Literature Review on Thermodynamic and Kinetic Limitations of Thermal Decomposition of Methane
Abstract
:1. Introduction
2. Aim of the Work
3. Phenomenological Thermodynamics and Thermodynamics of Activation
3.1. Modelling of the Forward and Backward Reactions
3.2. Variant 1—From Iron Carburization to Methane Decomposition on the Iron Surface
3.3. Variant 2—Free Energy of Activation of Reaction (1)
4. Kinetics—Introduction
4.1. Kinetics of the Elementary Reaction (1)
4.2. Continuous Process—Conditions of Constant Flow of Methane
4.3. Continuous Process—Dilute-Methane Feed Conditions
4.4. KCE and EEC
5. Discussion
5.1. Range
5.2. Range
5.3. Range
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Additional Information
Nomenclature
Symbols | |
constants representing mean values of enthalpy and entropy in regard to temperature, respectively, kJ·mol−1, kJ·(mol·K)−1, Table 1; | |
pre-exponential factor, s−1; | |
2.08364·1010 K−1·s−1, ratio of Boltzmann to Planck’s constant; | |
auxiliary quantity in Equation (48); | |
heat capacities, J·(kg·K)−1; | |
calculated ration of carbon deposit, g·gcat−1; | |
activation energy, J·mol−1; | |
) for methane, conversion degree and thermodynamic efficiency, respectively; | |
thermodynamic functions for free enthalpy, enthalpy, and entropy, respectively; | |
kinetic rate constant, dependent on T, s−1, | |
equilibrium constant, | |
exponent, | |
number of samples | |
pressure or partial pressure, Pa, | |
reaction rate, Equations (30) and (33), s−1; | |
reaction rate, Equation (29), mmol·(gcat·time)−1; | |
initial reaction rate, mmol·(gcat·time)−1, const, Equation (29); | |
initial reaction rate, mmol·(gcat·time)−1, Equation (26); | |
R = 8.314 J·(mol·K)−1 universal gas constant; | |
time: s, min, or hrs; | |
temperature, °C; (only in text) | |
absolute temperature, K; | |
flow rate, dm3 or m3·(gcat·time)−1; | |
; | |
l | ; |
; | |
physical dilatation factor, acc. [112], Table 4; | |
expansion factor, fractional volume change on complete, conversion of substance A, acc. to [111], Table 4; | |
time constant for deactivation, s; | |
stoichiometric coefficient; | |
Subscripts | |
activation entropy in isokinetic temperature; | |
CH4, H2 | acc. to methane, hydrogen, |
isokinetic, | |
equilibrium, | |
n | nucleation, |
pressure, | |
in equilibrium constant, indicating resp. to concentration, conversion etc., | |
initial state, | |
1, −1, 3 | acc. to: forwards, backwards and another kind, |
Superscripts | |
activation functions; | |
standard state; | |
* | maximum; |
average; | |
Abbreviations | |
BCC | body-centred cubic, |
CPMR | Perfectly mixed reactor with bypass (in [117]), |
DFE | Distance From Equilibrium (or far from equilibrium), |
EEC | Enthalpy-Entropy-Compensation or (rarely) Entropy-Enthalpy-Compensation (e.g., [127]), |
FCC | face-centred cubic, |
KCE | Kinetic Compensation Effect, |
R-WGS | Reverse Water-Gas Shift reaction, |
TST | Transition-State Theory, |
WGS | Water-Gas Shift reaction, |
WHSV | Weight Hourly Space Velocity. |
References
- Barin, I. Thermochemical Data of Pure Substances, 1st ed.; Wiley: Hoboken, NJ, USA, 1995; ISBN 978-3-527-28745-1. [Google Scholar]
- Fierro, J.L.G. Catalysis in C1 Chemistry: Future and Prospect. Catal. Lett. 1993, 22, 67–91. [Google Scholar] [CrossRef]
- Msheik, M.; Rodat, S.; Abanades, S. Experimental Comparison of Solar Methane Pyrolysis in Gas-Phase and Molten-Tin Bubbling Tubular Reactors. Energy 2022, 260, 124943. [Google Scholar] [CrossRef]
- Sánchez-Bastardo, N.; Schlögl, R.; Ruland, H. Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy. Ind. Eng. Chem. Res. 2021, 60, 11855–11881. [Google Scholar] [CrossRef]
- Sánchez-Bastardo, N.; Schlögl, R.; Ruland, H. Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness. Chem. Ing. Tech. 2020, 92, 1596–1609. [Google Scholar] [CrossRef]
- Xu, R.; Meisner, J.; Chang, A.M.; Thompson, K.C.; Martínez, T.J. First Principles Reaction Discovery: From the Schrodinger Equation to Experimental Prediction for Methane Pyrolysis. Chem. Sci. 2023, 14, 7447–7464. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Wan Daud, W.M.A.; Abbas, H.F. Production of Greenhouse Gas Free Hydrogen by Thermocatalytic Decomposition of Methane—A Review. Renew. Sustain. Energy Rev. 2015, 44, 221–256. [Google Scholar] [CrossRef]
- Hamdani, I.R.; Ahmad, A.; Chulliyil, H.M.; Srinivasakannan, C.; Shoaibi, A.A.; Hossain, M.M. Thermocatalytic Decomposition of Methane: A Review on Carbon-Based Catalysts. ACS Omega 2023, 8, 28945–28967. [Google Scholar] [CrossRef]
- Audier, M.; Coulon, M.; Bonnetain, L. Hydrogenation of Catalytic Carbons Obtained by CO Disproportionation or CH4 Decomposition on Nickel. Carbon 1979, 17, 391–394. [Google Scholar] [CrossRef]
- Rostrupnielsen, J. Sulfur-Passivated Nickel Catalysts for Carbon-Free Steam Reforming of Methane. J. Catal. 1984, 85, 31–43. [Google Scholar] [CrossRef]
- Bernardo, C.A.; Rostrup-Nielsen, J.R. Carbon Deposition and Methane Steam Reforming on Silica-Supported Ni-Cu Catalysts. J. Catal. 1985, 96, 517–534. [Google Scholar] [CrossRef]
- Alstrup, I.; Tavares, M.T. Kinetics of Carbon Formation from CH4 + H2 on Silica-Supported Nickel and Ni-Cu Catalysts. J. Catal. 1993, 139, 513–524. [Google Scholar] [CrossRef]
- Snoeck, J.-W.; Froment, G.F.; Fowles, M. Kinetic Study of the Carbon Filament Formation by Methane Cracking on a Nickel Catalyst. J. Catal. 1997, 169, 250–262. [Google Scholar] [CrossRef]
- Kuvshinov, G.G.; Mogilnykh, Y.I.; Kuvshinov, D.G. Kinetics of Carbon Formation from CH4–H2 Mixtures over a Nickel Containing Catalyst. Catal. Today 1998, 42, 357–360. [Google Scholar] [CrossRef]
- Chambers, A.; Nemes, T.; Rodriguez, N.M.; Baker, R.T.K. Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 1. Comparison with Other Support Media. J. Phys. Chem. B 1998, 102, 2251–2258. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Qin, Y.; Chang, L. Simultaneous Production of Hydrogen and Nanocarbon from Decomposition of Methane on a Nickel-Based Catalyst. Energy Fuels 2000, 14, 1188–1194. [Google Scholar] [CrossRef]
- Ermakova, M.A.; Ermakov, D.Y.; Kuvshinov, G.G. Effective Catalysts for Direct Cracking of Methane to Produce Hydrogen and FIlamentous Carbon Part I. Nickel Catalysts. Appl. Catal. A Gen. 2000, 201, 61–70. [Google Scholar] [CrossRef]
- Otsuka, K.; Ogihara, H.; Takenaka, S. Decomposition of Methane over Ni Catalysts Supported on Carbon Fibers Formed from Different Hydrocarbons. Carbon 2003, 41, 223–233. [Google Scholar] [CrossRef]
- Qian, W.; Liu, T.; Wei, F.; Wang, Z.; Li, Y. Enhanced Production of Carbon Nanotubes: Combination of Catalyst Reduction and Methane Decomposition. Appl. Catal. A Gen. 2004, 258, 121–124. [Google Scholar] [CrossRef]
- Villacampa, J.I.; Royo, C.; Romeo, E.; Montoya, J.A.; Del Angel, P.; Monzón, A. Catalytic Decomposition of Methane over Ni-Al2O3 Coprecipitated Catalysts. Appl. Catal. A Gen. 2003, 252, 363–383. [Google Scholar] [CrossRef]
- Otsuka, K.; Takenaka, S.; Ohtsuki, H. Production of Pure Hydrogen by Cyclic Decomposition of Methane and Oxidative Elimination of Carbon Nanofibers on Supported-Ni-Based Catalysts. Appl. Catal. A Gen. 2004, 273, 113–124. [Google Scholar] [CrossRef]
- Sharif Zein, S.H.; Mohamed, A.R.; Talpa Sai, P.S. Kinetic Studies on Catalytic Decomposition of Methane to Hydrogen and Carbon over Ni/TiO 2 Catalyst. Ind. Eng. Chem. Res. 2004, 43, 4864–4870. [Google Scholar] [CrossRef]
- Dupuis, A. The Catalyst in the CCVD of Carbon Nanotubes—A Review. Prog. Mater. Sci. 2005, 50, 929–961. [Google Scholar] [CrossRef]
- Chen, D.; Christensen, K.; Ochoafernandez, E.; Yu, Z.; Totdal, B.; Latorre, N.; Monzon, A.; Holmen, A. Synthesis of Carbon Nanofibers: Effects of Ni Crystal Size during Methane Decomposition. J. Catal. 2005, 229, 82–96. [Google Scholar] [CrossRef]
- Venugopal, A.; Naveen Kumar, S.; Ashok, J.; Hari Prasad, D.; Durga Kumari, V.; Prasad, K.B.S.; Subrahmanyam, M. Hydrogen Production by Catalytic Decomposition of Methane over Ni/SiO2Ni/SiO2. Int. J. Hydrogen Energy 2007, 32, 1782–1788. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, H.; Li, B.; Li, W. Methane Decomposition over Ni Loaded Activated Carbon for Hydrogen Production and the Formation of Filamentous Carbon. Int. J. Hydrogen Energy 2007, 32, 32–37. [Google Scholar] [CrossRef]
- Pinilla, J.L.; Suelves, I.; Lázaro, M.J.; Moliner, R.; Palacios, J.M. Parametric Study of the Decomposition of Methane Using a NiCu/Al2O3 Catalyst in a Fluidized Bed Reactor. Int. J. Hydrogen Energy 2010, 35, 9801–9809. [Google Scholar] [CrossRef]
- De Jesús, J.C.; González, I.; García, M.; Urbina, C. Preparation of Nickel Nanoparticles and Their Catalytic Activity in the Cracking of Methane. J. Vac. Sci. Technol. A Vac. Surf. Film. 2008, 26, 913–918. [Google Scholar] [CrossRef]
- Suelves, I.; Pinilla, J.L.; Lázaro, M.J.; Moliner, R.; Palacios, J.M. Effects of Reaction Conditions on Hydrogen Production and Carbon Nanofiber Properties Generated by Methane Decomposition in a Fixed Bed Reactor Using a NiCuAl Catalyst. J. Power Sources 2009, 192, 35–42. [Google Scholar] [CrossRef]
- Cunha, A.F.; Órfão, J.J.M.; Figueiredo, J.L. Methane Decomposition on Ni–Cu Alloyed Raney-Type Catalysts. Int. J. Hydrogen Energy 2009, 34, 4763–4772. [Google Scholar] [CrossRef]
- Chesnokov, V.V.; Chichkan, A.S. Production of Hydrogen by Methane Catalytic Decomposition over Ni–Cu–Fe/Al2O3 Catalyst. Int. J. Hydrogen Energy 2009, 34, 2979–2985. [Google Scholar] [CrossRef]
- Salmones, J.; Wang, J.A.; Valenzuela, M.A.; Sánchez, E.; Garcia, A. Pore Geometry Influence on the Deactivation Behavior of Ni-Based Catalysts for Simultaneous Production of Hydrogen and Nanocarbon. Catal. Today 2009, 148, 134–139. [Google Scholar] [CrossRef]
- Zapata, B.; Valenzuela, M.A.; Palacios, J.; Torres-Garcia, E. Effect of Ca, Ce or K Oxide Addition on the Activity of Ni/SiO2 Catalysts for the Methane Decomposition Reaction. Int. J. Hydrogen Energy 2010, 35, 12091–12097. [Google Scholar] [CrossRef]
- Hussain, T.; Iqbal, M. Pyrolysis of Methane by Catalytic Properties Exhibited by Ceramics. J. Anal. Appl. Pyrolysis 2011, 90, 106–111. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Pant, K.K. Ni–Cu–Zn/MCM-22 Catalysts for Simultaneous Production of Hydrogen and Multiwall Carbon Nanotubes via Thermo-Catalytic Decomposition of Methane. Int. J. Hydrogen Energy 2011, 36, 13352–13360. [Google Scholar] [CrossRef]
- Nuernberg, G.D.B.; Foletto, E.L.; Campos, C.E.M.; Fajardo, H.V.; Carreño, N.L.V.; Probst, L.F.D. Direct Decomposition of Methane over Ni Catalyst Supported in Magnesium Aluminate. J. Power Sources 2012, 208, 409–414. [Google Scholar] [CrossRef]
- Hornés, A.; Bera, P.; Fernández-García, M.; Guerrero-Ruiz, A.; Martínez-Arias, A. Catalytic and Redox Properties of Bimetallic Cu–Ni Systems Combined with CeO2 or Gd-Doped CeO2 for Methane Oxidation and Decomposition. Appl. Catal. B Environ. 2012, 111–112, 96–105. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Pant, K.K. Synthesis of Hydrogen and Carbon Nanotubes over Copper Promoted Ni/SiO2 Catalyst by Thermocatalytic Decomposition of Methane. J. Nat. Gas Sci. Eng. 2013, 13, 52–59. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lua, A.C. Deactivation and Kinetic Studies of Unsupported Ni and Ni–Co–Cu Alloy Catalysts Used for Hydrogen Production by Methane Decomposition. Chem. Eng. J. 2014, 243, 79–91. [Google Scholar] [CrossRef]
- Tang, M.; Xu, L.; Fan, M. Progress in Oxygen Carrier Development of Methane-Based Chemical-Looping Reforming: A Review. Appl. Energy 2015, 151, 143–156. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Wan Daud, W.M.A.; Abbas, H.F. Methane Decomposition Kinetics and Reaction Rate over Ni/SiO2 Nanocatalyst Produced through Co-Precipitation Cum Modified Stöber Method. Int. J. Hydrogen Energy 2017, 42, 938–952. [Google Scholar] [CrossRef]
- Keipi, T.; Tolvanen, K.E.S.; Tolvanen, H.; Konttinen, J. Thermo-Catalytic Decomposition of Methane: The Effect of Reaction Parameters on Process Design and the Utilization Possibilities of the Produced Carbon. Energy Convers. Manag. 2016, 126, 923–934. [Google Scholar] [CrossRef]
- Łamacz, A. CNT and H2 Production During CH4 Decomposition over Ni/CeZrO2. I. A Mechanistic Study. ChemEngineering 2019, 3, 26. [Google Scholar] [CrossRef]
- Łamacz, A.; Łabojko, G. CNT and H2 Production during CH4 Decomposition over Ni/CeZrO2. II. Catalyst Performance and Its Regeneration in a Fluidized Bed. ChemEngineering 2019, 3, 25. [Google Scholar] [CrossRef]
- Muto, T.; Asahara, M.; Miyasaka, T.; Asato, K.; Uehara, T.; Koshi, M. Methane Pyrolysis Characteristics for the Practical Application of Hydrogen Production System Using Permalloy Plate Catalyst. Chem. Eng. Sci. 2023, 274, 117931. [Google Scholar] [CrossRef]
- Park, S.; Kim, M.; Koo, Y.; Kang, D.; Kim, Y.; Park, J.; Ryu, C. Numerical Modeling of Methane Pyrolysis in a Bubble Column of Molten Catalysts for Clean Hydrogen Production. Int. J. Hydrogen Energy 2023, 48, 7385–7399. [Google Scholar] [CrossRef]
- Harrath, K.; Yao, Z.; Jiang, Y.-F.; Wang, Y.-G.; Li, J. Activity Origin of the Nickel Cluster on TiC Support for Nonoxidative Methane Conversion. J. Phys. Chem. Lett. 2023, 14, 4033–4041. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, K.; Peng, Y. Study of Fe2O3-Al2O3 Catalyst Reduction Parameters and Conditions for Catalytic Methane Decomposition. Chem. Eng. Sci. 2022, 250, 117410. [Google Scholar] [CrossRef]
- Ermakova, M.A.; Ermakov, D.Y.; Chuvilin, A.L.; Kuvshinov, G.G. Decomposition of Methane over Iron Catalysts at the Range of Moderate Temperatures: The Influence of Structure of the Catalytic Systems and the Reaction Conditions on the Yield of Carbon and Morphology of Carbon Filaments. J. Catal. 2001, 201, 183–197. [Google Scholar] [CrossRef]
- Ermakova, M. Ni/SiO2 and Fe/SiO2 Catalysts for Production of Hydrogen and Filamentous Carbon via Methane Decomposition. Catal. Today 2002, 77, 225–235. [Google Scholar] [CrossRef]
- Reshetenko, T. Coprecipitated Iron-Containing Catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for Methane Decomposition at Moderate temperaturesI. Genesis of Calcined and Reduced Catalysts. Appl. Catal. A Gen. 2004, 268, 127–138. [Google Scholar] [CrossRef]
- Konieczny, A.; Mondal, K.; Wiltowski, T.; Dydo, P. Catalyst Development for Thermocatalytic Decomposition of Methane to Hydrogen. Int. J. Hydrogen Energy 2008, 33, 264–272. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Batra, V.S.; Hargreaves, J.S.J.; Monaghan, A.; Pulford, I.D.; Rico, J.L.; Sushil, S. Hydrogen Production from Methane in the Presence of Red Mud–Making Mud Magnetic. Green Chem. 2009, 11, 42–47. [Google Scholar] [CrossRef]
- Pinilla, J.L.; Utrilla, R.; Karn, R.K.; Suelves, I.; Lázaro, M.J.; Moliner, R.; García, A.B.; Rouzaud, J.N. High Temperature Iron-Based Catalysts for Hydrogen and Nanostructured Carbon Production by Methane Decomposition. Int. J. Hydrogen Energy 2011, 36, 7832–7843. [Google Scholar] [CrossRef]
- Kashiwaya, Y.; Watanabe, M. Kinetic Analysis of the Decomposition Reaction of CH4 Injecting into Molten Slag. ISIJ Int. 2012, 52, 1394–1403. [Google Scholar] [CrossRef]
- Torres, D.; De Llobet, S.; Pinilla, J.L.; Lázaro, M.J.; Suelves, I.; Moliner, R. Hydrogen Production by Catalytic Decomposition of Methane Using a Fe-Based Catalyst in a Fluidized Bed Reactor. J. Nat. Gas Chem. 2012, 21, 367–373. [Google Scholar] [CrossRef]
- Cornejo, A. The Thermo-Catalytic Decomposition of Methane for Economical and Emission-Free Hydrogen Production. Ph.D. Thesis, The University of Western Australia, Crawley, Australia, 2013. [Google Scholar]
- Alves Silva, J.; Oliveira Santos, J.B.; Torres, D.; Pinilla, J.L.; Suelves, I. Natural Fe-Based Catalysts for the Production of Hydrogen and Carbon Nanomaterials via Methane Decomposition. Int. J. Hydrogen Energy 2021, 46, 35137–35148. [Google Scholar] [CrossRef]
- Lumbers, B.; Barley, J.; Platte, F. Low-Emission Hydrogen Production via the Thermo-Catalytic Decomposition of Methane for the Decarbonisation of Iron Ore Mines in Western Australia. Int. J. Hydrogen Energy 2022, 47, 16347–16361. [Google Scholar] [CrossRef]
- Vlaskin, M.S.; Grigorenko, A.V.; Gromov, A.A.; Kumar, V.; Dudoladov, A.O.; Slavkina, O.V.; Darishchev, V.I. Methane Pyrolysis on Sponge Iron Powder for Sustainable Hydrogen Production. Results Eng. 2022, 15, 100598. [Google Scholar] [CrossRef]
- Wojtasik, M. Dekarbonizacja Metanu z Udziałem Katalizatorów Na Bazie Żelaza. Chem. Rev. 2023, 1, 55–59. [Google Scholar] [CrossRef]
- Grabke, H.-J. Die Kinetik der Entkohlung und Aufkohlung von γ-Eisen in Methan-Wasserstoff-Gemischen. Ber. Bunsenges. Phys. Chem. 1965, 69, 409–414. [Google Scholar] [CrossRef]
- Zhang, J.; Ostrovski, O. Cementite Formation in CH4-H2-Ar Gas Mixture and Cementite Stability. ISIJ Int. 2001, 41, 333–339. [Google Scholar] [CrossRef]
- А.н, М.; А.м, Г. Термoдинамические Функции Реакций Вoсстанoвления Титанoмагнетитoвoгo Кoнцентрата Аджинаурских Песчаникoв Прирoдным Газoм. Azerbaijan Chem. J. 2016, 4, 99–102. Available online: https://cyberleninka.ru/article/n/termodinamicheskie-funktsii-reaktsiy-vosstanovleniya-titanomagnetitovogo-kontsentrata-adzhinaurskih-peschanikov-prirodnym-gazom (accessed on 9 July 2024).
- Zhou, L.; Enakonda, L.R.; Harb, M.; Saih, Y.; Aguilar-Tapia, A.; Ould-Chikh, S.; Hazemann, J.; Li, J.; Wei, N.; Gary, D.; et al. Fe Catalysts for Methane Decomposition to Produce Hydrogen and Carbon Nano Materials. Appl. Catal. B Environ. 2017, 208, 44–59. [Google Scholar] [CrossRef]
- Wang, I.-W.; Kutteri, D.A.; Gao, B.; Tian, H.; Hu, J. Methane Pyrolysis for Carbon Nanotubes and COx -Free H2 over Transition-Metal Catalysts. Energy Fuels 2019, 33, 197–205. [Google Scholar] [CrossRef]
- Chuayboon, S.; Abanades, S.; Rodat, S. Stepwise Solar Methane Reforming and Water-Splitting via Lattice Oxygen Transfer in Iron and Cerium Oxides. Energy Tech 2020, 8, 1900415. [Google Scholar] [CrossRef]
- Schneider, A.; Inden, G. Carbon Diffusion in Cementite (Fe3C) and Hägg Carbide (Fe5C2). Calphad 2007, 31, 141–147. [Google Scholar] [CrossRef]
- Nikolussi, M.; Leineweber, A.; Mittemeijer, E.J. Growth of Massive Cementite Layers; Thermodynamic Parameters and Kinetics. J. Mater. Sci. 2009, 44, 770–777. [Google Scholar] [CrossRef]
- Hallstedt, B.; Djurovic, D.; Von Appen, J.; Dronskowski, R.; Dick, A.; Körmann, F.; Hickel, T.; Neugebauer, J. Thermodynamic Properties of Cementite (Fe3C). Calphad 2010, 34, 129–133. [Google Scholar] [CrossRef]
- Litasov, K.D.; Sharygin, I.S.; Dorogokupets, P.I.; Shatskiy, A.; Gavryushkin, P.N.; Sokolova, T.S.; Ohtani, E.; Li, J.; Funakoshi, K. Thermal Equation of State and Thermodynamic Properties of Iron Carbide Fe3C to 31 GPa and 1473 K. JGR Solid Earth 2013, 118, 5274–5284. [Google Scholar] [CrossRef]
- Vogric, M.; Kozeschnik, E.; Svoboda, J.; Führer, M.; Kreyca, J.; Wei, W.; Povoden-Karadeniz, E. Kinetic Modeling of Grain Boundary Cementite Evolution. Met. Mater Trans A 2022, 53, 3759–3773. [Google Scholar] [CrossRef]
- Wu, M.; Li, Z.; Huang, J.; Wang, Q.; Li, T.; Yang, S.; He, H.; Jiang, Y. Non-Isothermal Kinetics of Coke and Iron Ore Melting Reduction with Variable Activation Energy Model. Fuel 2024, 357, 129991. [Google Scholar] [CrossRef]
- Holmen, A.; Olsvik, O.; Rokstad, O.A. Pyrolysis of Natural Gas: Chemistry and Process Concepts. Fuel Process. Technol. 1995, 42, 249–267. [Google Scholar] [CrossRef]
- Sinaki, M.Y.; Matida, E.A.; Hamdullahpur, F. Development of a Reaction Mechanism for Predicting Hydrogen Production from Homogeneous Decomposition of Methane. Int. J. Hydrogen Energy 2011, 36, 2936–2944. [Google Scholar] [CrossRef]
- Boretti, A. A Perspective on the Production of Hydrogen from Solar-Driven Thermal Decomposition of Methane. Int. J. Hydrogen Energy 2021, 46, 34509–34514. [Google Scholar] [CrossRef]
- Kim, S.E.; Jeong, S.K.; Park, K.T.; Lee, K.-Y.; Kim, H.J. Effect of Oxygen-Containing Functional Groups in Metal-Free Carbon Catalysts on the Decomposition of Methane. Catal. Commun. 2021, 148, 106167. [Google Scholar] [CrossRef]
- Lott, P.; Mokashi, M.B.; Müller, H.; Heitlinger, D.J.; Lichtenberg, S.; Shirsath, A.B.; Janzer, C.; Tischer, S.; Maier, L.; Deutschmann, O. Hydrogen Production and Carbon Capture by Gas-Phase Methane Pyrolysis: A Feasibility Study. ChemSusChem 2023, 16, e202201720. [Google Scholar] [CrossRef]
- Bae, D.; Kim, Y.; Ko, E.H.; Ju Han, S.; Lee, J.W.; Kim, M.; Kang, D. Methane Pyrolysis and Carbon Formation Mechanisms in Molten Manganese Chloride Mixtures. Appl. Energy 2023, 336, 120810. [Google Scholar] [CrossRef]
- Miri, S.S.; Meshkani, F.; Rastegarpanah, A.; Rezaei, M. Influence of Fe, La, Zr, Ce, and Ca on the Catalytic Performance and Coke Formation in Dry Reforming of Methane over Ni/MgO·Al2O3 Catalyst. Chem. Eng. Sci. 2022, 250, 116956. [Google Scholar] [CrossRef]
- Guéret, C.; Daroux, M.; Billaud, F. Methane Pyrolysis: Thermodynamics. Chem. Eng. Sci. 1997, 52, 815–827. [Google Scholar] [CrossRef]
- Steinberg, M. Production of Hydrogen and Methanol from Natural Gas with Reduced CO2 Emission. Int. J. Hydrogen Energy 1998, 23, 419–425. [Google Scholar] [CrossRef]
- Zavarukhin, S.G.; Kuvshinov, G.G. The Kinetic Model of Formation of Nanofibrous Carbon from CH4–H2 Mixture over a High-Loaded Nickel Catalyst with Consideration for the Catalyst Deactivation. Appl. Catal. A Gen. 2004, 272, 219–227. [Google Scholar] [CrossRef]
- Hofberger, C.M.; Dietrich, B.; Durán Vera, I.; Krumholz, R.; Stoppel, L.; Uhlenbruck, N.; Wetzel, T. Natural Gas Pyrolysis in a Liquid Metal Bubble Column Reaction System—Part I: Experimental Setup and Methods. Hydrogen 2023, 4, 295–306. [Google Scholar] [CrossRef]
- Chase, M.W., Jr. NIST-JANAF Themochemical Tables, 4th ed.; American Institute of Physics: College Park, MD, USA, 1998; pp. 1–1951. [Google Scholar]
- Hossain, M.M.; De Lasa, H.I. Chemical-Looping Combustion (CLC) for Inherent CO2 Separations—A Review. Chem. Eng. Sci. 2008, 63, 4433–4451. [Google Scholar] [CrossRef]
- Monazam, E.R.; Breault, R.W.; Siriwardane, R.; Richards, G.; Carpenter, S. Kinetics of the Reduction of Hematite (Fe2O3) by Methane (CH4) during Chemical Looping Combustion: A Global Mechanism. Chem. Eng. J. 2013, 232, 478–487. [Google Scholar] [CrossRef]
- Keller, M.; Matsumura, A.; Sharma, A. Spray-Dried Fe/Al2O3 as a Carbon Carrier for COx-Free Hydrogen Production via Methane Cracking in a Fluidized Bed Process. Chem. Eng. J. 2020, 398, 125612. [Google Scholar] [CrossRef]
- Bagdavadze, J.; Kandelaki, A.; Ukleba, K.; Tsikaridze, Z. Thermodynamic Analysis of CoO, NiO, CuO, FeO Interaction with Methane. Bull. Georgian Natl. Acad. Sci. 2021, 4, 63–66. [Google Scholar]
- Koytsoumpa, E.I.; Karellas, S. Equilibrium and Kinetic Aspects for Catalytic Methanation Focusing on CO2 Derived Substitute Natural Gas (SNG). Renew. Sustain. Energy Rev. 2018, 94, 536–550. [Google Scholar] [CrossRef]
- Sala, C. Study of Reverse Water Gas Shift Reaction Using Bimetallic Catalysts on Active Supports; Degree project in Chemical Engineering; KTH Royal Institute of Technology: Stockholm, Sweden, 2022. [Google Scholar]
- Vannier, D. Kinetic Study of High Temperature Water Gas Shift Reaction; Norwegian University of Science and Technology: Trondheim, Norway, 2011. [Google Scholar]
- Frick, V.; Brellochs, J.; Specht, M. Application of Ternary Diagrams in the Design of Methanation Systems. Fuel Process. Technol. 2014, 118, 156–160. [Google Scholar] [CrossRef]
- Mianowski, A.; Robak, Z.; Tomaszewicz, M.; Stelmach, S. The Boudouard–Bell Reaction Analysis under High Pressure Conditions. J. Therm. Anal. Calorim. 2012, 110, 93–102. [Google Scholar] [CrossRef]
- Mianowski, A.; Radko, T.; Bigda, R. Elements of Transition-State Theory in Relation to the Thermal Dissociation of Selected Solid Compounds. Energies 2024, 17, 2669. [Google Scholar] [CrossRef]
- Eyring, H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3, 107–115. [Google Scholar] [CrossRef]
- Laidler, K.J.; King, M.C. Development of Transition-State Theory. J. Phys. Chem. 1983, 87, 2657–2664. [Google Scholar] [CrossRef]
- Vyazovkin, S. Misinterpretation of Thermodynamic Parameters Evaluated from Activation Energy and Preexponential Factor Determined in Thermal Analysis Experiments. Thermo 2024, 4, 373–381. [Google Scholar] [CrossRef]
- Chi, J.W.H.; Landahl, C.E. Hydrogen Reactions with Graphite Materials at High Temperatures and Pressures. Nucl. Appl. 1968, 4, 159–169. [Google Scholar] [CrossRef]
- Riley, J.; Atallah, C.; Siriwardane, R.; Stevens, R. Technoeconomic Analysis for Hydrogen and Carbon Co-Production via Catalytic Pyrolysis of Methane. Int. J. Hydrogen Energy 2021, 46, 20338–20358. [Google Scholar] [CrossRef]
- Abbas, H.F.; Baker, I.F. Thermocatalytic Decomposition of Methane Using Activated Carbon: Studying the Influence of Process Parameters Using Factorial Design. Int. J. Hydrogen Energy 2011, 36, 8985–8993. [Google Scholar] [CrossRef]
- Lee, E.K.; Lee, S.Y.; Han, G.Y.; Lee, B.K.; Lee, T.-J.; Jun, J.H.; Yoon, K.J. Catalytic Decomposition of Methane over Carbon Blacks for CO2-Free Hydrogen Production. Carbon 2004, 42, 2641–2648. [Google Scholar] [CrossRef]
- Muradov, N.; Smith, F.; T-Raissi, A. Catalytic Activity of Carbons for Methane Decomposition Reaction. Catal. Today 2005, 102–103, 225–233. [Google Scholar] [CrossRef]
- Kim, M. Hydrogen Production by Catalytic Decomposition of Methane over Activated Carbons: Kinetic Study. Int. J. Hydrogen Energy 2004, 29, 187–193. [Google Scholar] [CrossRef]
- Becker, T.; Richter, M.; Agar, D.W. Methane Pyrolysis: Kinetic Studies and Mechanical Removal of Carbon Deposits in Reactors of Different Materials. Int. J. Hydrogen Energy 2023, 48, 2112–2129. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Experimental Study and Modeling of a High-Temperature Solar Chemical Reactor for Hydrogen Production from Methane Cracking. Int. J. Hydrogen Energy 2007, 32, 1508–1515. [Google Scholar] [CrossRef]
- Chemistry (IUPAC), T.I.U. of P. and A. IUPAC—Elementary Reaction (E02035). Available online: https://goldbook.iupac.org/terms/view/E02035 (accessed on 9 July 2024).
- Kobayashi, A.; Steinberg, M. The Thermal Decomposition of Methane in a Tubular Reactor; Brookhaven National Lab. (BNL): Upton, NY, USA, 1992.
- Dahme, A.; Junker, H.J. Die Reaktivität von Koks gegen CO2 im temperaturbereich 1000–1200 °C. Brennst. Chem. 1955, 36, 193–199. [Google Scholar]
- Saraswat, S.K.; Sinha, B.; Pant, K.K.; Gupta, R.B. Kinetic Study and Modeling of Homogeneous Thermocatalytic Decomposition of Methane over a Ni–Cu–Zn/Al2O3 Catalyst for the Production of Hydrogen and Bamboo-Shaped Carbon Nanotubes. Ind. Eng. Chem. Res. 2016, 55, 11672–11680. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed, John Wiley & Sons: Hoboken, NJ, USA, 1999; ISBN 0-471-25424-X.
- Rodat, S.; Abanades, S.; Sans, J.-L.; Flamant, G. Hydrogen Production from Solar Thermal Dissociation of Natural Gas: Development of a 10kW Solar Chemical Reactor Prototype. Sol. Energy 2009, 83, 1599–1610. [Google Scholar] [CrossRef]
- Rodat, S.; Abanades, S.; Coulie, J.; Flamant, G. Kinetic Modelling of Methane Decomposition in a Tubular Solar Reactor. Chem. Eng. J. 2009, 146, 120–127. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Hydrogen Production from Solar Thermal Dissociation of Methane in a High-Temperature Fluid-Wall Chemical Reactor. Chem. Eng. Process. Process Intensif. 2008, 47, 490–498. [Google Scholar] [CrossRef]
- Paxman, D. Experimental and Theoretical Investigation of Solar Molten Media Methane Cracking for Hydrogen Production. Master’s Thesis, Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, 2014. [Google Scholar]
- Paxman, D.; Trottier, S.; Flynn, M.R.; Kostiuk, L.; Secanell, M. Experimental and Numerical Analysis of a Methane Thermal Decomposition Reactor. Int. J. Hydrogen Energy 2017, 42, 25166–25184. [Google Scholar] [CrossRef]
- Schindler, H.; Pastushenko, V.P.; Titulaer, U.M. A Measure for the Distance from Equilibrium. Eur. Biophys. J. 1998, 27, 219–226. [Google Scholar] [CrossRef]
- Gosiewski, K.; Warmuzinski, K.; Tanczyk, M. Mathematical Simulation of WGS Membrane Reactor for Gas from Coal Gasification. Catal. Today 2010, 156, 229–236. [Google Scholar] [CrossRef]
- Plevan, M.; Geißler, T.; Abánades, A.; Mehravaran, K.; Rathnam, R.K.; Rubbia, C.; Salmieri, D.; Stoppel, L.; Stückrad, S.; Wetzel, T. Thermal Cracking of Methane in a Liquid Metal Bubble Column Reactor: Experiments and Kinetic Analysis. Int. J. Hydrogen Energy 2015, 40, 8020–8033. [Google Scholar] [CrossRef]
- Abanades, S.; Kimura, H.; Otsuka, H. Kinetic Investigation of Carbon-Catalyzed Methane Decomposition in a Thermogravimetric Solar Reactor. Int. J. Hydrogen Energy 2015, 40, 10744–10755. [Google Scholar] [CrossRef]
- Abbas, H.F.; Daud, W.M.A.W. Deactivation of Palm Shell-Based Activated Carbon Catalyst Used for Hydrogen Production by Thermocatalytic Decomposition of Methane. Int. J. Hydrogen Energy 2009, 34, 6231–6241. [Google Scholar] [CrossRef]
- Abbas, H.F.; Daud, W.M.A.W. Hydrogen Production by Thermocatalytic Decomposition of Methane Using a Fixed Bed Activated Carbon in a Pilot Scale Unit: Apparent Kinetic, Deactivation and Diffusional Limitation Studies. Int. J. Hydrogen Energy 2010, 35, 12268–12276. [Google Scholar] [CrossRef]
- Mianowski, A.; Radko, T.; Siudyga, T. Influence of Initial Assumptions on the Kinetic Models of CO2 Gasification of Chars and Cokes in Solid Phase. J. Therm. Anal. Calorim. 2016, 126, 1911–1923. [Google Scholar] [CrossRef]
- Msheik, M.; Rodat, S.; Abanades, S. CFD Simulation of a Hybrid Solar/Electric Reactor for Hydrogen and Carbon Production from Methane Cracking. Fluids 2023, 8, 18. [Google Scholar] [CrossRef]
- Lente, G. Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks; SpringerBriefs in Molecular Science; Springer: Cham, Switzerland, 2014; ISBN 978-3-319-15482-4. [Google Scholar]
- Douven, S.; Pirard, S.L.; Heyen, G.; Toye, D.; Pirard, J.-P. Kinetic Study of Double-Walled Carbon Nanotube Synthesis by Catalytic Chemical Vapour Deposition over an Fe-Mo/MgO Catalyst Using Methane as the Carbon Source. Chem. Eng. J. 2011, 175, 396–407. [Google Scholar] [CrossRef]
- Starikov, E.B.; Nordén, B. Entropy–Enthalpy Compensation as a Fundamental Concept and Analysis Tool for Systematical Experimental Data. Chem. Phys. Lett. 2012, 538, 118–120. [Google Scholar] [CrossRef]
No. | Reaction | a, kJ·mol−1 | b, kJ·(mol·K)−1 | T Range, K | , K | Source | Remarks |
---|---|---|---|---|---|---|---|
1 | 88.04 | −0.108 | 573–1773 | 815.2 | [55] | Equation (7) | |
2 | 248.37 | −0.289 | 298–1300 | 859.4 | [1] * | [59] | |
3 | 252.16 | −0.285 | 298–1300 | 884.8 | [1] * | [59] | |
4 | 158.12 | −0.188 | 298–1300 | 841.1 | [1] * | [59] | |
5 | 11.98 | −0.017 | 700–1300 | 704.7 | [1] * | analytical solutions for , graphite, given in [70] | |
6a 6b | 101.29 101.29 | −0.122 −0.126 | 773–1273 773–1273 | 810.4 804.0 | [1] [1] | for assumed after [1] for 485 < T < 1300 K | |
7 | 22.41 | −0.066 | 700–1300 | 339.5 | [85] | - | |
8 9 | −38.06 38.06 | 0.036 −0.036 | 298–1300 298–1300 | 1057.2 1057.2 | [1] [1] | Water-Gas-Shift (WGS) [90,91,92] and Reverse-WGS (R-WGS) [90,91,92] | |
10 | −179.56 | 0.210 | 298–1300 | 855.0 | [1] | R-WGS as methanation [91,93] Sabatier reaction | |
11 | 137.20 | −0.156 | 298–1300, 700–1300 for | 879.5 | [1] | WG [4] | |
12 | 172.77 | −0.169 | 298–1400 | 1022.3 | [94] | Bell–Boudouard reaction |
Temperature in °C; Model for H2 | , Calculated as an Average Value of an Integral | Calculated from Equation (28) | in [27] (Time of the Process in Minutes) |
---|---|---|---|
650; exponential | 0.127 | 5.71 | 4.97 (420) |
700; linear | 0.404 | 18.17 | 18.41 (420) |
750; exponential | 0.288 | 12.95 | 12.95 (420) |
800; exponential | 0.303 | 8.44 | 8.80 (300) |
No | Equation | |
---|---|---|
1 | (38) | |
2 | (39) | Equation (38) for , |
3 | (51) | Equation (38) for |
4 | (48) | |
5 | (49) and (50) after differentiating vs. Equation (48) | |
6 | (40) | Solution of Equation (50) |
7 | (55) | |
8 | (41)–(47), (52)–(54), (56) | Equations supporting the discussion |
No. | = | Remarks | Sources | |
---|---|---|---|---|
1 | For ; | Equations (51) and (55) | ||
2 | Proposed for analysis of reactivity of cokes towards CO2; year 1955 [109] | Eq. proposed by Lee [102], model D–J | ||
3 | ,
| 1. in [102] as well as in [22,110] is defined in the form given by [111]. 2. for system consisting of isomorphic spheres | [22] (2004) and [110] (2016) | |
4 | Acc. to [112], = 0.43–0.71 | [112,113,114], for , , for three types of reactors [115,116] | ||
5 | Here which acc. to [111] means constant density | Equation (46), model F1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mianowski, A.; Szul, M.; Radko, T.; Sobolewski, A.; Iluk, T. Literature Review on Thermodynamic and Kinetic Limitations of Thermal Decomposition of Methane. Energies 2024, 17, 5007. https://doi.org/10.3390/en17195007
Mianowski A, Szul M, Radko T, Sobolewski A, Iluk T. Literature Review on Thermodynamic and Kinetic Limitations of Thermal Decomposition of Methane. Energies. 2024; 17(19):5007. https://doi.org/10.3390/en17195007
Chicago/Turabian StyleMianowski, Andrzej, Mateusz Szul, Tomasz Radko, Aleksander Sobolewski, and Tomasz Iluk. 2024. "Literature Review on Thermodynamic and Kinetic Limitations of Thermal Decomposition of Methane" Energies 17, no. 19: 5007. https://doi.org/10.3390/en17195007
APA StyleMianowski, A., Szul, M., Radko, T., Sobolewski, A., & Iluk, T. (2024). Literature Review on Thermodynamic and Kinetic Limitations of Thermal Decomposition of Methane. Energies, 17(19), 5007. https://doi.org/10.3390/en17195007