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Abstract: Accurate monitoring of lithium-ion battery temperature is essential to ensure these batteries’
efficient and safe operation. This paper proposes a relevance-based reconstruction-oriented EMD-
Informer machine learning model, which combines empirical mode decomposition (EMD) and
the Informer framework to estimate the surface temperature of 18,650 lithium-ion batteries during
charging and discharging processes under complex operating conditions. Initially, based on 9000 data
points from the U.S. NASA Prognostics Center of Excellence’s random battery-usage dataset, where
each data point includes three features: temperature, voltage, and current, EMD is used to decompose
the temperature data into intrinsic mode functions (IMFs). Subsequently, the IMFs are reconstructed
into low-, medium-, and high-correlation components based on their correlation with the original
data. These components, along with voltage and current data, are fed into sub-models. Finally,
the model captures the long-term dependencies among temperature, voltage, and current. The
experimental results show that, in single-step prediction, the mean squared error, mean absolute
error, and maximum absolute error of the model’s predictions are 0.00095, 0.02114, and 0.32164 °C;
these metrics indicate the accurate prediction of the surface temperature of lithium-ion batteries. In
multi-step predictions, when the prediction horizon is set to 12 steps, the model achieves a hit rate
of 93.57% where the maximum absolute error is within 0.5 °C; under these conditions, the model
combines high predictive accuracy with a broad predictive range, which is conducive to the effective
prevention of thermal runaway in lithium-ion batteries.

Keywords: lithium-ion batteries; informer; empirical mode decomposition; relevance reconstruction;
thermal runaway; temperature prediction

1. Introduction

Lithium-ion batteries, due to their high energy density, long service life, and low
self-discharge rate, have gained widespread application in electric vehicles, energy storage
systems, and other fields [1]. The optimal operating temperature range for lithium-ion
batteries is 20 °C to 40 °C [2]. If the battery materials continuously remain within ab-
normal temperature ranges, this can lead to accelerated degradation of the positive and
negative electrode materials, electrolyte decomposition, and increased internal resistance,

Copyright: © 2024 by the authors.
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is uncontrolled, it may trigger a thermal runaway process [4]. With the expansion of the
new energy industry, incidents of fires are increasing, and over 90% of these incidents
are attributed to thermal runaway of batteries [5]. As shown in Figure 1, constructing
Attribution (CC BY) license (https://  an accurate lithium-ion battery temperature prediction model can reveal future surface
creativecommons.org/licenses /by / temperature trends. If the residuals between the predicted and actual values exceed a
40/). threshold, it indicates potential anomalies in the battery [6], and the battery’s operating
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state can be adjusted in advance based on the warning information to effectively prevent
thermal runaway [7].
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Figure 1. Model-warning principle.

Currently, battery temperature prediction models can be categorized into two types:
physical models [8] and data-driven models [9]. Physical models are constructed based on
the electrochemical mechanisms or external electrical behavior of batteries, such as electro-
chemical models and equivalent circuit models (ECMs) [10]. To ensure the accuracy of these
models, it is necessary to consider the coupled relationships among the battery’s structure,
size, materials, temperature, and usage scenarios [11]. Sun et al. [12] combined a first-order
ECM with an Extended Kalman Filter to establish a real-time temperature-estimation model;
however, they overlooked the impact of battery temperature on model parameters. The
equivalent resistance and capacitance values change with temperature variations, which in
turn affect the accuracy of the model. Liu et al. [13] established a temperature prediction
model by combining a two-state thermal model with a second-order ECM; however, the
model exhibits instability during current and voltage-step changes, which may lead to
divergence in the identification results. In contrast, machine learning algorithms can iden-
tify complex nonlinear relationships and latent variables in the data. Data-driven models,
which rely entirely on external data and do not require consideration of intricate internal
battery structures or parameters, often achieve high precision [14]. The model has advan-
tages in terms of generality and portability. Alvarez Antén et al. [15] proposed a support
vector machine (SVM) model that can be implemented in microcontroller-based battery
management systems (BMSs). Guo et al. [16] developed an improved back-propagation
(BP) neural network using battery current, voltage, and ambient temperature as inputs.
This model has a fast computation speed and significantly reduces the state of charge (SOC)
prediction error in practical applications. Therefore, data-driven models are very suitable
for online prediction in the context of BMS [17]. Wang et al. [18] established a temperature
prediction model for lithium-ion batteries using a local regression neural network, demon-
strating shorter training times and better adaptability and generalization capabilities. Jiang
et al. [19] employed long short-term memory (LSTM) recurrent neural networks and gated
recurrent unit (GRU) recurrent neural networks to predict the surface temperature of 18,650
lithium-ion batteries under different environmental temperatures, proposing the use of
temperature differences along the time axis as the output of the neural network, which
aligns well with electrochemical and thermodynamic principles. Jiang et al. [20] combined
an elitist preservation genetic algorithm with bidirectional LSTM neural networks, using an
improved loss function to achieve precise prediction of upper and lower temperature limits.

In previous studies, the training data for models primarily originated from experimen-
tal results under periodic operating conditions or single charge—discharge cycles, which
made it difficult for the models to accurately capture the nonlinear temperature dynamics
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exhibited by batteries under complex operating conditions, potentially reducing prediction
accuracy. Moreover, most of these models have focused on improving single-step-ahead
prediction accuracy, and thus lack a broad prediction range.

This paper utilizes the RW10 dataset from NASA’s Prognostics Center of Excel-
lence [21], which contains 9000 sets of random usage data for 18,650 lithium-ion batteries.
Each set includes three features: temperature, voltage, and current. In practical applications,
these data can be obtained through corresponding sensors. On this basis, EMD was intro-
duced as a method for processing nonlinear and nonstationary signals. EMD decomposes
the temperature data into a series of IMFs. Pearson correlation coefficients (PCCs) were then
used to measure the strength of correlation between continuous variables. IMFs with low
correlation represent noise or high-frequency disturbances in the temperature data; IMFs
with medium correlation characterize the mid-frequency features of the temperature data,
and IMFs with high correlation represent the long-term trends or dominant periodicities in
the temperature data. These components were combined with voltage and current data
and input into sub-models. Ultimately, the model captures the long-term dependencies
among temperature, voltage, and current, achieving accurate temperature prediction under
complex operating conditions. Additionally, this study employed the Informer frame-
work, which implements a probabilistic sparse self-attention mechanism by focusing on the
most informative query vectors. This approach reduces computational complexity while
achieving high-precision predictions. Based on this framework, single-step and multi-step
predictions of the surface temperature of lithium-ion batteries were conducted, thereby
enhancing the range of temperature predictions under complex operating conditions.

2. Surface Temperature Prediction Model
2.1. The Empirical Mode Decomposition

The core idea of EMD is to iteratively decompose the data from high frequency to low
frequency into a series of IMFs and a residual component, according to the local temporal
feature scale of the data, so as to achieve noise reduction and smoothing of the data [22].
The detailed decomposition steps are shown in Figure 2.

Through iterative decomposition from high to low frequency, multiple IMF compo-
nents can be obtained. Time series x(t) can be expressed by EMD as follows:

x(t) = Yooy imfr(t) + r(t) (1)

where m represents the number of im f¢(t), imff(t) represents the intrinsic mode function
of x(t), and r(t) represents the residual term.

2.2. The Informer Framework

As an efficient improvement of the traditional Transformer [23], the Informer primar-
ily addresses the efficiency and performance issues encountered when processing long
sequences through the introduction of the ProbSparse Self-Attention mechanism; this mech-
anism enables the Informer to maintain excellent performance while significantly reducing
the demand for computational resources. As shown in Figure 3, the Informer framework is
primarily divided into the input layer, Encoder layer, Decoder layer, and output layer.
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Figure 3. The framework structure of the Informer.

2.2.1. Input Layer

The input for the Informer framework can be divided into input Xy ¢, for the
Encoder and input X4 ge = { Xtoken, Xo} for the Decoder, which are defined as follows:

Xfeed_en = [xl/ X2, X3, -, xu] (2)

Xfeed?de = [xl/ xX2,...,%5,0,0... 0] 3)

where u represents the length of the input sequence and v represents the length of the token.
The input sequence for the Decoder is composed of two parts: first, a sequence of tokens
of length v representing historical data; second, placeholders represented by 0 generated
through a masking mechanism, with a length equal to the length of the sequence to
be predicted.

Embedding: In the Informer framework, the inputs to both the Encoder and Decoder
include three components: projection scalars, local timestamps, and global timestamps.
These components are used to project multi-dimensional data from a given time point into
512-dimensional data. The values obtained from each component are combined and used
as the input to the network. The formula is as follows:

Xieeaii) = 24 + PE(x(e-1)4i) T L, {5E<Lxx<t—1>+i> , (4)
where au! represents the projected scalar of the input sequence after one-dimensional

convolution. « represents a factor that balances the size between scalar projection and
local/global embeddings. If the sequence input has already been standardized, then « = 1.
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Yy [SE(LXX(t_l) _H)] , represents the global timestamp, and PE(; . (;_1)) represents the

positional timestamp. The formula for calculating the positional timestamp is as follows:

; (5)
PE(pospi+1) = cos(pos/2L3/1)

: 2i/d
{ PE (pospiy = Sln(pos/ZLxl/ ) }
where pos represents the position of a data instance in the input sequence, L, represents the
length of the sequence, 2i represents an even-numbered dimension, and 27 + 1 represents
an odd-numbered dimension.

2.2.2. Encoder Layer

The Encoder layer is used to efficiently and sufficiently encode the input long sequence
data to capture long-term dependencies and feature information across multiple time
scales. Unlike the Transformer, the Informer employs a new EncoderStack structure, which
is composed of multiple encoder layers and distillation layers. This structure includes
ProbSparse Self-Attention and Self-Attention Distilling.

ProbSparse Self-Attention: The ProbSparse Self-Attention mechanism decides which
positions require attention computation by introducing sparsity into the traditional atten-
tion mechanism. The formula for the traditional attention mechanism is as follows:

AQK V) = softmax(QKT>V (6)
o Vi

where Q represents the query vector that needs to be attended to and matched, K represents
the feature vector in the input sequence, V represents the value vector that is weighted and
output, d represents the dimension of K, and softmax () represents the activation function
that converts the output values into a probability distribution. The elements within the
Q and K vectors can be denoted as g and k, respectively. During the computation of QK',
each g is used to form a dot product with each k, and these operations are referred to as
dot product pairs. The result of the dot product pairs represents the attention weights
between them.

In the attention mechanism, a few key dot product pairs contribute the critical atten-
tion [24]. The g in these key dot product pairs is considered ‘active g, while the rest is
considered ‘inactive g.” The formula for determining whether g is active is as follows:

qsij
d 1
M(gqs,K) = lnzjzle vd 32;‘:1

qsk}
)

7

where gs represents the s-th element in Q. The first term on the right-hand side of the
equation is the function of the Log-Sum-Exp (LSE) of the dot products between g5 and all k,
and the second term is the arithmetic mean function. A large value of M(gs, K) indicates
a high probability that g; will become a dominant dot product pair in the self-attention
distribution. The formula for ProbSparse Self-Attention is as follows:

_ QKT
A(Q K V) = Softmax( Va )V (8)

where Q represents the set of the most active g values.

Self-Attention Distilling: This mechanism refines knowledge from multiple attention
layers into a single attention layer within the Encoder, enhancing the model’s performance
by capturing different representations from various attention layers. Dimensionality reduc-
tion is achieved by adding 1D convolution and max-pooling operations after each attention
block. The Informer uses Self-Attention Distilling in the Encoder module to extract the
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most important attention information and reduce the memory and time required by the
algorithm. The formula is as follows:

X;H = Maxpool (ELU(Convld( [Xﬂ AB))) 9)

where [] represents the attention blocks, one-dimensional convolution (Conv1d) uses the
ELU activation function to perform a one-dimensional convolutional filtering operation
along the time dimension, and the sequence length is halved through a max-pooling layer
with a stride of 2, thus reducing the overall memory usage.

2.2.3. Decoder Layer

The input of the Decoder consists of a rolling sequence segment. This sequence is
first processed through a masked multi-head ProbSparse Self-Attention block. Then, it is
combined with the Encoder output and serves as an input to the unmasked multi-head
self-attention module. Finally, the output is passed through a fully connected layer to
obtain the prediction results.

2.2.4. Output Layer

The output of the Informer contains only the target sequence, i.e., the predicted
values, without any auxiliary information. Unlike the Transformer, the Informer generates
the entire prediction sequence in one step rather than inferring each prediction value
sequentially. This approach reduces cumulative error during the prediction process and
improves prediction efficiency.

2.3. The EMD-Informer Model
2.3.1. Data Processing

To simplify the prediction model, we reconstructed imff(t) and r(t) into three com-
ponents based on their PCCs: low-, medium-, and high-correlation components. Let
x(t) =X, {imfy(t), imfa(t) ... imfy(t), r(t)} =Y. The formula for calculating the PCC is
as follows [25]:
£ (X = X) (¥ — V)

\/25:1 (Xe — Y)2\/25:1 (Y - Y)°
where R represents the Pearson correlation values, / is the dimension of X and Y, X; and
Y; are the t-th elements in X and Y, respectively, and X and Y are the means of X and Y,
respectively.

We used the method of mean plus or minus the standard deviation to identify values
that are far from the mean. The formula is as follows:

R (10)

TR,
K=t t
B yml (Ru _§)2
T=RE\=ETT 12)

where R represents the mean correlation, T represents the correlation threshold, and R; is
the a-th correlation coefficient in R. Based on T, the correlation coefficients are divided into
three intervals: low correlation, medium correlation, and high correlation. The IMFs corre-
sponding to the correlation coefficients within each interval are summed and reconstructed.
If there are N IMFs within an interval, then

Hom = Yy Hy (13)

where Hg,,;, represents the summed and reconstructed component and Hy, is the b-th IMF
component within the interval.
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The temperature prediction model consists of three Informer sub-models. After the
reconstruction of IMFs within three intervals, the low-, medium-, and high-correlation
components are fed as inputs to sub-models 1, 2, and 3, respectively.

2.3.2. The EMD-Informer Model Architecture
As illustrated in Figure 4, the main steps of the EMD-Informer model are as follows:

Use EMD to decompose the temperature data into several IMFs;
Calculate the PCC between the IMFs and the original temperature data, and reconstruct
the IMFs into low-, medium-, and high-correlation components based on the level
of correlation;

e  The reconstructed components with different correlation degrees, along with the
feature data of current and voltage, are used as inputs for the sub-models;

e Calculate the outputs of the sub-models and reconstruct them to obtain the final
prediction output.

e

¥

Reconstruction

Battery data Relevance reconstruction [ Temperature prediction
[WWW/NWNWWMMW\MW‘ BT IMFs ECurrent @Voltage
" Tempemture -
< EARTROH TSN GANA
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Figure 4. Relevance-based reconstructed EMD-Informer model architecture.

r(6)

3. Dataset and Evaluation Metrics
3.1. Dataset

The charging and discharging strategy for the battery cycles in the RW10 dataset is a
random walk strategy: the charging and discharging currents are randomly selected from
theset {—4.5A, —375A, -3 A, —2.25A, -15A, —075A,075A,15A,225A,3A,375A,
4.5 A}. Negative currents represent charging, while positive currents represent discharging.
During battery operation, a selected current setting is applied until the terminal voltage
exceeds the range of 3.2 V to 4.2 V, or until a specific charge-discharge condition persists
for five minutes. After each charging or discharging period, there is a rest period of less
than one second during which the current is 0 while a new charging or discharging current
setpoint is selected. The current probabilities are shown in Figure 5. From the RW10
dataset, a subset of 9000 data groups was selected for analysis, with each group containing
temperature, voltage, and current data. The first 80% of the data are used for training, and
the remaining 20% are used for testing. The relationship between battery temperature and
voltage and current is shown in Figure 6.
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Figure 6. The relationship between battery temperature and both current and voltage in dataset RW10.

3.2. Evaluation Criteria

To quantitatively assess performance, the mean squared error (MSE), mean absolute
error (MAE), and maximum absolute error (MAXE) were selected as the evaluation metrics
for assessing model performance. The evaluation metrics are defined as follows:

1 .
MSE = 3 (@ — i)’ (14)
lew |
MAE = =) .19 = il (15)
MAXE = Max|y; — yi| (16)

where y; represents the true value of the i-th temperature point, §; represents the model’s
prediction for the i-th temperature point, and n represents the number of test sample
data points.
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4. Experimental Analysis
4.1. Model Training and Parameter Optimization

According to Equation (10), the correlation values between imf¢(t), r(t), and the
original series are calculated as shown in Table 1.

Table 1. Correlation values between modal functions and the original sequence.

Parameter PCC
imfy(t) —0.01238
imfy(t) 0.00190
imf3(t) 0.03288
imfy(t) 0.12448
imfs(t) 0.21860
imfe(t) 0.37338
imfy(t) 0.49136
imfg(t) 0.45558
imfo(t) 0.45950
imfio(t) 0.23390

r(t) 0.23561

According to Equations (11) through (13), the imff(t) and r(t) are reconstructed into
low-, medium-, and high-correlation components. These components, combined with the
voltage and current feature data, are used as inputs for sub-models 1, 2, and 3, respectively.

This paper optimizes the parameters for single-step prediction of the three sub-models
by adjusting the model dimensions and batch sizes. Each sub-model is trained for 10 epochs.
The optimization process involves inputting batch sizes of 16, 32, and 64, and model
dimensions of 256, 512, and 1024. After multiple experiments, the optimal values are
selected. The optimization results are shown in Table 2.

Table 2. The results of the model optimization.

Dimension of Model 256 512 1024
Batch Size 16 32 64 16 32 64 16 32 64

MSE 0.00080 0.00080 0.00081 0.00077 0.00080 0.00080 0.00080 0.00076 0.00085

Sub-model 1 MAE 0.01588 0.01614 0.01625 0.01547 0.01619 0.01607 0.01617 0.01602 0.01720
MAXE 0.34059 0.35343 0.34334 0.34732 0.32537 0.35882 0.32567 0.31090 0.33378

MSE 0.00045 0.00095 0.00090 0.00047 0.00069 0.00086 0.00032 0.00077 0.00097

Sub-model 2 MAE 0.01542 0.02306 0.02151 0.01640 0.02018 0.02109 0.01345 0.02179 0.02400
MAXE 0.10481 0.13279 0.14734 0.08276 0.11686 0.14080 0.07268 0.09697 0.11312

MSE 0.00049 0.00065 0.00125 0.00061 0.00030 0.00073 0.00051 0.00038 0.00094

Sub-model 3 MAE 0.01567 0.02013 0.02612 0.02039 0.01395 0.02146 0.01853 0.01625 0.02406
MAXE 0.11184 0.12009 0.15740 0.09903 0.08033 0.14252 0.06930 0.06121 0.12526

Table 2 illustrates the following;:

e  For sub-model 1, the optimal model dimension and batch size for the evaluation
metrics are 1024 and 32, respectively;

e  For sub-model 2, the optimal model dimension and batch size for the evaluation
metrics are 1024 and 16, respectively;

e  For sub-model 3, the optimal model dimension and batch size for the evaluation
metrics are 512 and 32, respectively;

The final selected model input parameters are shown in Table 3. The evaluation error
metrics for the optimal structure obtained using the parameters in Table 3 are presented in
Table 4.
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Table 3. Sub-model input parameters.
Parameters Sub-Model 1 Sub-Model 2 Sub-Model 3
Input Sequence Length 14
Start Token Length 7
Prediction Sequence Length 1
Factor 5
Numbers of Heads 8
Encoder Layers Number 2
Decoder Layers Number 1
Dimension of fcn in Model 2048
Dropout 0.05
Learning Rate 0.00005
Batch Size 32 16 32
Dimension of Model 1024 1024 512

Table 4. Evaluation of the sub-model and reconstruction results under optimal input parameters.

Method Sub-Model 1 Sub-Model 2 Sub-Model 3 Reconstructed
MSE 0.00076 0.00032 0.00030 0.00095
MAE 0.01602 0.01345 0.01395 0.02114

MAXE 0.31090 0.07268 0.08033 0.32165

Table 4 illustrates that the MSE, MAE, and MAXE of the reconstructed prediction
results are 0.00095, 0.02114, and 0.32165, respectively. The individual sub-models and the
reconstructed prediction results are shown in Figure 7.
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Figure 7. The prediction results of the relevance-based reconstructed EMD-Informer model.

Figure 7a—c illustrate that three sub-models capture the data variation trends well
under single-step prediction. Figure 7d illustrates that the reconstructed prediction values
and the true values are nearly perfectly aligned, achieving high prediction accuracy.
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4.2. Lithium-Ilon Battery Surface Temperature Prediction Comparison Analysis

In this section, to validate the performance of the model proposed in this paper,
experiments were conducted by comparing it with GRU, LSTM, and Informer, using the
same dataset. The prediction results and absolute errors of each model are compared in
Figure 8, and the evaluation metrics of each model are compared in Table 5.
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Figure 8. Prediction results and absolute errors for each model.

Table 5. Comparison of evaluation indicators of each model.

Method LSTM GRU Informer EMD-Informer
MSE 0.00537 0.00393 0.00262 0.00095
MAE 0.05286 0.05261 0.04028 0.02114

MAXE 0.49210 0.39832 0.36686 0.32164

Figure 8 and Table 5 illustrate that the EMD-Informer model has the smallest predic-
tion error, with a maximum error of only 0.32164 °C, accurately predicting the trend in
temperature changes.

Compared to LSTM, GRU, and the single Informer models, the EMD-Informer model
shows improvements in the evaluation metrics:

MSE is reduced by 82.31%, 75.83%, and 63.74%, respectively;
MAE is reduced by 60.01%, 59.82%, and 47.52%, respectively;
MAXE is reduced by 34.64%, 19.25%, and 12.33%, respectively.

4.3. Multi-Step Prediction of Battery Surface Temperature

When the prediction horizons are set to 24, 18, 12, and 6, the absolute errors of the
EMD-Informer model predictions are shown in Figure 9.
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Figure 9. The predicted results of the test set at different stride lengths.

Figure 9 illustrates that the absolute errors of the multi-step prediction results are
generally within 1 °C. As the prediction horizon shortens, the prediction errors tend
to decrease. The frequency distribution of the maximum prediction errors is shown in

Figure 10.
200 200
2 150 2 150
= =
3 3
5100 5100
[5) [5)
— —
= =
50 50
0 0
-12 -08 -04 00 04 08 12 12 -08  —04 00 04 0.8
Maximum Error (°C) Maximum Error (°C)
(a) 24 Steps (b) 18 Steps
350
300
2 2250
5 5 200
= =
g g 150
— —
- = 100
50
0 0
-12 -1.0 0.8 —0.6 -0.4 -0.2 0.0 02 04 0.6 08 -08 -0.6 -04 -02 00 02 04 06
Maximum Error (°C) Maximum Error (°C)
(c) 12 Steps (d) 6 Steps

Figure 10. Frequency distribution of the maximum error at different stride lengths.

Figure 10 illustrates that the distribution of the maximum error frequency for the
predicted temperatures shows a bimodal pattern, with the two peaks located on either
side of zero maximum error, indicating that the predicted values fluctuate around the
true values. As the prediction horizon decreases, the bimodal phenomenon becomes less
pronounced, and the frequency distribution of the maximum errors tends to cluster around
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0, indicating a reduction in the maximum error and an improvement in overall prediction
accuracy. The maximum absolute errors in temperature prediction for the four models over
multiple prediction horizons are summarized in Table 6.

Table 6. Statistical analysis of the maximum absolute error for multi-step predictions.

Error Range Maximum Absolute Error <1 °C Maximum Absolute Error < 0.5 °C
Prediction Horizons 24 18 12 6 24 18 12 6
EMD-Informer hit rate 98.98% 99.40% 99.64% 100% 78.43% 84.32% 93.57% 98.32%

Informer hit rate
LSTM hit rate
GRU hit rate

97.48% 98.74% 99.46% 99.92% 72.89% 81.81% 92.28% 96.82%
97.35% 98.68% 99.22% 99.82% 74.80% 81.60% 91.27% 96.69%
95.97% 98.32% 99.28% 99.94% 65.17% 80.63% 91.15% 97.42%

Table 6 illustrates that the hit rate of the EMD-Informer model is higher than that
of the comparative models. The hit rates of the four models decrease as the prediction
horizon increases, indicating a negative correlation between high predictive accuracy
and a broad predictive range. When limiting the maximum absolute error of predicted
temperatures to within 1 °C, the EMD-Informer model achieves hit rates above 97% across
all horizons. When the maximum absolute error is restricted to within 0.5 °C, the hit rates
of the EMD-Informer model at prediction horizons of 24, 18, 12, and 6 steps are 78.43%,
84.32%, 93.57%, and 98.32%, respectively. Notably, there is a significant decrease of 9.25%
in the hit rate when the prediction horizon increases from 12 to 18 steps. Considering the
effective prevention of thermal runaway in lithium-ion batteries, a prediction horizon of
12 steps provides both a broader predictive range and a high hit rate.

5. Conclusions

This paper proposes a lithium-ion battery surface temperature prediction method
based on the EMD-Informer model with correlation-based reconstruction, and compares it
with GRU, LSTM, and single Informer prediction models. The following conclusions can
be drawn:

(1)  Under complex operating conditions, changes in the surface temperature of the battery
exhibit high nonlinearity. The original temperature data were decomposed using the
EMD algorithm and then reconstructed into features with varying correlation degrees.
These features were combined with voltage and current data to serve as inputs for
the sub-models, enabling them to learn from diverse characteristics. Single-step
predictions indicate that the EMD-Informer model demonstrates higher predictive
accuracy.

(2) Multi-step predictions demonstrate that the performance of the EMD-Informer model,
as well as the comparative models, deteriorates with an increase in prediction horizon,
indicating a conflict between high predictive accuracy and a broad predictive range;
the prediction horizon must be chosen appropriately to balance this conflict. Multi-
step predictions show that, under the condition that the maximum absolute error is
less than 0.5 °C, the hit rate for a 12-step prediction is better than that for 18-step and
24-step predictions. This achieves high predictive accuracy and a sufficiently broad
prediction range, which helps in early detection of potential temperature anomalies
and effectively reduces the risk of thermal runaway in the battery.
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