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Abstract: Photovoltaic energy storage system (PV-ESS) prosumer aggregators are characterized by a
large number but small scale in the distribution system and are not competitive enough to participate
in market transactions. For this reason, a prosumer aggregator alliance is proposed to participate in
the distribution market bidding strategy. Firstly, based on the framework for prosumer aggregator
alliances participating in distribution market trading, a bilevel bidding model is constructed. The
upper level represents the optimal decision-making model for the prosumer aggregators, while the
lower level constitutes the distribution market-clearing model. Secondly, the additional benefits
obtained by the alliance are distributed more fairly using the improved Shapley value based on the
PV self-consumption rate. Given the problem that the traditional diagonalization algorithm (DA) has
an excessive number of iterations when solving the game equilibrium problem of multiple subjects,
the DA is improved by optimizing the initial value of the inputs. Finally, case studies are conducted
based on the improved IEEE-33 bus distribution system to validate the feasibility and economic
viability of the proposed strategy. The case study results show that forming cooperative alliances to
participate in market bidding can significantly increase overall profits. The improved DA reduces
the number of bids and computation time by 75% and 80%, respectively. Additionally, the improved
Shapley value facilitates compensation for some of the aggregators.

Keywords: prosumer aggregators; distribution markets; improved Shapley values; improved
diagonalization algorithm

1. Introduction

In recent years, there has been a notable surge in the advancement of distributed
generation, represented by distributed photovoltaics (PVs) [1]. Numerous distributed PV
aggregators are now participating in electricity spot market trading [2]. Due to their small
individual capacities and fluctuating output, distributed PV aggregators face challenges
in market competitiveness, compounded by significant curtailment issues [3]. However,
energy storage systems (ESSs) enable time-shifted reuse of energy [4]. PV systems combined
with ESSs can effectively reduce curtailment issues when participating in the market as
a whole [5]. However, the number of distributed PV-ESSs is large but typically small in
scale [6]. Compared to traditional units, their market competitiveness remains limited.
These PV and ESS resources can be managed and scheduled by prosumer aggregators or
virtual power plants. This approach allows for better resource utilization and increased
overall revenue [7]. This paper primarily considers the agency of prosumer aggregators for
these PV and ESS resources.

As new market entities, prosumer aggregators have attracted significant attention
from researchers. Reference [8] proposes a trading strategy for prosumer aggregators based
on P2P technology to participate in microgrid transactions. However, due to the small
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scale of prosumers and user demand, they can only engage in transactions within limited
areas. Reference [9] proposes a mechanism based on a novel transactive energy framework.
However, their research focuses only on the energy market. In contrast, reference [10]
considers the production–consumption characteristics of PV-ESSs and proposes a two-stage
bidding strategy for prosumers in the energy-reserve market. Reference [11] highlights
the excellent frequency modulation (FM) capabilities of ESSs and presents a two-stage
bidding framework for prosumers participating in the energy–FM auxiliary service market.
However, references [8–11] treat prosumer aggregators as price takers, neglecting their
influence on clearing prices. With the continuous improvement of auxiliary service market
rules and the increasing number of prosumer aggregators, those with strong regulation
capabilities are becoming competitive in the electricity market, and their bidding strategies
can impact clearing outcomes. Therefore, references [12,13] propose a bidding strategy for
prosumer aggregators participating in the market, with the market operator responsible
for calculating and announcing the final clearing price. However, these studies consider
prosumer aggregators as independent entities directly participating in market bidding,
without accounting for the potential collaboration among storage stations of different
aggregators to enhance overall returns. References [14,15], respectively, study the formation
of alliances by combining wind ESSs and virtual power plants for market transactions.
However, no studies in the literature have examined prosumer aggregators as members
of an alliance yet. Therefore, this study is highly significant. Furthermore, after forming
an alliance, fair profit distribution is crucial for maintaining cooperation stability. The
Shapley value is a commonly used method for profit distribution in cooperative games [16].
However, in practical scenarios, reallocation based on the contributions and sacrifices of
alliance members is necessary.

Multi-agent participation in electricity markets is often modeled as an Equilibrium
Problem with Equilibrium Constraint (EPEC), where traditional approaches include intelli-
gent algorithms [17] or the combination of KKT conditions with diagonalization algorithms
(DAs) [18–20] for the solution. Reference [17] employs a prioritized experience replay
deep deterministic policy gradient method to address this issue. However, this method
is based on reinforcement learning, making the training process complex. Moreover, its
convergence is influenced by numerous factors. As the number of market participants
and constraints increases, the number of iterations required for such intelligent algorithms
will increase significantly, leading to a dramatic rise in solution time, which makes them
less suitable for practical problem-solving. Conversely, leveraging KKT conditions and
strong duality transforms the EPEC into solving a Mixed-Integer Linear Programming
(MILP) problem for multiple agents. Subsequently applying the DA effectively mitigates
these issues. The core idea of the DA involves iteratively solving each market participant’s
optimal decision model while keeping other participants’ decision variables fixed, iterating
until strategies stabilize or reach a maximum iteration limit. References [18–20] specifically
address strategic bidding by multiple market participants, utilizing the DA to find Nash
equilibrium solutions. This methodical approach ensures robust convergence towards
market equilibrium, maintaining stability in competitive electricity markets. However,
significant discrepancies between the initial operational strategies chosen by each agent and
their optimal strategies can result in excessive iteration. Moreover, the assumption of know-
ing other participants’ strategies during iterative self-strategy optimization does not reflect
real-world scenarios. Therefore, this paper proposes an improved DA to address these
issues, where each agent optimizes its bidding strategy by predicting other agents’ bidding
strategies, thereby significantly reducing the solution time to just one bidding round.

In summary, a bidding strategy is developed for a coalition of prosumer aggregators
to engage in distribution market bidding. The key contributions of the paper are as follows:

A framework for prosumer aggregator alliances to participate in electricity market
trading is proposed. This framework uses an improved DA and KKT conditions to solve
the EPEC problem. It ensures that the solution’s accuracy remains within an acceptable
range while significantly reducing computation time.
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Additional revenues earned by the alliances are allocated based on improved Shap-
ley values. This approach effectively compensates the ESS for the losses incurred from
participating in the FM market to support PV generation.

2. Trading Framework of Prosumer Aggregator Alliance Participation in Market

With the deepening reform of the electricity market, more and more new market
players are involved in the market competition. Distributed PVs and distributed ESSs
cannot directly participate in electricity market transactions due to their small volume,
decentralized layout, and difficult regulation and management. Therefore, distributed
PVs and distributed ESSs can be aggregated by aggregators in a certain region for unified
scheduling. However, the capacity of distributed PVs and distributed ESSs represented
by a single aggregator remains limited, with minimal market competitiveness. Therefore,
forming alliances through cooperative gaming can leverage resource complementarity and
enhance overall revenue. The distribution market trading framework based on cooperative
gaming with the participation of multiple prosumer aggregators is shown in Figure 1, and
this paper mainly considers the multi-market joint bidding of prosumer aggregators in the
energy–FM market.
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prosumer aggregator alliances.

The specific market trading process is as follows:

1. Each market participant is required to verify unit parameters and relevant details
concerning FM auxiliary service provision capabilities.

2. On declaration day, the electricity trading center releases information to all market par-
ticipants about the next day’s active power demand, frequency modulation demand,
bidding limits for power, and similar details. Subsequently, the operator organizes
market participants to participate in the declaration process.

3. The trading period is set at 15 min, totaling 96 periods. Microturbine (MT) units
declare bids based on their respective generation costs, while prosumer aggregators
search for optimal alliances. These alliances then collectively submit unified “price-
quantity” bids.

4. Considering the secure functioning of the distribution network and physical con-
straints, the objective is to meet day-ahead market load and FM requirements. Elec-
tricity trading centers strive to optimize day-ahead market clearing, with the primary
objective of minimizing energy costs, thus determining the day-ahead clearing results.

5. The electricity trading center announces the final clearing result to all market members.
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3. Optimal Decision Model for Upper-Level Prosumer Aggregator

The upper-level model is a trading decision model for prosumer aggregators, with
the objective of maximizing aggregator profits. This model generates the optimal bidding
strategies for each aggregator. The uncertainty of PV power generation is characterized
through scenario analysis.

3.1. Objective Function of Prosumer Aggregator

The objective function of the aggregated prosumer aggregator is described in Equation (1),
which includes participation in energy–FM market revenues and curtailment penalty costs.

maxFk =
Ns

∑
s

ρs

{
T

∑
t=1

[
λen

t,s Pen
k,t,s + λ

cap
t,s Pcap

k,t,s + λmil
t,s Pmil

k,t,s − CPV
k,t,s

]}
(1)

CPV
k,t,s =

Vk

∑
v=1

cPV
(

PPV,fore
k,v,t,s − PPV

k,v,t,s

)
(2)



Pen
k,t,s =

Vk
∑

v=1
PPVe

k,v,t,s +
Ek
∑

e=1
Pdis

k,e,t,s −
Ek
∑

e=1
Pch

k,e,t,s

Pcap
k,t,s =

Vk
∑

v=1
PPcap

k,v,t,s +
Ek
∑

e=1
PEcap

k,e,t,s

Pmil
k,t,s =

Vk
∑

v=1
PPmil

k,v,t,s +
Ek
∑

e=1
PEmil

k,e,t,s

(3)

PPV
k,v,t,s = PPVe

k,v,t,s + PPcap
k,v,t,s (4)

Here, ρs is the probability of scenario s; Pen
k,t,s, Pcap

k,t,s, and Pmil
k,t,s are the amount of awarded

electricity, the FM capacity, and mileage in the market by the aggregator k at time t under
scenario s, respectively. λen

t,s , λ
cap
t,s , and λmil

t,s are the price of electricity, the FM capacity, and
the mileage clearing price, obtained through the joint clearing of the lower-level market,
respectively; CPV

k,t,s is the costs incurred in the process of participating in market transactions
for distributed PV; Vk and Ek are distributed PV and distributed ESS quantities represented
by aggregator k, respectively; cPV is the penalty factor for PV abandonment; PPV

k,v,t,s and

PPV,fore
k,v,t,s are the aggregators’ planned PV output and predicted PV output. Equation (3)

represents the allocation of the aggregator k allocating the awarded quantities of charging,
discharging, the FM capacity, and the FM mileage to each member, where PPVe

k,v,t,s, Pdis
k,e,t,s,

and Pch
k,e,t,s represent the planned output of distributed PVs and the planned charging and

discharging power of distributed ESSs by aggregator k; and PPcap
k,v,t,s, PPmil

k,v,t,s, PEcap
k,e,t,s, and PEmil

k,e,t,s
are aggregator k planned FM capacity and FM mileage output for distributed PVs and
distributed ESSs in the FM market, respectively.

3.2. Constraints
3.2.1. Constraints of Prosumer Aggregators’ Declared Power

Constraints (5) limit the declared power range of the prosumer aggregator in the
energy–FM market.

−
Ek
∑

e=1
Pch

k,e,max ≤ pen
k,t,s + pcap

k,t,s ≤
Vk
∑

v=1
PPV,fore

k,v,t +
Ek
∑

e=1
Pdis

k,e,max

0 ≤ pcap
k,t,s ≤

Vk
∑

v=1
PPcap

k,v,max +
Ek
∑

e=1
PEcap

k,e,max

0 ≤ pmil
k,t,s ≤

Vk
∑

v=1
smc

pv,vPPcap
k,v,max +

Ek
∑

e=1
smc

ess,ePEcap
k,e,max

(5)
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Here, pen
k,t,s, pcap

k,t,s, and pmil
k,t,s are the power declared by aggregator k in the energy market

and the FM capacity and mileage declared in the FM market, respectively; Pdis
k,e,max and

Pch
k,e,max are the maximum charging and discharging power of distributed ESSs; PPcap

k,v,max and

PEcap
k,e,max are the maximum FM capacity for distributed PVs and distributed ESSs, respec-

tively; smc
pv,v and smc

ess,e are mileage-to-capacity ratios for distributed PVs and distributed
ESSs, respectively.

3.2.2. Constraints of Prosumer Aggregators’ Declared Price

Constraints (6) limit the declared price range of the prosumer aggregator in the energy–
FM market. 

0 ≤ ben
k,t,s ≤ ben

k,max
0 ≤ bcap

k,t,s ≤ bcap
k,max

0 ≤ bmil
k,t,s ≤ bmil

k,max

(6)

Here, ben
k,t,s, bcap

k,t,s, and bmil
k,t,s are the price of electric energy, the FM capacity, and the

mileage price declared by the aggregator, respectively; and ben
k,max, bcap

k,max, and bmil
k,max are the

maximum prices declared by aggregator k in the energy–FM market, respectively.

3.2.3. Constraint of Distributed PVs

Constraint (7) means that the planned PV output of the aggregator cannot exceed the
forecasted output.

0 ≤ PPV
k,v,t,s ≤ PPV,fore

k,v,t (7)

3.2.4. Constraints of Distributed ESSs

Constraints (8) describe the range of ESSs’ charging and discharging, along with the
non-simultaneous charging and discharging characteristics.

0 ≤ Pdis
k,e,t,s ≤ αdis

k,e,t,sPdis
k,e,max

0 ≤ Pch
k,e,t,s ≤ αch

k,e,t,sPch
k,e,max

αdis
k,e,t,s + αch

k,e,t,s ≤ 1
(8)

Here, Pdis
k,e,t,s and Pch

k,e,t,s are the planned charging and discharging power of aggregator
k for the distributed ESS, respectively; αdis

k,e,t,s and αch
k,e,t,s are binary variables representing

the discharge and charge states of the ESS; Ek,e,t,s is the state of charge of the distributed
ESS; Ek,e,min and Ek,e,max are the minimum and maximum capacities allowed by the ESS,
respectively; and ηch

k,e and ηdis
k,e are charge and discharge efficiency, respectively.

4. Integrated Clearing Model for Lower-Level Energy–FM Market

The lower-level model is a joint clearing model for the energy–FM market. Its objective
function aims to minimize operational costs while determining clearing prices and the
quantities allocated to various market participants.

4.1. Objective Function of Joint Market Clearing

The objective function of the energy–FM market clearing is described in Equation (10),
which includes the operational costs of MT units and prosumer aggregators.

minFL =
NS

∑
s

ρs


T
∑

t=1

NDG
∑

m=1
(bGe

m,t,sPGe
m,t,s + bGcap

m,t,s PGcap
m,t,s + bGmil

m,t,s PGmil
m,t,s )+

T
∑

t=1

NAG
∑

k=1
(ben

k,t,sPen
k,t,s + bcap

k,t,sPcap
k,t,s + bmil

k,t,sPmil
k,t,s)

 (9)

Here, NDG and NAG are the quantities of MT units and prosumer aggregators in the
system, respectively; PGe

m,t,s, PGcap
m,t,s , and PGmil

m,t,s are the winning bid in the energy market and
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the winning bid in the FM market for FM capacity and FM mileage for MT m, respectively;
bGe

m,t,s, bGcap
m,t,s , and bGmil

m,t,s are the declared generation price, FM capacity, and mileage price for
MT m, respectively.

4.2. Constraints
4.2.1. Constraints of Network Operation

Constraint (10) ensures nodal power balance, constraint (10) limits branch transmission
capacity, and constraint (12) establishes the balance node.

∑
m∈Φg(i)

PG
m,t,s + ∑

e∈Φess(i)
(Pdis

k,e,t,s − Pch
k,e,t,s) + ∑

v∈Φpv(i)
PPVe

k,v,t,s − ∑
d∈Φd(i)

PL
d,t

= ∑
j∈Φ(i)

Bij(θi,t − θj,t), ∀i, ∀t : λ1,i,t,s
(10)

−Pij,max ≤ Bij(θi,t − θj,t) ≤ Pij,max, ∀i, ∀q ∈ Ψ(i) : µmin
1,ij,t,s, µmax

1,ij,t,s (11)

θ1,t = 1 : λ1,1,t,s (12)

Here, Φg(i), Φess(i), Φpv(i), and Φd(i) represent the aggregation of MT units, dis-
tributed ESSs, distributed PVs, and loads set at node i, respectively; Φ(i) is the set of nodes
connected to node i; Ψ(i) is the set of all branches connected to node i; PL

i,t is the load of
node i; Bij is the line conductance between nodes i and j; θi,t and θj,t are the phase angles of
node i and node j, respectively; Pij,max represents the maximum transmission capacity of
the branch (i,j); and λ1,i,t,s, µmin

1,ij,t,s, and µmax
1,ij,t,s are the pairwise multipliers corresponding

to the equality constraint and the inequality constraint, respectively, where λ1,i,t,s is the
clearing price of node i.

4.2.2. Constraints of FM Capacity and Mileage Demand

Constraints (13) ensure that the awarded quantities of various market participants in
the FM market meet the system’s FM requirements.

NDG
∑

m=1
PGcap

m,t,s +
NAG
∑

k=1
Pcap

k,t,s = RSVS
t : λ2,t,s

NDG
∑

m=1
PGmil

m,t,s +
NAG
∑

k=1
Pmil

k,t,s = MSYS
t : λ3,t,s

(13)

Here, RSVS
t and MSYS

t are the system’s FM capacity, and mileage requirements, respec-
tively; λ2,t,s and λ3,t,s are dual variables corresponding to the constraints of the distribution
system, namely FM capacity and mileage clearing price.

4.2.3. Constraints of Market Clearing

Constraints (14)–(15) limit the clearing power of MT units and aggregators in the
energy–FM market, respectively.

PGe
m,t,s ≥ PG

m,min + PGcap
m,t,s : µmin

2,m,t,s

PGe
m,t,s ≤ PG

m,max − PGcap
m,t,s : µmax

2,m,t,s

0 ≤ PGcap
m,t,s ≤ pGcap

m,t,s : µmin
3,m,t,s, µmax

3,m,t,s
0 ≤ PGmil

m,t,s ≤ pGmil
m,t,s : µmin

4,m,t,s, µmax
4,m,t,s

0 ≤ PGmil
m,t,s ≤ smc

g,mPGcap
m,t,s : µmin

5,m,t,s, µmax
5,m,t,s

(14)



0 ≤ Pen
k,t,s ≤ pen

k,t,s : µmin
6,k,t,s, µmax

6,k,t,s
0 ≤ Pcap

k,t,s ≤ pcap
k,t,s : µmin

7,k,t,s, µmax
7,k,t,s

0 ≤ Pmil
k,t,s ≤ pmil

k,t,s : µmin
8,k,t,s, µmax

8,k,t,s

0 ⩽ Pmil
k,t,s ⩽

Vk
∑

v=1
smc

pv,vPPcap
k,v,t,s +

Ek
∑

e=1
smc

ess,ePEcap
k,e,t,s : µmin

9,k,t,s, µmax
9,k,t,s

(15)
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Here, PG
m,max and PG

m,min denote the maximum and minimum output for MT m, respec-
tively; smc

g,m is the FM mileage-to-capacity ratio for MT m; and µmin
o,m,t,s, µmax

o,m,t,s, o ∈ (2, 10) are
dual variables.

5. Formation of Cooperative Alliances and Benefit-Sharing Methods

As a single prosumer aggregator participates in market transactions, its capacity is
small compared to other units, and it does not have an advantage in market competition,
while the quantity of PVs and ESSs represented by some aggregators do not match, which
can cause serious light abandonment problems in the transaction process. Therefore,
aggregators are encouraged to cooperate to form an alliance, which increases the market
competitiveness of aggregators and reduces the problem of light abandonment at the same
time. How to fairly apportion the additional benefits generated after the formation of a
cooperative alliance is the key to maintaining the stability of the alliance.

5.1. Improved Shapley Value Method Based on PV Self-Consumption Rate

The Shapley value method is the average marginal contribution of a particular al-
liance member in the alliance, and the Shapley value of aggregator k is assumed to be the
cooperative game G = ⟨N, v⟩, with |N| = n denoting the number of all aggregators:

φk(v) = ∑
S∈Nn

(|S|−1)!(n−|S|)!
n!

[v(S)− v(S − {k})] (16)

Here, φk(v) is the revenue apportioned to aggregator k from the total revenue of
alliance S; set Nn is the n aggregators that can participate in the alliance S; v(S) is the total
revenue of the union S; and v(S − {k}) is the total revenue of the affiliate after removing
the aggregator k.

This paper introduces the concept of a PV self-absorption rate, which represents
the rate at which prosumer aggregators strategically charge ESSs during the bidding
process in the market to accommodate the PV systems. Therefore, to encourage aggregator
entities with greater distributed ESS capacity to join the alliance and enhance overall PV
integration rates, a certain compensation for lost profits in the FM market will be provided.
This involves adjusting the Shapley value method for profit distribution based on each
aggregator’s self-consumption rate of solar energy. Let the PV self-consumption rate of
aggregator k when bidding independently be ωk:

ωk =

T
∑

t=1

Ek
∑

e=1
PPV−ESS

k,e,t

T
∑

t=1

Vk
∑

v=1
PPV,fore

k,v,t

(17)

Here, PPV−ESS
k,e,t is the energy absorbed from the PV system by the energy storage in

aggregator k at time t.
The new weight mk of aggregator k is shown in Equation (18) and the gain Mk of the

improved aggregator k is shown in Equation (19).

mk =
ωk

n
∑

k=1
ωk

(18)

Mk = φk(v) + (mk −
1
n
)

n

∑
k=1

φk(v) (19)

Here, mk − 1
n is the correction factor for each aggregator k. The sum of the correction

factors for each aggregator is zero, so the total return after reallocation for each aggregator
is the same as before correction, as demonstrated in Appendix A.
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5.2. Model Transformation and Solution

The prosumer aggregator day-ahead market bidding model presented in the preceding
section can be formulated as a multi-objective bilevel optimization problem.

max
xS

FS(xS, y) ∀S ∈ NS

s.t. PS(xS) ≥ 0
QS(xS, y) = 0
y = argmin

y
FL(x, y)

s.t.p(x, y) ≥ 0
q(x, y) = 0

(20)

Here, FS(·) is the objective function of the aggregator alliance S; xS is a decision
variable for the aggregator alliance S; y is a variable that is part of the market-clearing
problem; and NS is a collection of aggregators. PS(·) and QS(·) are inequality constraints
and equality constraints for the aggregator alliance S; FL(·) is an objective function of
the market-clearing problem; x is a decision variable for all aggregator alliances in the
distribution system; and p(·) and q(·) are inequality constraints and equation constraints
on the market-clearing problem.

The lower-level market-clearing problem is structured as a linear programming model.
Therefore, it can be reformulated into its corresponding KKT conditions, which serve as
constraints in the upper-level optimal decision model for prosumer aggregators.

max
xS ,y,λ,µ

FS
(
xS, x′S, y, λ, µ

)
∀S ∈ NS

s.t. PS(xS) ≥ 0
QS(xS, y) = 0
{y, λ, µ} ∈ CKKT

(21)

Here, λ and µ are the dyadic variables of the equilibrium and inequality constraints
in the market-clearing problem; x′S is the decision-making of alliances other than alliance
S; and CKKT is the set of constraints corresponding to the KKT condition for the market-
clearing problem.

Using KKT conditions and strong duality theory, the bilevel model is transformed into
a single-level model, thereby converting the multi-agent bilevel programming problem
into an EPEC problem. The DA is a commonly used method for solving such problems.
Furthermore, this paper improves upon traditional DAs. The improved DA first determines
the optimal bidding strategy set

{
x(0)k

}
when all prosumer aggregators form a cooperative

alliance, using it as the initial input, and then sequentially compute the bidding strategy
sets

{
x( f )

k

}
for each agent. For each aggregator, while fixing the bidding strategies of the

other aggregators, the strategies are subsequently updated until convergence or reaching
the maximum iteration count for each agent. This process decomposes the global problem
into independent subproblems, allowing each agent to independently seek its optimal
strategy and thereby achieve the global optimal solution. The specific steps for solving are
detailed as follows:

Step 1: Obtain initial values. Obtain the bidding strategy when all aggregation
merchants form an alliance as initial values

{
x(0)k

}
.

Step 2: Parameter settings. Set the maximum number of iterations f max and conver-
gence criteria ε.

Step 3: Iterative solving. Let the iteration count be f = 1, and input the optimized
initial values

{
x(0)k

}
. Update each aggregator merchant’s solution by fixing the bidding

strategy of the remaining aggregator merchants.
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Step 4: Convergence criteria. If for all k, three consecutive iterations satisfy
∣∣∣x( f )

k − x( f−1)
k

∣∣∣ ≤
ε, terminate and report the Fk, pen

k,t,s, pcap
k,t,s, pmil

k,t,s. Else if f = f max, terminate and report non-
convergence. Otherwise, f = f + 1 and return to Step 3.

6. Case Study
6.1. Example Setup

This case study is tested on the improved IEEE-33 node system, incorporating four MT
units and three prosumer aggregators, as shown in Figure 2. The parameter information
for the MT units and prosumer aggregators is provided in Appendix B [21]. Distributed
PVs managed by Aggregator 1 are situated at nodes 3, 4, and 20; those managed by
Aggregator 2 are at nodes 11 and 13; and those managed by Aggregator 3 are at nodes 9 and
28, with equal installed capacities. The PV output scenarios are set to five, with typical PV
output scenarios shown in Figure 3 and their corresponding probabilities listed in Table 1.
Assuming the total system FM requirement equals 10% of the total load, with a curtailment
penalty cost of 0.6 CNY/kWh, the system daily load profile is depicted in Figure 4 [22,23].
To avoid vicious competition, given the offer range of the PV-ESS alliance, the electric
energy offer is [0.1, 0.3] CNY/kWh, and the FM capacity and FM mileage offer range is
[0, 0.02] CNY/kWh [24]. The convergence criterion for the solving process is set such that
the difference between successive iterations is less than or equal to 1.5%. Convergence is
considered achieved if this criterion is met for three or more consecutive iterations [25].
This paper uses Gurobi 10.0 in MATLAB R2021b to solve the problem.

Figure 2. Schematic diagram of improved IEEE-33 node system topology.

Figure 3. Typical set of scenarios for PV output.
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Table 1. Probabilities corresponding to each scenario.

Scenario 1 2 3 4 5

Probability 0.19 0.21 0.21 0.22 0.17

Figure 4. System daily load profile.

6.2. Algorithm Comparison Analysis

The upper limit values of declared prices in each market were used as initial inputs
for solving the traditional DA and compared with the improved DA proposed in this
paper. Taking the case of three independent aggregators participating in market bidding
as an example, a comparative analysis was conducted. The analysis focused on iteration
count, solution time, and overall profit, as shown in Figure 5. The improved DA reduced
the number of bidding attempts by three and significantly shortened the total solution
time. Due to the sensitivity of the diagonalization algorithm to initial values, the iteration
count increases substantially as the initial inputs deviate further from optimal results.
Furthermore, an increase in the number of target entities leads to an exponential rise in
iteration count. In terms of overall profits, the improved algorithm shows a decrease of
0.37% in total profits compared to the equilibrium solution after the first round of bidding.
Combined with actual solving times, utilizing the improved algorithm for a single bidding
round can significantly enhance solving efficiency. Therefore, subsequent case studies in
this paper employ the improved DA, which only requires one round of bidding for solving.

Figure 5. Algorithm performance comparison results.

6.3. PV-ESS Alliance Bidding Results

Based on the merge–split rule introduced in Section 5.1, the optimal alliance combina-
tion identified is {(1), (2, 3)}. Specifically, prosumer Aggregator 1 forms Alliance 1, while
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prosumer Aggregators 2 and 3 form Alliance 2. The bidding outcomes of each alliance in
the energy–FM market are illustrated in Figures 6 and 7.

Figure 6. Winning bids in the energy market for each subject.

Figure 7. Winning bids in the FM market for each subject. (a) FM capacity. (b) FM mileage.

Figure 6 depicts the bidding outcomes of various MT and PV-ESS alliances in the
energy market. It can be observed that the two PV-ESS alliances account for approximately
50% of the total energy demand cumulatively across different periods, primarily concen-
trated during hours 20–77. Due to the higher solar generation during this period, the
solar-storage alliances aim to minimize curtailment penalties. They achieve this by offering
prices slightly below those of MT units to capture market share while maximizing overall
revenue. MT units predominantly generate power during early morning and evening hours
when distributed PVs are not producing power. MT unit 1 is cleared first due to having the
lowest bid. When its output reaches the upper limit, units 2 and 3 with relatively lower
bids supplement the generation capacity.

The winning bids of each market player in the FM market for each time period are
shown in Figure 7. As can be seen from the figures, the FM capacity and mileage provided
by the two PV-ESS alliances account for about 99% of the system demand, respectively.
Since the distributed PVs and distributed ESSs in the alliance have a higher FM mileage-
capacity factor and can provide more FM mileage than MT units when providing the same
FM capacity, the PV-ESS alliance with stronger FM responsiveness is preferentially called
upon to provide FM services in the FM auxiliary service market.

Taking Aggregator 2 as an example, a comparative analysis of the scheduling plans of the
distributed PVs and distributed ESSs that it represents in the case of bidding independently and
bidding after allying is conducted, and the results are shown in Figures 8 and 9. The dispatch
of distributed PVs and distributed ESSs by the aggregator increased by 6% and 10% during
the 36–67 time period in the energy market, respectively. During midday hours, PV generation
is high while load demand is low. Therefore, to maximize overall revenue, excess electricity
generated by PV systems represented by Aggregator 2 is partially stored in distributed ESS 3
and ESS 4. Subsequently, it is sold during the nighttime peak load periods.
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As shown in Figure 9a,b, it can be observed that when participating in the FM market,
the aggregator’s dispatch of PVs and ESSs is reduced in almost all time periods. Simulta-
neously, distributed PV outputs remain concentrated during the midday period, whereas
distributed ESSs exhibit an opposite trend, with their output times displaying complemen-
tary characteristics. In the energy market, the unit power price is significantly higher than
in the FM market. Aggregators prioritize participation in the energy market to pursue
greater profits, thereby increasing their involvement as much as possible. This inevitably
reduces the capacity available for participation in the FM market. Additionally, aggregators
primarily utilize dispatchable distributed ESSs to participate in the FM market, accounting
for 83% of total ESS output. During peak PV generation periods, the primary task of dis-
tributed ESSs is to absorb excess solar power and opportunistically sell it. During periods
of low PV generation, the main task shifts to frequency modulation.
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Figure 10 depicts the cumulative curtailment of distributed PV systems for Aggrega-
tor 2 and Aggregator 3 across different time periods, under cooperative and non-cooperative
scenarios. The total curtailment without cooperation amounts to 11.13 MWh, whereas
with cooperation in forming an alliance, the total curtailment decreases to 7.99 MWh, a
reduction of 28.22% in curtailed energy.

Figure 10. The curtailed solar energy amount for cooperation and non-cooperation.

6.4. Benefits of the PV-ESS Alliance

The PV-ESS alliance currently participates primarily in the energy market and FM
market. To illustrate the necessity of the PV-ESS alliance’s participation in the energy–FM
market, comparisons were also made regarding the daily revenue performance of the
PV-ESS alliance in different market cases, as detailed in Table 2.

Table 2. Comparison of cases for prosumer aggregator participation in various markets.

Case Energy Market FM Ancillary Service Market

Case 1 YES NO
Case 2 NO YES
Case 3 YES YES

The comparative results are shown in Table 3. It is clear from the table that the
alliance generates higher revenue by participating in the combined market. Compared to
participating in only one market, the total revenue increases by CNY 8361.55 and CNY
16,556.78, respectively. Therefore, actively participating in the combined energy–FM market
is beneficial for the alliance to obtain higher revenue, encouraging their engagement in
market competition and promoting the development of PV-ESSs.

Table 3. Benefits of the alliance when participating in different markets.

Benefits/CNY Case 1 Case 2 Case 3

Alliance 1 4105.99 1941.92 7681.34
Alliance 2 8650.39 2619.23 13,436.58

All Benefits 12,756.38 4561.15 21,117.93

In existing research, there are cases where only distributed ESSs are considered as
individual market entities participating in bidding. Therefore, this paper considers all ESSs
as being represented by a single ESS aggregator. It compares and analyzes the revenues of
the ESS aggregator participating in market bidding independently under this scenario. The
comparison results are presented in Table 4. The table indicates that the total revenue of
the integrated prosumer aggregator exceeds the combined revenue of the ESS aggregator
and the PV generator by CNY 1682.06. When the ESS aggregator participates in the market
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independently, it competes with the distributed PV generator, which results in both ESS
and PV resources being underutilized. The aggregator can minimize resource wastage by
conducting unified scheduling and management of ESSs and PVs.

Table 4. Benefits of ESS and PVs managed by different entities.

Benefits/CNY ESS PV PV-ESS

Energy Benefits 802.71 12,036.58 14,584.24
FM Capacity Benefits 289.74 149.47 464.04
FM Mileage Benefits 4062.11 2095.26 6069.65

All Benefits 5154.56 14,281.31 21,117.93

Table 5 presents the revenue outcomes for each aggregator under cooperative and
non-cooperative conditions. According to the table, forming alliances through mutual
cooperation increases the total revenue for prosumer aggregators by CNY 887.72. Moreover,
to highlight the benefits of cooperation, the revenue includes not only market participation
earnings but also curtailment penalty costs. When allocating additional revenue gained by
the alliance using Shapley values, Aggregator 2 and Aggregator 3 see revenue increases
of CNY 495.65 and CNY 402.07, respectively. Utilizing the improved Shapley values for
revenue distribution, the new weights for Aggregator 2 and Aggregator 3 are 0.47 and
0.53, resulting in revenue increases of CNY 239.14 and CNY 648.58, respectively. Under
both allocation methods, aggregators experience enhanced revenue, with Aggregator 3
showing a higher growth rate in revenue when using the improved Shapley values. As
analyzed earlier, the ESS in Aggregator 3 sacrifices some revenue from FM markets for
overall benefit by accommodating more PV power. Compared to non-cooperation, this
cooperation results in a loss of CNY 150.62 in frequency modulation revenue. The use of
improved Shapley values compensates Aggregator 3, encouraging more aggregators to join
the alliance through fairer revenue distribution.

Table 5. Benefits in case of cooperation and non-cooperation.

Subject
Benefits/CNY Benefit Allocation/CNY

Non-Cooperation Cooperation Shapley Value Improved Shapley Value

Aggregator 1 4464.83 4464.83 - -
Aggregator 2 3776.71

8550.39
4272.36 4015.85

Aggregator 3 3885.96 4288.03 4534.54
All Benefits 12,127.50 13,025.22 - -

7. Conclusions

This paper addresses the bidding strategy problem of prosumer aggregators partici-
pating in multi-species electricity markets, proposing a bilevel bidding model for prosumer
aggregators considering uncertainty. A revenue allocation method based on the improved
Shapley value of the PV self-consumption rate is proposed and solved using the improved
DA. The following conclusions can be obtained from the case study:

1. Compared to traditional algorithms, the improved DA proposed in this paper achieves
market equilibrium solutions more rapidly. Considering the actual computation time,
using this improved DA approach requires only one round of bidding, which greatly
boosts solution efficiency.

2. Taking Aggregator 2 as an example, after forming the optimal alliance, the scheduling
volume of distributed PVs increases by 6% and distributed ESSs by 10%. Furthermore,
Alliance 2 demonstrates a 28% reduction in total curtailed solar energy, leading to a
more efficient utilization of all resource types.

3. After forming the optimal alliance, total revenue increased by 7.3%. Considering
the structural differences in the composition of prosumer aggregators, an improved
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Shapley value based on PV self-consumption rates was proposed. This approach
allows for compensating aggregators that handle a higher proportion of distributed
ESSs, thereby achieving a more equitable distribution of benefits.

In the subsequent work, further consideration will be given to the participation of
prosumer aggregators in the operation of the real-time market within cooperative alliances.
Additionally, a bidding strategy for the participation of prosumer aggregators in the day-
ahead–real-time market will be proposed, taking into account the strong coupling between
day-ahead and real-time markets. Additionally, when studying the real-time market, it is
important to consider the impacts of special situations, such as the forced disconnection of
photovoltaic sources under adverse operating conditions.
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Appendix A

It has been shown through previous studies that when an ESS participates in the
electric energy–FM market, most of its revenue comes from the participating FM market.
It is assumed that the aggregator k1 acts as an agent for a larger number of distributed
PV with a smaller number, while the aggregator k2 acts as an agent managing a larger
number of distributed PV systems alongside a smaller number of energy storage units, and
a cooperative game is played to ally the aggregators k1 and k2. Aggregator k1 allocates a
portion of its energy storage capacity originally intended for FM market participation to
store excess energy from distributed PV systems within aggregator k2 during peak solar
generation periods. This ESS is subsequently sold during nighttime hours, generating
additional revenue for the alliance in the energy market. Using the traditional Shapley
value method for revenue allocation only considers the average marginal contribution
of aggregators k1 and k2 and ignores the sacrifices made by aggregator k1 in the alliance.
Therefore, this paper proposes an improved Shapley value.

The proof regarding the sum of correction factors for all aggregators being zero is
as follows:
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Appendix B

Table A1. The parameter information of MT units.

MT Units G1 G2 G3 G4

Rated power/kW 4000 4000 3500 3000
Power generation quotation/CNY/kWh 0.183 0.190 0.208 0.218

Frequency modulation capacity
quotation/CNY/kWh 0.012 0.012 0.016 0.013

Frequency modulation mileage quotation/CNY/kWh 0.016 0.015 0.015 0.017
Mileage and capacity ratio 12 10 7 12

Table A2. The parameter information of distributed ESSs.

Aggregators 1 2 3

ESS ID ESS1 ESS2 ESS3 ESS4 ESS5 ESS6 ESS7
Charge/Discharge Power/kW 400 200 900 900 800 800 800

Capacity/kWh 2000 800 3600 3600 3200 3200 3200
Maximum Storage Capacity 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Minimum Storage Capacity 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Charge/Discharge Efficiency 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Energy Density Ratio 15 15 15 15 15 15 15

Table A3. The parameter information of distributed PVs.

Aggregators 1 2 3

PV ID PV1 PV2 PV3 PV4 PV5 PV6 PV7
Capacity/kW 2000 2000 2000 2000 2000 2000 2000

Energy Density Ratio 15 15 15 15 15 15 15
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