeted adjustments and simulations.

ANN 03: The System Performance-Informed ANN Model

The variables delineated for the third ANN mapping (ANN 03) in solar collector
systems are pivotal, influencing key metrics and conditions that directly affect the system’s
performance and efficiency. The collector overall loss coefficient is essential for quantifying
heat losses, providing a crucial indicator of thermal efficiency, while the collector efficiency
factor evaluates how effectively the system converts absorbed solar energy into usable
heat. Global solar irradiation is critical for determining the potential energy input, and
both ambient temperature and inlet fluid temperature significantly influence the system’s
thermal dynamics and responsiveness. Plate absorptance and cover transmittance are
vital for maximizing solar energy absorption and minimizing energy losses through the
collector’s covering. The physical dimensions of the plate length and width are instrumental
in defining the available surface area for energy capture. Additionally, the collector heat
removal factor is crucial for assessing the system’s efficiency in transferring the absorbed
heat. Collectively, these variables form the backbone of ANN models that are instrumental
in predicting and refining the design and operational strategies of solar thermal collectors,
facilitating optimized adjustments to enhance energy efficiency and adapt to diverse
environmental conditions.

In the context of the proposed ANN-based model for solar collectors, the output
variables—collector outlet fluid temperature, collector useful energy gain, and global
collector efficiency—are pivotal for the evaluation, design, and optimization of system
performance. The collector outlet fluid temperature indicates the effectiveness of the
collector in heating the fluid, crucial for applications requiring precise temperature control.
The collector useful energy gain measures the actual thermal energy transferred to the
fluid, reflecting the system’s ability to harness solar power effectively, which is essential
for calculating the system’s energy output. Lastly, the global collector efficiency quantifies
the overall efficiency of the collector by comparing the useful energy gain to the total solar
energy incident on the collector, serving as a benchmark for the system’s performance.
These variables, generated by the ANN, are instrumental in providing detailed insights into
the operational characteristics of solar collectors, facilitating refined adjustments to improve
efficiency and meet specific energy requirements in diverse environmental conditions.

The database employed in this study is integral to the design of solar collectors
based on ANN models and is specifically tailored to address the climatic and thermal
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dynamics of the Ecuadorian highlands. This synthetic database comprises 635 instances,
each characterized by 21 independent input variables and 6 dependent output variables.
It is meticulously divided into three segments, each designated as the input vector for
one of the three distinct ANN models. This strategic partitioning optimizes the focus
and efficiency of the learning process by ensuring each model is closely aligned with
specific aspects of the data set. The alignment of these vectors with our neural network
methodology, detailed in Figure 3, is essential for robust predictive modeling.

To ensure the database’s relevance and precision, it was generated using a computa-
tional algorithm that solves theoretical model equations through iterative methods. This
process was necessary because the temperature of the collector plate, which primarily
depends on useful heat, is critical for calculating the collector top loss coefficient. The
conditions chosen for the data set reflect realistic operational states, critical for achieving
functionally optimal solar collector performance. These include constraints such as a maxi-
mum collector overall loss coefficient of 20 kW/m2·K, a requirement for the net heat gain to
be positive, ensuring energy efficiency, and the necessity for the collector plate temperature
to exceed ambient temperatures to indicate effective heat absorption. Furthermore, the
collector outlet fluid temperature is capped at 90 ◦C to maintain safe operational limits.
This rigorously structured database provides a coherent and logical foundation for training
the ANN models, enabling precise predictions and effective analysis of solar collector
systems under varied scenarios.

2.1.3. Step 3. Thermodynamics-Informed Data Sets for Training, Testing and Validation
DATA SET 01: Synthetic Data Generation for Predicting the Collector Overall
Loss Coefficient

The energy balance represented by Equation (1) is the thermodynamic principle from
which the design equations for solar collectors are derived. These design equations, based
on physical principles, are used to generate a synthetic database that feeds the neural
network models (Figure 3). Table 1 highlights the thermodynamics framework used to
evaluate the overall loss in a solar collector. The table displays the set of Equations (2)–(10)
utilized for the mapping between independent variables and the overall loss coefficient.

Table 1. Thermodynamics framework for the evaluation of the collector overall loss coefficient.

Definition Thermodynamic Equations

Solar collector independent variables

Coefficient (C) C = 520
(
1 − 0.000051β2) f or 0 ≤ β ≤ 70◦, C = 70 f or 70 < β < 90◦ (2)

Collector back loss coefficient (Ub) Ub = ka
L (3)

Collector edge loss coefficient (Ut) Ut =
ka·L·Pe

E·Ae
(4)

Collector top loss coefficient (Ut) Ut =

(
N(

C
Tpm

)(
Tpm−Ta

N+ f

)e + 1
hw

)−1

+
σ(Tpm+Ta)(Tpm

2+Ta
2)

(εp+0.00591·N·hw)
−1
+

2N+ f−1+0.133ε p
εc

−N

(5)

Factor (f ) f =
(
1 + 0.089hv − 0.1166·hv·εp

)
(1 + 0.07866N) (6)

Mean plate temperature (TPM) Tpm = Tf i +
Qu

FR ·Ae ·UL
(1 − FR) (7)

Plate absorptance (e) e = 0.43
(

1 − 100
Tpm

)
(8)

Wind heat transfer coefficient (hw) hw = 5.7 + 3.8·Sw (9)

Solar Collector dependent variables

Collector overall loss coefficient (UL) UL = Ut + Ub + Ul (10)

Note: The table is structured to clearly distinguish between the dependent and independent variables within the
neural network architecture, providing a comprehensive overview of how these variables interact and influence
the network’s performance. Pe is the plate perimeter, Ae is the plate area, FR is the collector heat removal factor,
Qu is the useful energy, Sw is the wind speed, Ta is the ambient temperature, Tfi is the inlet fluid temperature, β is
the collector tilt, εp is the plate emittance, N is the number of covers, εc is the cover emittance, ka is the insulation
thermal conductivity, L is the lower insulation thickness, and E is the lateral insulation thickness.
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The collector overall loss coefficient equation encapsulates the three main avenues
of thermal loss in a solar collector, providing a comprehensive understanding of its effi-
ciency. By quantifying each component of heat loss, engineers can target specific design
improvements to enhance the collector’s performance.

Synthetic Data Base Generation

The synthetic database used in this study for the design of solar collectors through
ANN models was meticulously generated to support the training, validation, and testing
phases of the model development. This data generation process involves an algorithm that
randomly assigns values to the independent variables listed in Table 1. These variables
are then used to evaluate the total conductance of the solar collector system, employing a
series of equations (from Equations (2)–(10)) derived from the thermodynamic theoretical
framework (Table 1).

The assigned values for the independent variables that specifically map the collec-
tor overall loss coefficient are varied within predefined ranges. These ranges and the
computational methods used for the calculations are described in Table 2. This approach
ensures that the data are not only robust and representative of real-world scenarios, but also
aligned with the theoretical underpinnings necessary for effective ANN modeling. This
synthetic database is crucial for developing a predictive model that is both accurate and
applicable in practical scenarios, providing a solid foundation for the advanced analysis
and optimization of solar collector systems.

Table 2. Ranges of values used in the generation of the Data Set 01.

Solar Collector Independent Variables Abbreviation Value Range

Ambient temperature (◦C) Ta 8–30
Collector tilt (◦Sexa.) β 4–45
Cover emittance (a.u.) εc 0.04–0.98
Cover transmittance (a.u.) τ 0.62–0.92
Global solar irradiation (W/m2) HT 2–796
Inlet fluid temperature (◦C) Tf i 7–33.5
Insulation thermal conductivity (W/(m·K)) ka 0.028–0.72
Lateral insulation thickness (m) E 0.002–0.15
Lower insulation thickness (m) L 0.005–0.45
Number of covers (a.u.) N 1–5
Plate absorptance (a.u.) α 0.08–0.97
Plate emittance (a.u.) εp 0.03–0.92
Plate length (m) Lp 0.25–6
Plate width (m) AnP 0.25–6
Wind speed (m/s) Sw 0–2.20

Note: a.u. stands for arbitrary units.

DATA SET 02: Synthetic Data Generated for the Prediction of the Collector Efficiency
Factor and the Collector Heat Removal Factor

The efficiency factor and the collector heat removal factor are critical metrics in as-
sessing the performance of solar collectors. The data set is generated with the same
considerations taken in Data Set 01, which ensures consistency in data preparation across
different model components. Table 3 provides a detailed breakdown of the thermodynamic
framework utilized, as outlined by Equations (11)–(21). The relevant independent variables,
which are directly tied to these evaluations, are listed in Table 4.

The collector efficiency factor (F′) and heat removal factor (FR) are pivotal metrics for
evaluating the performance of solar collectors. The collector efficiency factor is calculated
using Equation (20), which incorporates various geometric and heat transfer characteristics
of the collector. This factor is crucial as it quantifies the collector’s efficiency, providing
insights into its thermal performance. Optimization of F′ is essential for enhancing the
overall effectiveness of solar collector systems.
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Similarly, the heat removal factor, denoted as FR (Equation (21)), measures how
efficiently a solar collector can remove heat from the absorber plate. This factor is derived
from a formula that integrates both the physical and operational parameters of the collector,
calculating the proportion of heat effectively transferred from the absorber plate to the
working fluid. Understanding and optimizing both F′ and FR are fundamental to improving
the efficiency and functionality of solar collectors, thereby increasing their applicability and
effectiveness in sustainable energy systems.

Table 3. Thermodynamics framework for the evaluation of collector efficiency and heat removal factors.

Definition Thermodynamic Equations

Solar Collector Independent Variables

Factor F F =
tanh[c(W−D

2 )]
c(W−D

2 )
(11)

Constant C c2 = UL
kδ

(12)

Friction factor (fr) for turbulent flow f r = (0.79·ln(Re)− 1.64)−2 (13)
Heat transfer coefficient between fluid
and tube wall (hfi)

h f i =
NuD ·k f

Di
(14)

Nusselt number (Nu) for laminar flow Nu = 3.66 +
0.0668

(
Di
LP

)
Re·Pr

1+0.04·
((

Di
LP

)
Re·Pr

)2/3 , 2500 ≤ Re ≤ 5 × 106 and 0.5 ≤ Pr ≤ 2000 (15)

Nusselt number (Nu) for turbulent flow Nu =

(
f r
8

)
(Re−1000)·Pr

1+12.7
(

f r
8

)1/2

·(Pr2/3−1)
, Re > 2500 (16)

Prandtl number Pr Pr =
µ·Cp

k f
(17)

Reynold number Re Re = 4
.

m
π·n·µ·Di

(18)

Width W W = AnP
n (19)

Solar collector independent variables

Collector efficiency factor F′ F′ =
1

UL

W
(

1
UL [D+(W−D)F]+

1
πDi h f i

) (20)

Collector heat removal factor (FR) FR =
.

mCp
W·n·LP ·UL

[
1 − e

(− F′ ·W·n·LP−UL.
mCp

)

]
(21)

Note: The table is structured to clearly distinguish between the dependent and independent variables within the
neural network architecture, providing a comprehensive overview of how these variables interact and influence
the network’s performance. Where F′ is the collector efficiency factor, Re is the Reynolds number,

.
m is the mass

flow rate, µ is the kinematic viscosity, cp is the heat capacity, kf is the water thermal conductivity coefficient, hfi is
the heat transfer coefficient between fluid and tube wall, Nu is the Nusselt number, and fr is the friction factor.

Table 4. Ranges of values used in the generation of the Data Set 02.

Solar Collector Independent Variables Abbreviation Value Range

Collector overall loss coefficient W/(m2·K)) UL 0.028–19.861
Inlet fluid temperature (◦C) Tf i 7–33.5
Inside tube diameter (mm) Di 7–51
Mass flow rate (kg/s)

.
m 0.005–2.86

Number of parallels tubes (units) n 1–25
Outside tube diameter (mm) D 9.5–54
Plate length (m) Lp 0.25–6
Plate thermal conductivity (W/(m·K)) k 1.4–429
Plate thickness (mm) δ 0.2–12
Plate width (m) AnP 0.25–6

DATA SET 03: Synthetic Data Generated for Prediction of Outlet Fluid Temperature,
Collector Useful Energy Gain, and Global Collector Efficiency

The generation strategy of the synthetic database, for the training, validation, and
testing of the neural model that predicts parameters related to the collector useful energy
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gain in the collector, is similar to that used for both the Data Set 01 and Data Set 02
(Tables 5 and 6).

Table 5. Thermodynamics framework for the evaluation of parameters related to collector useful
energy gain.

Definition Thermodynamic Equations

Solar collector-independent variables

Transmitted solar radiation S S = 1.01 (α·τ)HT (22)

Solar collector-dependent variables

Collector outlet fluid temperature Tf o Tf o = Tf i +
2·Qu

FR ·Ae ·UL

(
1 − FR

F′

)
(23)

Global collector efficiency η η = Qu
HT ·Ae

(24)

Useful energy gain Qu Qu = Ae·FR

[
S − UL

(
Tf i − Ta

)]
(25)

Note: The table is structured to clearly distinguish between the dependent and independent variables within the
neural network architecture, providing a comprehensive overview of how these variables interact and influence
the network’s performance.

The ranges of values assigned to the independent variables are described below:

Table 6. Ranges of values used in the generation of the Data Set 03.

Solar Collector Independent Variables Abbreviation Magnitude Range

Ambient temperature (◦C) Ta 8–30
Collector efficiency factor F′ 0.0159–0.9999
Collector heat removal factor FR 0.0159–0.9999
Collector overall loss coefficient (W/(m2·K)) UL 0.028–19.861
Cover transmittance (a.u.) T 0.62–0.92
Global solar irradiation (W/m2) HT 2–796
Inlet fluid temperature (◦C) Tf i 7–33.5
Plate absorptance (a.u.) A 0.08–0.97
Plate length (m) Lp 0.25–6
Plate width (m) AnP 0.25–6

2.2. Thermodynamics-Informed Neural Network Models
2.2.1. Part 01: Network Architecture

Table 7 illustrates the relationship between the number of neurons in the hidden layer
and the correlation coefficient (r). During the ANN process, it was determined that the
optimal correlation coefficient (r = 0.967) for predicting the collector’s overall loss coefficient
was achieved with 94 neurons in the hidden layer.

The exact number of neurons in the hidden layer was determined using a limit
criterion method. This method involves evaluating from both the left and right to identify
the configuration with the highest compensation coefficient and the lowest mean absolute
error. This approach ensures that the prediction aligns closely with the data derived from
the mathematical model used in designing the solar collector.

Table 7 also presents the performance metrics of the ANN during the validation phase.
The table includes the results obtained for the mean absolute error and the correlation
coefficient for a multilayer perceptron that uses the back-propagation learning algorithm.
The chosen architecture, denoted as (15/94/1), indicates 15 neurons in the input layer,
94 neurons in the hidden layer, and 1 neuron in the output layer (Figure 4). The architecture
of the ANN02 model has 10 neurons in the input layer, 88 in the hidden layer and 2 in the
output layer (Figure 5). Finally, the ANN03 architecture is composed of 10 neurons in the
input layer, 70 in the hidden layer, and 3 in the output layer (Figure 6).
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Table 7. ANN models and topology.

ANN
Case Output ANN

Model Activation Function Training Topology MAE r Connections

01
Collector
overall loss
coefficient

BP-MLP

Sigmoid function

Energies 2024, 17, x FOR PEER REVIEW 12 of 28 

optimal correlation coefficient (r = 0.967) for predicting the collector’s overall loss coeffi-
cient was achieved with 94 neurons in the hidden layer. 

The exact number of neurons in the hidden layer was determined using a limit crite-
rion method. This method involves evaluating from both the left and right to identify the 
configuration with the highest compensation coefficient and the lowest mean absolute er-
ror. This approach ensures that the prediction aligns closely with the data derived from 
the mathematical model used in designing the solar collector.  

Table 7 also presents the performance metrics of the ANN during the validation 
phase. The table includes the results obtained for the mean absolute error and the corre-
lation coefficient for a multilayer perceptron that uses the back-propagation learning al-
gorithm. The chosen architecture, denoted as (15/94/1), indicates 15 neurons in the input 
layer, 94 neurons in the hidden layer, and 1 neuron in the output layer (Figure 4). The 
architecture of the ANN02 model has 10 neurons in the input layer, 88 in the hidden layer 
and 2 in the output layer (Figure 5). Finally, the ANN03 architecture is composed of 10 
neurons in the input layer, 70 in the hidden layer, and 3 in the output layer (Figure 6).  

Table 7. ANN models and topology. 

ANN 
Case 

Output ANN 
Model 

Activation Function Training  Topology MAE r Connections 

01 
Collector over-
all loss coeffi-
cient 

BP-MLP 

Sigmoid function 

𝑓(𝑥) =
1

1 + 𝑒ି௫

Incremental, 
cross-valida-
tion and 
batch 
Incremental, 
cross-valida-
tion and 
batch 

15/94/1 0.767 0.967 
1. Operation and behav-
ior: activation functions,
training methods, hy-
perparameters
2. Neural model: multi-
layer perceptron 
3. Activation functions:
sigmoidea (sigmoid 
axon) 
4. Training method: error 
backpropagation (RProp) 
5. Loss function: incre-
mental in the cross-vali-
dation set 
6. Optimization algo-
rithm: MSE (mean square 
error) 
7. Epochs: 635
8. Weight initialization:
batch

02 

Collector effi-
ciency factor 

10/88/2 
0.026 0.988 

Collector heat 
removal factor 

0.028 0.988 

03 

Collector outlet 
fluid tempera-
ture 

10/70/3 

3.534 0.895 

Collector use-
ful energy gain 

73.855 0.966 

Global collec-
tor efficiency 

2.176 0.994 

Where: MAE stands for mean absolute error, r is the correlation coefficient, the nomenclature 
(9/95/2) highlights number of neurons in the input vector (9), hidden layer (95) and output layer (2), 
and BP-MLP stands for multilayer perceptron that uses the back-propagation learning algorithm. 

f (x) = 1
1+e−x

Incremental,
cross-
validation
and batch
Incremental,
cross-
validation
and batch

15/94/1 0.767 0.967

1. Operation and behavior:
activation functions, training
methods, hyperparameters
2. Neural model:
multilayer perceptron
3. Activation functions:
sigmoidea (sigmoid axon)
4. Training method: error
backpropagation (RProp)
5. Loss function: incremental
in the cross-validation set
6. Optimization algorithm:
MSE (mean square error)
7. Epochs: 635
8. Weight initialization: batch

02

Collector
efficiency
factor

10/88/2

0.026 0.988

Collector heat
removal
factor

0.028 0.988

03

Collector
outlet fluid
temperature

10/70/3

3.534 0.895

Collector
useful energy
gain

73.855 0.966

Global
collector
efficiency

2.176 0.994

Where: MAE stands for mean absolute error, r is the correlation coefficient, the nomenclature (9/95/2) highlights
number of neurons in the input vector (9), hidden layer (95) and output layer (2), and BP-MLP stands for multilayer
perceptron that uses the back-propagation learning algorithm.

Energies 2024, 17, x FOR PEER REVIEW  13  of  28 
 

 

 

Figure 4. ANN 01 architecture: The figure depicts the architecture (topology + behavior) of the first 

artificial neural network model. 

 

Figure 5. ANN 02 architecture: The figure depicts the architecture (topology + behavior) of the sec-

ond Artificial Neural Network model. 

Input  Vector

Hiden Layer

Output  Vector

Input  Vector

Hiden Layer

Output  Vector

Figure 4. ANN 01 architecture: The figure depicts the architecture (topology + behavior) of the first
artificial neural network model.



Energies 2024, 17, 4978 13 of 27

Energies 2024, 17, x FOR PEER REVIEW  13  of  28 
 

 

 

Figure 4. ANN 01 architecture: The figure depicts the architecture (topology + behavior) of the first 

artificial neural network model. 

 

Figure 5. ANN 02 architecture: The figure depicts the architecture (topology + behavior) of the sec-

ond Artificial Neural Network model. 

Input  Vector

Hiden Layer

Output  Vector

Input  Vector

Hiden Layer

Output  Vector

Figure 5. ANN 02 architecture: The figure depicts the architecture (topology + behavior) of the second
Artificial Neural Network model.

Energies 2024, 17, x FOR PEER REVIEW  14  of  28 
 

 

 

Figure 6. ANN 03 architecture: The figure depicts the architecture (topology + behavior) of the third 

artificial neural network model. 

2.2.2. Part 02: Data Sets for Training, Validation, and Testing 

The neural model was developed in the software NeuroSolution 7 and data were or-

ganized in training (60%), cross-validation (15%), and testing (25%) as shown in Table 8.   

Table 8. Database partition. 

Stages of Supervised Learning  Percentage (%)  Number of Vectors 

Training  60  635 

Cross-validation  15  158 

Testing  25  265 

A stopping criterion was established at 635 iterations based on the mean squared error 

(MSE) to prevent overtraining of the neural network. The updating of data weights during the 

training phase was executed  through  the batch weight update method  [33]. The data em-

ployed in the three proposed interconnected neural networks are detailed in Tables 9–11. 

2.3. Validation of the PINNs Model against Experimental Data 

To  rigorously  evaluate  the  proposed  PINNs model,  a  validation  study was  per-

formed by comparing its predictions with experimental data derived from a constructed 

flat-plate  solar  collector. The  experimental  data,  originally  analyzed  by Alvarez  et  al. 

(2010) [34], were evaluated using traditional thermodynamic equations to determine effi-

ciency factors and temperature parameters (Table 12). 

However, differences between the data ranges used for training the artificial neural 

network and those from Alvarez et al. (2010) necessitated additional adjustments. Specif-

ically, the ANN required further training to recalibrate its architecture to align with the 

new data  ranges provided. The adjusted  topology of  the ANN model,  reflecting  these 

modifications, is detailed in Table 13. This refinement was essential for ensuring that the 

PINNs model accurately mirrored the experimental results and effectively addressed the 

performance metrics outlined in the traditional thermodynamic analyses. 

   

Figure 6. ANN 03 architecture: The figure depicts the architecture (topology + behavior) of the third
artificial neural network model.



Energies 2024, 17, 4978 14 of 27

2.2.2. Part 02: Data Sets for Training, Validation, and Testing

The neural model was developed in the software NeuroSolution 7 and data were
organized in training (60%), cross-validation (15%), and testing (25%) as shown in Table 8.

Table 8. Database partition.

Stages of Supervised Learning Percentage (%) Number of Vectors

Training 60 635
Cross-validation 15 158
Testing 25 265

A stopping criterion was established at 635 iterations based on the mean squared error
(MSE) to prevent overtraining of the neural network. The updating of data weights during
the training phase was executed through the batch weight update method [33]. The data
employed in the three proposed interconnected neural networks are detailed in Tables 9–11.

2.3. Validation of the PINNs Model against Experimental Data

To rigorously evaluate the proposed PINNs model, a validation study was performed
by comparing its predictions with experimental data derived from a constructed flat-plate
solar collector. The experimental data, originally analyzed by Alvarez et al. (2010) [34],
were evaluated using traditional thermodynamic equations to determine efficiency factors
and temperature parameters (Table 12).

However, differences between the data ranges used for training the artificial neural
network and those from Alvarez et al. (2010) necessitated additional adjustments. Specif-
ically, the ANN required further training to recalibrate its architecture to align with the
new data ranges provided. The adjusted topology of the ANN model, reflecting these
modifications, is detailed in Table 13. This refinement was essential for ensuring that the
PINNs model accurately mirrored the experimental results and effectively addressed the
performance metrics outlined in the traditional thermodynamic analyses.

2.4. Case Study: Residencial House—Family Demand

For the design of the flat-plate collector, detailed in Table 14, the system was tailored
to meet the annual thermal energy demand of a single-family residence located in Ri-
obamba, central Ecuador, over the Andes. The design process utilized the above neural
models, accounting for the requisite surface area for energy capture to be greater than
that demanded.

Key environmental parameters that factored into the design include global solar
radiation, wind speed, ambient temperature, inlet fluid temperature, mass flow rate, and
collector tilt, all specific to the local climatic conditions. Additionally, the material thermal
properties and collector geometry were meticulously defined as input variables for the
neural models. These parameters include the number of tubes, outside and inside tube
diameters, plate emittance, plate absorptance, plate thermal conductivity, plate thickness,
number of covers, cover emittance, cover transmittance, insulation thickness (both lower
and lateral), and dimensions of the plate such as length and width.
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Table 9. Data set to predict the collector overall loss coefficient.

Mapping
Indicator

Excel
Number

Global
Solar

Radiation
(W/m2)

Wind
Speed
(m/s)

Ambient
Temperature

(◦C)

Inlet Fluid
Temperature

(◦C)

Collector
Tilt

(◦Sex)

Plate
Emittance

(------)

Plate
Absorptance

(------)

Number
of

Covers
(------)

Cover
Emittance

(------)

Cover
Transmittane

(------)

Insulation
Thermal

Conductivity
(W/(m·K))

Lower
Insulation
Thickness

(m)

Lateral
Insulation
Thickness

(m)

Plate
Length

(m)

Plate
Width

(m)

Collector
Overall

Loss
Coefficient
(W/(m2·K))

Training

2 946 0.32 29.4 32.6 16.5 0.05 0.85 2 0.14 0.9 0.13 0.27 0.11 1 2.1 2.5911
3 946 0.48 30 32.9 9.5 0.03 0.47 4 0.14 0.9 0.029 0.41 0.14 1.9 0.7 0.8532
4 854 1.8 26 27 14.5 0.92 0.97 4 0.14 0.9 0.06 0.21 0.004 1.45 2.8 7.7695
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .

634 946 0.48 30 32.9 28 0.75 0.89 1 0.87 0.84 0.19 0.45 0.13 1.5 0.3 9.9809
635 944 0.38 29 32.6 10 0.14 0.89 1 0.04 0.88 0.032 0.33 0.01 0.25 2.1 11.8766
636 946 0.48 30 32.9 8 0.87 0.95 4 0.69 0.92 0.13 0.26 0.032 0.3 1.7 10.0846

Cross-
validation

637 942 0.44 27.1 29.9 13 0.87 0.95 1 0.98 0.82 0.33 0.35 0.085 1.25 0.6 12.4500
638 576 0.4 22 21 8.5 0.9 0.94 1 0.19 0.91 0.35 0.32 0.14 2.1 1.0 6.5936
639 946 0.32 29.4 32.6 27 0.82 0.08 1 0.14 0.9 0.029 0.18 0.004 1.45 1.8 5.3210

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .
792 946 0.48 30 32.9 27 0.85 0.25 2 0.76 0.74 0.028 0.035 0.1 0.75 0.9 3.0152
793 932 0.27 23.4 26.4 32 0.9 0.94 3 0.69 0.92 0.24 0.27 0.044 2.5 2.8 5.6508
794 936 0.25 26.6 30 20 0.05 0.85 4 0.69 0.92 0.029 0.1 0.036 1.4 2.6 2.2576

Testing

795 923 0.05 19.2 24.7 13 0.85 0.25 3 0.87 0.84 0.029 0.25 0.13 1 5.5 2.3852
796 939 0.42 25.5 26 8 0.85 0.25 1 0.69 0.92 0.33 0.17 0.08 5.5 0.9 7.6782
797 932 0.17 24.8 28.8 18 0.75 0.89 3 0.53 0.73 0.06 0.04 0.01 2.9 0.6 3.8148

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .
1057 946 0.48 30 32.9 8 0.9 0.26 2 0.98 0.82 0.046 0.17 0.004 1.25 0.9 10.7509
1058 933 0.22 24.1 26.2 40 0.9 0.26 4 0.89 0.78 0.046 0.06 0.016 1.4 2.1 2.6093
1059 936 0.23 24.6 27.5 23 0.87 0.13 4 0.19 0.91 0.19 0.38 0.012 6 5.5 5.3641
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Table 10. Data set to predict the collector efficiency factor and collector heat removal factor.

Mapping
Indicator

Excel
Number

Collector
Overall Loss
Coefficient
(W/(m2·K))

Ambient
Temperature

(◦C)

Mass Flow
Rate (kg/s)

Number of
Paralels
Tubes
(a.u.)

Outside Tube
Diameter

(mm)

Inside Tube
Diameter

(mm)

Plate
Thermal

Conductivity
(W/(m·K))

Plate
Thickness

(mm)

Plate Length
(m)

Plate Width
(m)

Collector
Efficiency

Factor
(a.u.)

Collector
Heat

Removal
Factor
(a.u.)

Training

2 2.59 32.6 0.36 19 22.23 18.92 19.5 3.7 1.00 2.1 0.9657 0.9640
3 0.85 32.9 0.62 13 12.70 10.92 401.0 2.0 1.90 0.7 0.9995 0.9993
4 7.77 27.0 0.02 3 9.53 8.00 429.0 1.1 1.45 2.8 0.3743 0.3411
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .

634 9.98 32.9 0.38 2 28.58 26.04 15.0 5.6 1.50 0.3 0.8921 0.8910
635 11.88 32.6 0.20 10 12.70 11.43 116.0 0.4 0.25 2.1 0.5591 0.5579
636 10.08 32.9 0.24 10 15.88 14.45 73.0 1.4 0.30 1.7 0.8226 0.8209

Cross-
validation

637 12.45 29.9 0.02 19 9.53 8.00 73.0 11.3 1.25 0.6 0.9516 0.8871
638 6.59 21.0 0.01 3 28.58 26.80 80.0 2.8 2.10 1.0 0.6959 0.5634
639 5.32 32.6 0.86 19 12.70 10.92 429.0 0.3 1.45 1.8 0.9755 0.9737

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .
792 3.02 32.9 0.28 20 15.88 12.57 174.0 0.7 0.75 0.9 0.9907 0.9899
793 5.65 26.4 0.03 3 28.58 26.04 80.0 0.4 2.50 2.8 0.1653 0.1603
794 2.26 30.0 0.10 6 9.53 7.04 19.5 1.0 1.40 2.6 0.4385 0.4366

Testing

795 2.39 24.7 0.01 7 22.23 18.92 174.0 10.8 1.00 5.5 0.7729 0.6122
796 7.68 26.0 0.02 8 12.70 10.92 174.0 4.4 5.50 0.9 0.8974 0.7446
797 3.81 28.8 0.04 7 15.88 13.84 15.0 3.4 2.90 0.6 0.9422 0.9247

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .
1057 10.75 32.9 0.70 14 15.88 14.45 51.0 5.6 1.25 0.9 0.9875 0.9856
1058 2.61 26.2 0.02 17 15.88 13.84 51.0 3.0 1.40 2.1 0.9469 0.8941
1059 5.36 27.5 0.02 9 22.23 18.92 317.0 8.5 6.00 5.5 0.6708 0.3006
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Table 11. Data set to predict the outlet fluid temperature, collector useful energy gain and global collector efficiency.

Mapping
Indicator

Excel
Number

Collector
Overall Loss
Coefficient
(W/(m2·K))

Collector
Efficiency

Factor
(------)

Collector
Heat

Removal
Factor
(------)

Global
Solar

Radiation
(W/m2)

Ambient
Temperature

(◦C)

Inlet Fluid
Temperature

(◦C)

Plate
Absorptance

(------)

Cover
Transmittance

(------)

Plate
Length (m)

Plate
Width (m)

Outlet Fluid
Tempera-
ture (◦C)

Collector
Useful

Energy Gain
(W)

Global
Collector
Efficiency

(%)

Training

2 2.5911 0.9657 0.9640 946 29.4 32.6 0.85 0.90 1.00 2.1 33.5738 1462.9330 73.6400
3 0.8532 0.9995 0.9993 946 30.0 32.9 0.47 0.90 1.90 0.7 33.0915 495.7288 42.4313
4 7.7695 0.3743 0.3411 854 26.0 27.0 0.97 0.90 1.45 2.8 43.9985 1032.0085 29.7646
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .

634 9.9809 0.8921 0.8910 946 30.0 32.9 0.89 0.84 1.50 0.3 33.0733 274.7939 64.5511
635 11.8766 0.5591 0.5579 944 29.0 32.6 0.89 0.88 0.25 2.1 32.8471 206.2085 41.6078
636 10.0846 0.8226 0.8209 946 30.0 32.9 0.95 0.92 0.30 1.7 33.2369 337.3635 69.9257

Cross-
validation

637 12.4500 0.9516 0.8871 942 27.1 29.9 0.95 0.82 1.25 0.6 37.5809 469.9361 66.5161
638 6.5936 0.6959 0.5634 576 22.0 21.0 0.94 0.91 2.10 1.0 50.1297 566.7194 49.3177
639 5.3210 0.9755 0.9737 946 29.4 32.6 0.08 0.90 1.45 1.8 32.6367 131.5501 5.3279

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .
792 3.0152 0.9907 0.9899 946 30.0 32.9 0.25 0.74 0.75 0.9 32.9960 112.2647 17.5812
793 5.6508 0.1653 0.1603 932 23.4 26.4 0.94 0.92 2.50 2.8 35.0532 894.1553 13.7056
794 2.2576 0.4385 0.4366 936 26.6 30.0 0.85 0.92 1.40 2.6 32.7880 1162.6495 34.1249

Testing

795 2.3852 0.7729 0.6122 923 19.2 24.7 0.25 0.84 1.00 5.5 56.5427 614.9603 12.1139
796 7.6782 0.8974 0.7446 939 25.5 26.0 0.25 0.92 5.50 0.9 35.5035 745.9813 16.9934
797 3.8148 0.9422 0.9247 932 24.8 28.8 0.89 0.73 2.90 0.6 34.5799 959.5033 59.1672

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .
1057 10.7509 0.9875 0.9856 946 30.0 32.9 0.26 0.82 1.25 0.9 32.9619 180.6728 17.9752
1058 2.6093 0.9469 0.8941 933 24.1 26.2 0.26 0.78 1.40 2.1 34.1388 487.9389 17.7884
1059 5.3641 0.6708 0.3006 936 24.6 27.5 0.13 0.91 6.00 5.5 47.3110 955.1287 3.0922
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Table 12. Design conditions for a constructed solar collector [34].

Experimental Data Magnitude

Ambient temperature (◦C) 20
Collector heat removal factor 765
Collector tilt (◦Sexa.) 60
Cover emittance (a.u.) 0.9
Cover transmittance (a.u.) 0.82
Global solar irradiation (W/m2) 1088
Inlet fluid temperature (◦C) 15
Inside tube diameter (mm) 9
Insulation thermal conductivity (W/(m·K)) 0.07
Lateral insulation thickness (mm) 10
Lower insulation thickness (mm) 30
Mass flow rate (kg/s) 0.01
Number of covers (a.u.) 1
Number of parallels tubes (units) 11
Outside tube diameter (mm) 10
Plate absorptance (a.u.) 0.9
Plate emittance (a.u.) 0.9
Plate length (m) 2
Plate thermal conductivity (W/(m·K)) 385
Plate thickness (mm) 0.5
Plate width (m) 1
Wind speed (m/s) 0.4

Table 13. ANN validation model and topology.

ANN
Case Output ANN

Model Activation Function Training Topology MAE R Connections

01
Collector
overall loss
coefficient

BP-MLP

Sigmoid function
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1 + 𝑒ି௫
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tion and 
batch 
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tion and 
batch 

15/70/1 0.611 0.980 
1. Operation and behav-
ior: activation functions,
training methods, hy-
perparameters
2. Neural model: multi-
layer perceptron 
3. Activation functions: 
sigmoid (sigmoidaxon) 
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8. Weight initialization:
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2.4. Case Study: Residencial House—Family Demand 
For the design of the flat-plate collector, detailed in Table 14, the system was tailored 
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f (x) = 1
1+e−x

Incremental,
cross-
validation
and batch
Incremental,
cross-
validation
and batch

15/70/1 0.611 0.980

1. Operation and behavior:
activation functions, training
methods, hyperparameters
2. Neural model:
multilayer perceptron
3. Activation functions:
sigmoid (sigmoidaxon)
4. Training method: error
backpropagation (RProp)
5. Loss function: incremental
in the cross-validation set
6. Optimization algorithm:
mean square error (MSE)
7. Epochs: 635
8. Weight initialization: batch

02

Collector
efficiency
factor

10/60/2

0.060 0.945

Collector heat
removal
factor

0.079 0.923

03

Collector
outlet fluid
temperature

10/70/3

3.816 0.859

Collector
useful energy
gain

68.414 0.972

Global
collector
efficiency

2.194 0.994

Table 14. Design conditions for a solar collector in Ecuador.

Study Case Units Magnitude Materials

Ambient temperature Ta
◦C 12.75 a.u.

Collector tilt β ◦Sexag. 8 a.u.
Cover emittance εc a.u. 0.9 Greenhouse rigid plastic (PVC wavy)
Cover transmittance τ a.u. 0.82 Greenhouse rigid plastic (PVC wavy)
Demanded thermal power Dpd W 726.7 a.u.
Global solar radiation HT W/m2 742 a.u.
Inlet fluid temperature Tf i

◦C 13.2 Water
Inside tube diameter Di mm 8.001 Galvanized tube, type L
Insulation thermal conductivity ka W/(m·K) 0.06 Shells of pressed wheat (90 kg/m3)
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Table 14. Cont.

Study Case Units Magnitude Materials

Lateral insulation thickness E mm 25 Shells of pressed wheat (90 kg/m3)
Lower insulation thickness L mm 50 Shells of pressed wheat (90 kg/m3)
Mass flow rate

.
m kg/s 0.00371 Water

Number of covers N a.u. 1 Greenhouse rigid plastic (PVC wavy)
Number of parallels tubes N a.u. 12 Galvanized tube, type L
Outside tube diameter D Mm 9.525 Galvanized tube, type L
Plate absorptance α a.u. 0.7 (Electrostatic black paint)
Plate effective area Ae m2 2.8 a.u.
Plate emittance εp a.u. 0.2 Selective surface of galvanized steel
Plate length Lp m 2.25 Galvanized plate
Plate thermal conductivity k W/(m·K) 58 Galvanized plate
Plate thickness δ Mm 2 (Electrostatic black paint)
Plate width AnP m 1.25 Galvanized plate
Wind speed Sw m/s 2.19 a.u.

3. Results
3.1. ANN Predictive Capability

The comparative analysis between analytical models and physics-informed neural
networks for solar collector design reveals compelling insights into the efficacy of PINNs
as a modeling approach. Six key parameters were examined: output temperature, collector
useful energy gain, global collector efficiency, collector heat removal factor, collector overall
loss coefficient, and collector efficiency factor. The results indicate that while the PINNs and
simplified thermodynamic equations produce similar outcomes for key parameters, the
PINNs excel in capturing complex nonlinear behaviors that traditional methods cannot eas-
ily quantify. This provides a more comprehensive modeling approach where conventional
engineering design equations may fall short.

3.1.1. Output Temperature Analysis

The relationship between analytical and PINNs output temperatures (Figure 7a) is
described by the equation Y = 0.8774X + 4.447, where Y represents the PINNs output
and X the analytical output. The coefficient of determination (R2 = 0.8018) indicates that
approximately 80.18% of the variance in the PINNs output is explained by the analytical
model. While this represents the lowest R2 value among the parameters studied, it still
signifies a strong correlation. The Pearson correlation coefficient (r = 0.8954) further
supports this, suggesting a robust positive correlation between the two methods. The slope
of less than 1 (0.8774) implies that the PINNs model computes a slightly different output
temperature compared to the analytical model, particularly at higher temperatures. This
minor discrepancy could be attributed to the complex, non-linear nature of heat transfer
processes in solar collectors, which may be more challenging for the conventional approach.

3.1.2. Collector Useful Energy Gain

For the collector useful energy gain, the relationship is expressed as Y = 0.9365X + 35.80.
The higher R2 value of 0.9336 indicates that 93.36% of the variance in the PINNs results
is accounted for by the analytical model, representing a significant improvement over
the temperature prediction (Figure 7b). The Pearson correlation coefficient (r = 0.9662)
demonstrates a very strong positive correlation between the two approaches. The slope
closer to 1 (0.9365) suggests that the PINNs model more accurately predicts the useful energy
gain across the range of values, with a slight overestimation at lower values due to the
positive intercept (35.80).

3.1.3. Global Collector Efficiency

The global collector efficiency (Figure 7c) shows exceptional agreement between the
two methods, with a relationship of Y = 0.9774X + 0.4016. The remarkably high R2 value
(0.9883) suggests that 98.83% of the variance in the PINNs results is explained by the
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analytical model. The Pearson correlation coefficient (r = 0.9941) indicates an almost
perfect positive correlation. This outstanding agreement implies that the PINNs model is
particularly adept at capturing the overall performance characteristics of the solar collector,
which is crucial for system-level design and optimization.
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3.1.4. Collector Heat Removal Factor

The collector heat removal factor (Figure 7d) relationship is described by
Y = 0.9828X + 0.009467. The R2 value of 0.9760 shows that 97.60% of the variance in the
PINNs results is accounted for by the analytical model. The high Pearson correlation
coefficient (r = 0.9879) again indicates a very strong positive correlation. The slope very
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close to 1 (0.9828) and the near-zero intercept (0.009467) suggest that the PINNs model
accurately predicts this parameter across the entire range of values, with only minimal
deviation from the analytical model.

3.1.5. Collector Overall Loss Coefficient

For the collector overall loss coefficient (Figure 7e), the relationship is
Y = 0.9259X + 0.4459. The R2 value of 0.9342 suggests that 93.42% of the variance in
the PINNs results is explained by the analytical model. The Pearson correlation coefficient
(r = 0.9666) shows a very strong positive correlation between the two methods. The slope
of 0.9259 indicates a slight underestimation by the PINNs model, particularly at higher
loss coefficient values. This minor discrepancy could be due to the complex interplay of
various heat loss mechanisms, which may require further refinement in the PINNs model
to capture fully.

3.1.6. Collector Efficiency Factor

The collector efficiency factor (Figure 7f) demonstrates excellent agreement, with a
relationship of Y = 0.9953X − 0.001480. The high R2 value (0.9771) indicates that 97.71% of
the variance in the PINNs results is accounted for by the analytical model. The Pearson
correlation coefficient (r = 0.9885) demonstrates a very strong positive correlation. Notably,
the slope is very close to 1 (0.9953) with a near-zero intercept (−0.001480), indicating
that the PINNs model predicts this parameter with high accuracy across the entire range
of values.

3.2. Validation of the ANN Model against Experimental Data

The comparative analysis between PINNs and analytical models for solar collector pa-
rameters reveals a nuanced picture of predictive accuracy and model performance. The out-
put temperature prediction (Figure 8a) presents the most significant deviation, with a moder-
ate correlation (R2 = 0.736) and substantial underestimation by PINNs at higher temperatures
(slope = 0.7806). This discrepancy highlights the challenges in modeling the complex,
non-linear thermal behavior of solar collectors, particularly under high-temperature condi-
tions. The collector useful energy gain (Figure 8b) shows a moderate positive correlation
(R2 = 0.8150), with PINNs underestimating at higher values (slope = 0.7639). Notably, the
global collector efficiency (Figure 8c) exhibits the strongest correlation (R2 = 0.9672), with
near-perfect agreement between PINNs and analytical models (slope = 0.9521). This robust
performance in predicting overall efficiency is particularly encouraging, as it represents a
critical parameter for practical solar collector applications.

The collector efficiency factor and heat removal factor (Figure 8d,e) demonstrate
strong positive correlations between PINNs and analytical models (R2 = 0.8935 and 0.8524,
respectively). The slight overestimation by PINNs in both cases (slopes of 0.9296 and 0.8949)
suggests a systematic bias that, while minor, warrants further investigation. These results
indicate that PINNs effectively capture the fundamental efficiency characteristics of solar
collectors. The collector overall loss coefficient (Figure 8f) also shows strong agreement
(R2 = 0.9144, slope = 0.9168), indicating that PINNs accurately capture the thermal loss
mechanisms within solar collectors. This ability to model heat loss is crucial for predicting
long-term performance and optimizing collector designs.

Importantly, the comparison with experimental data from Alvarez et al. (2010) [34],
represented by distinct points in each plot, reveals close agreement between PINNs predic-
tions and real-world measurements for most parameters (Figure 8). The notable exception is
the output temperature, where the deviation between PINNs and experimental data is more
pronounced. This observation suggests that PINNs may be capturing subtle, non-linear
aspects of solar collector behavior that are not fully accounted for in traditional analytical
models. The ability of PINNs to potentially model these complex relationships, which are
challenging for deterministic thermodynamic equations, represents a significant advantage
of this approach.
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Figure 8. Correlations between ANN outputs and expected values (a) output temperature,
(b) collector useful energy gain, (c) global collector efficiency, (d) collector efficiency factor, (e) col-
lector heat removal factor, and (f) collector overall loss coefficient. The data point highlighted with
dashed lines represents the comparison between the factors calculated using the thermodynamic
equations from the experimental model and the corresponding values predicted by the PINNs model.
This comparison provides a clear visualization of the alignment between the experimental results
and the model’s predictions, underscoring the accuracy and reliability of the PINNs-based approach.

3.3. Performance of the ANN in a Residential House Located in the Andes of Ecuador

Table 15 presents a comparative analysis of the design and performance of a solar
collector using both a mathematical model and artificial neural networks for a residen-
tial house in the Andes of Ecuador. The inputs include key environmental and design
parameters such as global solar radiation, wind speed, ambient temperature, inlet fluid
temperature, mass flow rate, and collector geometry. The materials used in the collector,
including galvanized tubes and plates with selective surfaces, are specified alongside
these inputs.



Energies 2024, 17, 4978 23 of 27

The results for the thermodynamic model and ANN outputs reveal close agreement
between the two approaches. The collector overall loss coefficient shows only a slight
difference, with the ANN predicting 5.199 W/(m2·K) compared to 5.189 W/(m2·K) from
the thermodynamic model. The collector efficiency factor and collector heat removal
factor exhibit minor deviations, with the ANN results slightly underestimating F′ and
overestimating FR.

The collector outlet fluid temperature shows a more significant variation, with the
ANN predicting a lower temperature of 55.05 ◦C compared to 67.22 ◦C from the thermo-
dynamic model. Despite this difference, the predictions for collector useful energy gain
and global collector efficiency are relatively close, with the ANN outputting 722.85 W and
33.68%, respectively, compared to 733.4 W and 35.15% from the thermodynamic model.

Table 15. Comparison between the outcomes of the mathematical and thermodynamics informer
ANN models.

Study Case Abbreviation Units Results Thermodynamics Model Results
ANN

Output

Collector overall loss coefficient UL W/(m2·K) 5.189 5.199
Collector efficiency factor F′ a.u. 0.907 0.883
Collector heat removal factor FR a.u. 0.610 0.662
Collector outlet fluid temperature Tf o

◦C 67.22 55.05
Collector useful energy gain Qu W 733.4 722.85
Global collector efficiency η % 35.15 33.68

4. Discussion

This study addresses two primary objectives: affirming the validity of artificial neural
networks as a method for enhancing the design and efficiency of solar collectors and
tailoring this method to the specific environmental conditions of Ecuador. The significance
of this research lies in its potential to offer practical applications and design frameworks
that can be implemented within Ecuador and other similar contexts, thereby contributing
to renewable energy design methods in the region.

The validation of the physics-informed neural networks model against experimental
data from Alvarez et al. (2010) [34] demonstrates its robustness and predictive power. The
close agreement between PINNs predictions and experimental results for most parameters
underscores the model’s accuracy. Notably, the discrepancy in output temperature pre-
dictions highlights PINNs’ potential to capture complex, non-linear behaviors that elude
traditional analytical models. This validation affirms PINNs as promising tools for solar
collector design and optimization, offering insights beyond conventional approaches while
maintaining accuracy across various performance metrics.

The application of ANN models demonstrated a significant improvement in predicting
and optimizing the performance of flat-plate solar collectors. The results, compared to
traditional design methods, show higher accuracy and efficiency. For instance, the correla-
tion coefficient achieved values greater to 0.895, indicating a strong predictive capability.
Additionally, the mean absolute error was minimized, validating the ANN approach’s
reliability. These statistical measures confirm that ANN can effectively model the complex
thermodynamics behavior of solar collectors.

The ANN model was customized to account for the high-altitude and variable climatic
conditions of the Andean region of Ecuador. This involved incorporating specific environ-
mental factors such as global solar irradiation, ambient temperature, and wind speed into
the ANN model. The adjustments made to the model ensured that it accurately reflected
the thermal dynamics unique to these highland areas. The inclusion of these localized
parameters significantly enhanced the model’s applicability and precision, ensuring opti-
mized performance of solar collectors under Ecuadorian conditions. Ecuador has a wide
climatic variety because of its geographical location, orography, presence of the Andes, as
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well as the influence of the Amazon jungle and the Pacific Ocean. The average daily solar
insolation per year is 4574.99 Wh/m2/day [35].

4.1. Practical Applications and Design Frameworks

The outcomes of this study have several practical applications. The tailored ANN mod-
els provide a robust framework for designing solar collectors that are efficient and suitable
for Ecuador’s unique environment. These models can be directly applied to optimize solar
water heating systems, reducing dependency on fossil fuels and promoting sustainable
energy practices. Furthermore, that the methodologies and frameworks developed can
serve as a reference for similar studies highlights the tailored approach to renewable energy
design [17,18].

4.2. Theoretical Contributions

This research makes significant theoretical contributions by integrating thermody-
namic principles with ANN methodologies, forming a hybrid model that is both data-
driven and physics-informed. This approach bridges the gap between theoretical physics
and practical engineering design, offering a new perspective on optimizing renewable
energy systems. The findings contribute to the broader body of knowledge on using
ANN in energy applications, demonstrating their potential to enhance the efficiency and
adaptability of solar energy technologies.

4.3. Implications for Future Research

The present study introduces a comprehensive theoretical–numerical approach aimed
at identifying the most accurate design parameters for solar collectors tailored to the unique
climatic conditions of the highlands of Ecuador. By leveraging the synergy between vali-
dated thermodynamic equations and artificial neural networks, this research provides a
novel framework that enhances the precision of solar collector designs. The integration of
ANNs with established thermodynamic principles yielded a novel computational paradigm
in the form of PINNs. This hybridized approach not only demonstrates concordance with
theoretical predictions, but also exhibits enhanced predictive capabilities. The superi-
ority of PINNs is particularly evident in their capacity to capture the high-dimensional
non-linearities intrinsic to the vast data sets requisite for flat plate solar collector design.
By synergistically combining data-driven learning algorithms with physical constraints
derived from first principles, PINNs offer a more robust and nuanced framework for mod-
eling solar collector performance, potentially transcending the limitations of conventional
analytical methods.

However, while the theoretical outcomes are promising, it is essential to acknowledge
the importance of comprehensive experimental validation in solidifying the reliability and
applicability of the proposed methodology. The initial validation was performed using
design parameters from a solar collector designed by Alvarez et al. (2010) [34], which
provided a valuable benchmark. Nonetheless, to fully establish the robustness of the ANN
models and ensure their practical relevance, it is necessary to construct a solar collector
specifically tailored for Ecuadorean conditions. By undertaking this future research, the
study will address potential limitations and strengthen the overall impact of the proposed
approach. The experimental validation will serve as a vital bridge between theoretical
predictions and practical application, demonstrating that the ANN-augmented thermody-
namic models can be effectively utilized in the design and optimization of solar collectors
in diverse and demanding environmental contexts. Ultimately, this will contribute sig-
nificantly to the advancement of solar energy technologies, offering a robust and reliable
methodology for enhancing the efficiency and sustainability of solar power systems in
high-altitude regions.

Future research could explore the expansion of this ANN methodology to other re-
gions with different climatic conditions, ensuring broader applicability and validation.
Additionally, investigating the integration of other renewable energy systems, such as pho-
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tovoltaic panels or wind turbines, with ANN models could provide a more comprehensive
approach to sustainable energy solutions. Addressing limitations such as the need for
extensive computational resources and refining the model’s scalability will be essential for
future developments.

5. Conclusions

This study demonstrates that physics-informed neural networks offer a promising and
more adaptable alternative to traditional thermodynamic models for predicting flat-plate
solar collector performance, especially in handling the nonlinear behavior of the data. While
the PINNs closely approximated key performance metrics, such as the collector overall loss
coefficient, where the ANN predicted 5.199 W/(m2·K) compared to the thermodynamic
model’s 5.189 W/(m2·K), the slight variations in metrics such as the collector efficiency
factor and heat removal factor highlight the ANN’s ability to capture complex nonlinear
relationships that conventional models often oversimplify. The largest discrepancy occurred
in the prediction of the collector outlet fluid temperature (55.05 ◦C for the ANN vs. 67.22 ◦C
for the thermodynamic model), further illustrating the PINNs’ capacity to account for
nuanced data behavior that may not be fully captured by thermodynamic equations.

Despite these differences, the PINNs model demonstrated significant strengths, par-
ticularly in its ability to predict the collector useful energy gain (722.85 W) and global
collector efficiency (33.68%) with reasonable accuracy. These results emphasize the PINNs’
advantage in providing more flexible and robust modeling under varied climatic conditions,
offering benefits such as reduced design costs and computational resources.

This study highlights the potential of PINNs to bridge the gap between traditional
theoretical approaches and empirical data-driven methods, offering a more efficient and
scalable solution for optimizing solar collector performance. Future research should focus
on refining and scaling PINNs for broader applications across different climatic regions and
renewable energy systems. The demonstrated benefits of PINNs in this study suggest that
they offer a viable path forward for improving the precision, adaptability, and efficiency of
solar collector designs, especially in regions with challenging environmental conditions
such as Ecuador.
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Nomenclature

ANN Artificial Neural Network.
AnP Plate Width (m).
D Outside Tube Diameter (mm).
Di Inside Tube Diameter (mm).
F′ Collector Efficiency Factor.
FR Collector Heat Removal Factor.
HT Global Solar Irradiation (W/m2).
k Plate Thermal Conductivity (W/m·K).
LP Plate Length (m).
m Mass Flow Rate (kg/s).
PINN Physics-Informed Neural Network.
Qu Collector Useful Energy Gain (W).
Ta Ambient Temperature (◦C).
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Tfi Inlet Fluid Temperature (◦C).
Tfo Collector Outlet Fluid Temperature (◦C).
UL Collector Overall Loss Coefficient (W/m2·K).
α Plate Absorptance (a.u.).
δ Plate Thickness (mm).
εc Cover Emittance (a.u.).
εp Plate Emittance (a.u.).
η Global Collector Efficiency (%).
τ Cover Transmittance (a.u.).
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